Logging response characteristics and genetic mechanism of deep ultra-deep overpressures of Triassic in the western part of the central Depression of the Junggar Basin
-
摘要:
准噶尔盆地中央坳陷西部三叠系超压强度大且成因复杂,但目前对三叠系超压分布与成因的研究相对较薄弱。基于钻井液相对密度、实测地层压力及测井数据等资料,利用测井曲线组合、Bowers法和声波速度−密度交会等方法,分析了中央坳陷西部三叠系超压测井响应特征,探讨了超压成因及主控因素。三叠系超压段泥岩具有高声波时差、低电阻率的特征;中子密度及中子孔隙度均偏离正常压实趋势线,但在不同井区偏离幅度有所差异。现今三叠系超压主要为不均衡压实作用和深部压力传递共同作用形成。受三叠系岩性组合特征、沉积速率及断裂活动强度的影响,不同井区不均衡压实型超压贡献度存在明显差异,克拉玛依组尤为显著:沙窝地地区最大,莫西庄地区有所减小,征沙村地区最小。研究成果深化了对准噶尔盆地中央坳陷西部深层-超深层超压成因机制的认识。
Abstract:Objective The overpressure in the Triassic system of the western part of the central depression in the Junggar Basin is strong and has a complex genesis. However, research on the distribution and genesis of Triassic overpressure is relatively limited at present.
Methods Based on data such as drilling fluid relative density, measured formation pressure, and logging data, methods such as logging curve combination, the Bowers method, and acoustic velocity-density crossplots were used to analyze the logging response characteristics of overpressure in the Triassic system of the western part of the central depression, and to explore the genesis and main controlling factors of overpressure.
Results The mudstones of the Triassic overpressure section exhibit characteristics of high sonic time difference and low resistivity. The neutron density and neutron porosity of the mudstone deviate from the normal compaction trend line, but the degree of deviation varies across different well areas.
Conclusion The current Triassic overpressure is mainly caused by the combined effects of unbalanced compaction and deep pressure transmission. Affected by the characteristics of the Triassic lithological assemblage, sedimentary rate, and fault activity intensity, there are significant differences in the contribution of unbalanced compacted overpressure across different well areas. Particularly in the Karamay Formation: the Shawodi area exhibits the largest contribution, followed by the Moxizhuang area, and the Zhengshacun area shows the smallest contribution. The research results provide a deeper understanding of the mechanism of deep-ultra-deep overpressure in the western part of the central depression of the Junggar Basin.
-
图 1 研究区构造位置(a)及地层发育特征(b)(据文献[33]修改)
Figure 1. Tectonic location (a) and stratigraphic development characteristics (b) of the study area
表 1 准噶尔盆地中央坳陷超压实测点信息统计表
Table 1. Statistics of over-compaction measurement points in the central Depression of Junggar Basin
层系 测点数/个 深度范围/m 剩余压力/MPa 压力系数 白垩系 4 5740 ~5971.5 36~52 1.60~1.88 侏罗系 21 3556 ~6161 0~55 1.00~1.92 三叠系 4 5207 ~6342 34~57 1.56~2.05 二叠系 4 6347 ~7625 57~68 1.83~2.00 -
[1] HAO F,LI S T,SUN Y C,et al. Characteristics and origin of the gas and condensate in the Yinggehai Basin,offshore South China Sea:Evidence for effects of overpressure on petroleum generation and migration[J]. Organic Geochemistry,1996,24(3):363-375. doi: 10.1016/0146-6380(96)00009-5 [2] QUICK J C,TABET D E. Suppressed vitrinite reflectance in the Ferron coalbed gas fairway,central Utah:Possible influence of overpressure[J]. International Journal of Coal Geology,2003,56(1/2):49-67. [3] HUNT J M. Generation and migration of petroleum from abnormally pressured fluid Compartments1[J]. 1990,74(1):1-12. [4] HAO F,LI S T,GONG Z S,et al. Thermal regime,interreservoir compositional heterogeneities,and reservoir-filling history of the Dongfang gas field,Yinggehai Basin,South China Sea:Evidence for episodic fluid injections in overpressured basins?[J]. 2000,84(5):607-626. [5] HAO F,ZHU W L,ZOU H Y,et al. Factors controlling petroleum accumulation and leakage in overpressured reservoirs[J]. AAPG Bulletin,2015,99(5):831-858. doi: 10.1306/01021514145 [6] 操应长,徐涛玉,王艳忠,等. 东营凹陷古近系储层超压成因及其成藏意义[J]. 西南石油大学学报(自然科学版),2009,31(3):34-38.CAO Y C,XU T Y,WANG Y Z,et al. The origin of reservoir overpressure and its implication in hydrocarbon accumulation in the Paleogene of Dongying Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2009,31(3):34-38. (in Chinese with English abstract [7] 张守春,张林晔,查明,等. 东营凹陷压力系统发育对油气成藏的控制[J]. 石油勘探与开发,2010,37(3):289-296. doi: 10.1016/S1876-3804(10)60033-XZHANG S C,ZHANG L Y,ZHA M,et al. Control of pressure system development on reservoir formation in the Dongying Sag,Shengli Oilfield,East China[J]. Petroleum Exploration and Development,2010,37(3):289-296. (in Chinese with English abstract doi: 10.1016/S1876-3804(10)60033-X [8] 张凤奇,王震亮,赵雪娇,等. 库车坳陷迪那2气田异常高压成因机制及其与油气成藏的关系[J]. 石油学报,2012,33(5):739-747. doi: 10.7623/syxb201205002ZHANG F Q,WANG Z L,ZHAO X J,et al. Genetic mechanism of overpressure and its relationship with hydrocarbon accumulation in Dina-2 gasfield,Kuqa Depression[J]. Acta Petrolei Sinica,2012,33(5):739-747. (in Chinese with English abstract doi: 10.7623/syxb201205002 [9] CAILLET G,JUDGE N C,BRAMWELL N P,et al. Overpressure and hydrocarbon trapping in the chalk of the Norwegian central graben[J]. 1997,3(1):33-42. [10] 鲁雪松,赵孟军,张凤奇,等. 准噶尔盆地南缘前陆冲断带超压发育特征、成因及其控藏作用[J]. 石油勘探与开发,2022,49(5):859-870. doi: 10.11698/PED.20220103LU X S,ZHAO M J,ZHANG F Q,et al. Characteristics,origin and controlling effects on hydrocarbon accumulation of overpressure in foreland thrust belt of southern margin of Junggar Basin,NW China[J]. Petroleum Exploration and Development,2022,49(5):859-870. (in Chinese with English abstract doi: 10.11698/PED.20220103 [11] VAN RUTH P,HILLIS R,TINGATE P,et al. The origin of overpressure in ‘old’ sedimentary basins:An example from the Cooper Basin,Australia[J]. Geofluids,2003,3(2):125-131. doi: 10.1046/j.1468-8123.2003.00055.x [12] WANGEN M. Generation of overpressure by cementation of pore space in sedimentary rocks[J]. Geophysical Journal International,2000,143(3):608-620. doi: 10.1046/j.1365-246X.2000.00248.x [13] TINGAY M R P,HILLIS R R,SWARBRICK R E,et al. Â Vertically transferredâ overpressures in Brunei:Evidence for a new mechanism for the formation of high-magnitude overpressure[J]. 2007,35(11):1023-1026. [14] WEBSTER M,O’CONNOR S,PINDAR B,et al. Overpressures in the Taranaki basin:Distribution,causes,and implications for exploration[J]. 2011,95(3):339-370. [15] 赵靖舟,李军,徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报,2017,38(9):973-998.ZHAO J Z,LI J,XU Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica,2017,38(9):973-998. (in Chinese with English abstract [16] 李雪哲,王艳忠,孟涛,等. 砂砾岩储层超压成因及超压对储层的影响:以车镇凹陷陡坡带沙三段砂砾岩为例[J]. 沉积学报,2025,43(1):237-253.LI X Z,WANG Y Z,MENG T,et al. Origin of the overpressure in the sandstone and conglomerate reservoir and its effect on reservoir quality:A case of sandstones and conglomerates from the third member of the shahejie formation from the steep slope belt of Chezhen Sag[J]. Acta Sedimentologica Sinica,2025,43(1):237-253. (in Chinese with English abstract [17] 刘宏坤,艾勇,王贵文,等. 深层、超深层致密砂岩储层成岩相测井定量评价:以库车坳陷博孜-大北地区为例[J]. 地质科技通报,2023,42(1):299-310.LIU H K,AI Y,WANG G W,et al. Quantitative well logging evaluation of diagenetic facies of deep and ultra deep tight sandstone reservoirs:A case study of Bozi-Dabei area in Kuqa Depression[J]. Bulletin of Geological Science and Technology,2023,42(1):299-310. (in Chinese with English abstract [18] 王翠丽,李红波,陈东,等. 克深气田巴什基奇克组致密砂岩储层孔隙结构特征及影响因素分析[J]. 地质科技情报,2018,37(5):70-77.WANG C L,LI H B,CHEN D,et al. Porosity structure characteristics and influencing factors analysis of basijiqike tight sandstone reservoir in keshen gasfield[J]. Geological Science and Technology Information,2018,37(5):70-77. (in Chinese with English abstract [19] 刘惠民,张关龙,范婕,等. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质,2023,44(5):1118-1128. doi: 10.11743/ogg20230504LIU H M,ZHANG G L,FAN J,et al. Exploration discoveries and implications of Well Zheng 10 in the Zhengshacun area of the Junggar Basin[J]. Oil & Gas Geology,2023,44(5):1118-1128. (in Chinese with English abstract doi: 10.11743/ogg20230504 [20] 王金铎,张关龙,庄新明,等. 准噶尔盆地重点领域油气勘探研究进展及潜力方向[J]. 油气地质与采收率,2024,31(4):24-41.WANG J D,ZHANG G L,ZHUANG X M,et al. Research progress and potential directions of oil and gas exploration in key fields of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency,2024,31(4):24-41. (in Chinese with English abstract [21] 张仲培,张宇,张明利,等. 准噶尔盆地中部凹陷区二叠系—三叠系油气成藏主控因素与勘探方向[J]. 石油实验地质,2022,44(4):559-568. doi: 10.11781/sysydz202204559ZHANG Z P,ZHANG Y,ZHANG M L,et al. Main controlling factors and exploration direction of Permian to Triassic reservior in the central sag of Junggar Basin[J]. Petroleum Geology & Experiment,2022,44(4):559-568. (in Chinese with English abstract doi: 10.11781/sysydz202204559 [22] 吴海生,郑孟林,何文军,等. 准噶尔盆地腹部地层压力异常特征与控制因素[J]. 石油与天然气地质,2017,38(6):1135-1146.WU H S,ZHENG M L,HE W J,et al. Formation pressure anomalies and controlling factors in central Juggar Basin[J]. Oil & Gas Geology,2017,38(6):1135-1146. (in Chinese with English abstract [23] 何生,何治亮,杨智,等. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J]. 地球科学,2009,34(3):457-470. doi: 10.3321/j.issn:1000-2383.2009.03.010HE S,HE Z L,YANG Z,et al. Characteristics,well-log responses and mechanisms of overpressures within the Jurassic Formation in the central part of Junggar Basin[J]. Earth Science,2009,34(3):457-470. (in Chinese with English abstract doi: 10.3321/j.issn:1000-2383.2009.03.010 [24] 宫亚军,张奎华,曾治平,等. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏[J]. 地球科学,2021,46(10):3588-3600.GONG Y J,ZHANG K H,ZENG Z P,et al. Origin of overpressure,vertical transfer and hydrocarbon accumulation of Jurassic in Fukang Sag,Junggar Basin[J]. Earth Science,2021,46(10):3588-3600. (in Chinese with English abstract [25] 吾尔妮萨罕·麦麦提敏,李军,赵靖舟,等. 准噶尔盆地莫索湾凸起侏罗系超压成因[J]. 天然气地球科学,2024,35(9):1590-1600. doi: 10.11764/j.issn.1672-1926.2024.01.004MAI MAI TIMIN W E N S H,LI J,ZHAO J Z,et al. Genesis of Jurassic overpressure in the Mosuowan uplift of the Junggar Basin[J]. Natural Gas Geoscience,2024,35(9):1590-1600. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2024.01.004 [26] ZHANG L K,LI C,LUO X R,et al. Vertically transferred overpressures along faults in Mesozoic reservoirs in the central Junggar Basin,northwestern China:Implications for hydrocarbon accumulation and preservation[J]. Marine and Petroleum Geology,2023,150:106152. doi: 10.1016/j.marpetgeo.2023.106152 [27] 苟宇杰,张凤奇,江青春,等. 准噶尔盆地盆1井西凹陷及周缘深层二叠系超压形成机制及演化特征[J]. 油气地质与采收率,2024,31(3):16-30.GOU Y J,ZHANG F Q,JIANG Q C,et al. Formation mechanism and evolution characteristics of deep Permian overpressure in western Well Pen-1 Sag and its periphery,Junggar Basin[J]. Petroleum Geology and Recovery Efficiency,2024,31(3):16-30. (in Chinese with English abstract [28] 魏成林,张凤奇,江青春,等. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏,2024,36(5):167-177.WEI C L,ZHANG F Q,JIANG Q C,et al. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin[J]. Lithologic Reservoirs,2024,36(5):167-177. (in Chinese with English abstract [29] 夏世威,马强,黄传炎,等. 准噶尔盆地东部吉木萨尔−吉南凹陷构造演化及原型盆地恢复[J]. 地质科技通报,2024,43(3):170-179.XIA S W,MA Q,HUANG C Y,et al. Tectonic evolution and prototype basin reconstruction in the Jimsar and Jinan depressions,eastern Junggar Basin[J]. Bulletin of Geological Science and Technology,2024,43(3):170-179. (in Chinese with English abstract [30] 张朝军,何登发,吴晓智,等. 准噶尔多旋回叠合盆地的形成与演化[J]. 中国石油勘探,2006,11(1):47-58. doi: 10.3969/j.issn.1672-7703.2006.01.008ZHANG C J,HE D F,WU X Z,et al. Formation and evolution of multicycle superimposed basins in Junggar Basin[J]. China Petroleum Exploration,2006,11(1):47-58. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2006.01.008 [31] 何登发,张磊,吴松涛,等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质,2018,39(5):845-861.HE D F,ZHANG L,WU S T,et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology,2018,39(5):845-861. (in Chinese with English abstract [32] 陈发景,汪新文,汪新伟. 准噶尔盆地的原型和构造演化[J]. 地学前缘,2005,12(3):77-89.CHEN F J,WANG X W,WANG X W. Prototype and tectonic evolution of the Junggar Basin,northwestern China[J]. Earth Science Frontiers,2005,12(3):77-89. (in Chinese with English abstract [33] 石好果. 准中1区块古构造恢复及其演化对油气成藏的作用[J]. 断块油气田,2017,24(4):456-461. doi: 10.6056/dkyqt201704005SHI H G. Recovery and evolution of paleostructure of Block 1 in central Junggar Basin on hydrocarbon accumulation[J]. Fault-Block Oil & Gas Field,2017,24(4):456-461. (in Chinese with English abstract doi: 10.6056/dkyqt201704005 [34] 何文军,王绪龙,邹阳,等. 准噶尔盆地石油地质条件、资源潜力及勘探方向[J]. 海相油气地质,2019,24(2):75-84. doi: 10.3969/j.issn.1672-9854.2019.02.008HE W J,WANG X L,ZOU Y,et al. The geological conditions,resource potential and exploration direction of oil in Junggar Basin[J]. Marine Origin Petroleum Geology,2019,24(2):75-84. (in Chinese with English abstract doi: 10.3969/j.issn.1672-9854.2019.02.008 [35] 张凤奇,鲁雪松,卓勤功,等. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征[J]. 石油与天然气地质,2020,41(5):1004-1016. doi: 10.11743/ogg20200511ZHANG F Q,LU X S,ZHUO Q G,et al. Genetic mechanism and evolution characteristics of overpressure in the lower play at the southern margin of the Junggar Basin,northwestern China[J]. Oil & Gas Geology,2020,41(5):1004-1016. (in Chinese with English abstract doi: 10.11743/ogg20200511 [36] 罗晓容,杨计海,王振峰. 盆地内渗透性地层超压形成机制及钻前压力预测[J]. 地质论评,2000,46(1):22-31. doi: 10.3321/j.issn:0371-5736.2000.01.004LUO X R,YANG J H,WANG Z F. The overpressuring mechanisms in aquifers and pressure prediction in basins[J]. Geological Review,2000,46(1):22-31. (in Chinese with English abstract doi: 10.3321/j.issn:0371-5736.2000.01.004 [37] 何玉,周星,李少轩,等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏,2022,34(3):60-69. doi: 10.12108/yxyqc.20220306HE Y,ZHOU X,LI S X,et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin[J]. Lithologic Reservoirs,2022,34(3):60-69. (in Chinese with English abstract doi: 10.12108/yxyqc.20220306 [38] BOWERS G L. Detecting high overpressure[J]. The Leading Edge,2002,21(2):174-177. doi: 10.1190/1.1452608 [39] BOWERS G L. Determining an appropriate pore-pressure estimation strategy[C]. Houston,Texas:OTC,2001,OTC-13042-MS. [40] LAHANN R W,SWARBRICK R E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids,2011,11(4):362-375. doi: 10.1111/j.1468-8123.2011.00350.x [41] BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10(2):89-95. [42] TERZAGHI K. Theoretical soil mechanics[M]. Hoboken:John Wi ley & Sons,Inc. ,1943. [43] 周立宏,刘国芳. 利用泥岩声波时差估算地层压力[J]. 石油实验地质,1996,18(2):195-199. doi: 10.11781/sysydz199602195ZHOU L H,LIU G F. Formation pressure estimated by interval transit time of mudstones[J]. Experimental Petroleum Geology,1996,18(2):195-199. (in Chinese with English abstract doi: 10.11781/sysydz199602195 [44] 臧艳彬,王瑞和,王子振,等. 利用Eaton法计算地层孔隙压力的不确定性分析[J]. 西南石油大学学报(自然科学版),2012,34(4):55-61.ZANG Y B,WANG R H,WANG Z Z,et al. Evaluation of uncertainties for pore-pressure taking Eaton method as an example[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2012,34(4):55-61. (in Chinese with English abstract [45] 赵前华,王显南,关利军,等. 基于修正Bowers法的地层压力检测方法:以白云凹陷为例[J]. 工业技术创新,2022,9(1):123-130.ZHAO Q H,WANG X N,GUAN L J,et al. Formation pressure detection method based on modified bowers method:Taking Baiyun Sag as an example[J]. Industrial Technology Innovation,2022,9(1):123-130. (in Chinese with English abstract [46] 张向涛,李军,向绪洪,等. 珠江口盆地深水区白云凹陷超压成因机制及其勘探意义[J]. 石油学报,2022,43(1):41-57. doi: 10.7623/syxb202201004ZHANG X T,LI J,XIANG X H,et al. Genetic mechanism of overpressure and its significance on petroleum exploration in Baiyun Sag in the deep water zone of Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2022,43(1):41-57. (in Chinese with English abstract doi: 10.7623/syxb202201004 [47] 张关龙,王继远,王斌,等. 准噶尔盆地腹部深层—超深层碎屑岩储层发育特征与孔隙演化定量表征[J]. 石油实验地质,2023,45(4):620-631. doi: 10.11781/sysydz202304620ZHANG G L,WANG J Y,WANG B,et al. Development characteristics and quantitative characterization of pore evolution of deep and ultra-deep clastic reservoirs in the hinterland of the Junggar Basin[J]. Petroleum Geology & Experiment,2023,45(4):620-631. (in Chinese with English abstract doi: 10.11781/sysydz202304620 [48] 王捷,王千军,郑胜,等. 准噶尔盆地沙湾凹陷三叠系超深层碎屑岩储层特征及主控因素:以征10井区克拉玛依组为例[J]. 油气地质与采收率,2024,31(4):164-173.WANG J,WANG Q J,ZHENG S,et al. Characteristics and main controlling factors of Triassic ultra-deep clastic rock reservoirs in Shawan Sag,Junggar Basin:A case study of Karamay Formation in Well Zheng10 area[J]. Petroleum Geology and Recovery Efficiency,2024,31(4):164-173. (in Chinese with English abstract [49] LI B C,HE D X,LI M J,et al. Biomarkers and carbon isotope of monomer hydrocarbon in application for oil-source correlation and migration in the moxizhuang-yongjin block,Junggar Basin,NW China[J]. ACS Omega,2022,7(50):47317-47329. doi: 10.1021/acsomega.2c06628 [50] 田安琦,陈石,余一欣,等. 准噶尔盆地莫索湾凸起西缘走滑断裂分层变形特征及形成机理[J]. 现代地质,2023,37(2):296-306.TIAN A Q,CHEN S,YU Y X,et al. Layered deformation characteristics,formation mechanism of strike-slip faults on the western margin of Mosuowan uplift,Junggar Basin[J]. Geoscience,2023,37(2):296-306. (in Chinese with English abstract -