留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔盆地中央坳陷西部三叠系深层−超深层超压测井响应特征及成因探讨

徐龙龙 胡强 刘建章 肖雅文 叶尔阿曼·达吾力

徐龙龙,胡强,刘建章,等. 准噶尔盆地中央坳陷西部三叠系深层−超深层超压测井响应特征及成因探讨[J]. 地质科技通报,2025,44(4):1-13 doi: 10.19509/j.cnki.dzkq.tb20240560
引用本文: 徐龙龙,胡强,刘建章,等. 准噶尔盆地中央坳陷西部三叠系深层−超深层超压测井响应特征及成因探讨[J]. 地质科技通报,2025,44(4):1-13 doi: 10.19509/j.cnki.dzkq.tb20240560
XU Longlong,HU Qiang,LIU Jianzhang,et al. Logging response characteristics and genetic mechanism of deep ultra-deep overpressures of Triassic in the western part of the central Depression of the Junggar Basin[J]. Bulletin of Geological Science and Technology,2025,44(4):1-13 doi: 10.19509/j.cnki.dzkq.tb20240560
Citation: XU Longlong,HU Qiang,LIU Jianzhang,et al. Logging response characteristics and genetic mechanism of deep ultra-deep overpressures of Triassic in the western part of the central Depression of the Junggar Basin[J]. Bulletin of Geological Science and Technology,2025,44(4):1-13 doi: 10.19509/j.cnki.dzkq.tb20240560

准噶尔盆地中央坳陷西部三叠系深层−超深层超压测井响应特征及成因探讨

doi: 10.19509/j.cnki.dzkq.tb20240560
基金项目: 国家自然科学基金项目(42372158;42072179)
详细信息
    作者简介:

    徐龙龙:E-mail:Ongxll@163.com

    通讯作者:

    E-mail:liujzh@126.com

Logging response characteristics and genetic mechanism of deep ultra-deep overpressures of Triassic in the western part of the central Depression of the Junggar Basin

More Information
  • 摘要:

    准噶尔盆地中央坳陷西部三叠系超压强度大且成因复杂,但目前对三叠系超压分布与成因的研究相对较薄弱。基于钻井液相对密度、实测地层压力及测井数据等资料,利用测井曲线组合、Bowers法和声波速度−密度交会等方法,分析了中央坳陷西部三叠系超压测井响应特征,探讨了超压成因及主控因素。三叠系超压段泥岩具有高声波时差、低电阻率的特征;中子密度及中子孔隙度均偏离正常压实趋势线,但在不同井区偏离幅度有所差异。现今三叠系超压主要为不均衡压实作用和深部压力传递共同作用形成。受三叠系岩性组合特征、沉积速率及断裂活动强度的影响,不同井区不均衡压实型超压贡献度存在明显差异,克拉玛依组尤为显著:沙窝地地区最大,莫西庄地区有所减小,征沙村地区最小。研究成果深化了对准噶尔盆地中央坳陷西部深层-超深层超压成因机制的认识。

     

  • 图 1  研究区构造位置(a)及地层发育特征(b)(据文献[33]修改)

    Figure 1.  Tectonic location (a) and stratigraphic development characteristics (b) of the study area

    图 2  准噶尔盆地中央坳陷实测压力值(a)、压力系数与深度的关系(b)

    Figure 2.  Relationship between measured pressure value (a), pressure coefficient and depth in the central Depression of Junggar Basin (b)

    图 3  S12井超压界面判识及超压段砂、泥岩测井曲线变化特征

    AC. 声波时差;RILD. 深侧向电阻率;DEN. 中子密度;CNL. 中子孔隙度;J2x. 西山窑组;J1s. 三工河组;J1b. 八道湾组;T3b. 白碱滩组;T2k. 克拉马依组;T1b. 百口泉组;下同

    Figure 3.  Identification of overpressure interface and variation characteristics of sand and mudstone logging curves in the overpressure section of Well S12

    图 4  S1井超压界面判识及超压段砂、泥岩测井曲线变化特征

    J2t. 头屯河组;下同

    Figure 4.  Identification of the overpressure interface of Well S1 and the variation characteristics of the sand and mudstone logging curves in the overpressure section

    图 5  Zh2井超压界面判识及超压段砂、泥岩测井曲线变化特征

    K1t. 吐鲁番群组;P3w. 上乌尔禾组;下同

    Figure 5.  Identification of the overpressure interface of Well Zh2 and the variation characteristics of the sand and mudstone logging curves in the overpressure section

    图 6  Z10井超压界面判识及超压段砂、泥岩测井曲线变化特征

    E. 古近系;K2d. 东沟组;K1t. 连木沁组;K1sh. 胜金口组;K1h. 呼图壁组;K1q. 清水河组;P2w. 下乌尔禾组;下同

    Figure 6.  Identification of overpressure interface and variation characteristics of sand and mudstone logging curves in the overpressure section of Well Z10

    图 7  中央坳陷部分井声波速度−有效应力交会图(a)及密度−有效应力交会图(b)

    Figure 7.  Intersection diagram of effective stress-acoustic velocity (a) and effective stress-density intersection (b) of some wells in the central Depression

    图 8  泥岩声波速度−密度交会图

    Figure 8.  Acoustic velocity-density intersection diagram of single-well mudstone

    图 9  单井地层沉积速率图

    Figure 9.  Sedimentation rate of a single well

    图 10  典型井三叠系砂岩储层孔隙类型镜下特征

    a. S12井,5004.66 m,T1b,原生粒间孔隙发育,碎屑颗粒多呈点−线接触,表明压实程度较弱,单偏光;b. Z10井,6701.5 m,T2k,颗粒多呈点−线接触,压实作用中等,原生粒间孔隙较发育,单偏光;c. Z10井,6711 m,T2k,颗粒多呈点−线接触,压实作用中等,原生粒间孔隙较发育,单偏光。红色箭头指示原生粒间孔隙

    Figure 10.  Microscopic characteristics of pore types in a single-well Triassic reservoir

    图 11  盆1井西凹陷及沙湾凹陷油气运移与超压传导示意图

    N+Q. 新近系和第四系;K2. 上白垩统;K1. 下白垩统;J2. 中侏罗统;P1+C. 下二叠统

    Figure 11.  Schematic diagram of oil and gas migration and overpressure conduction in the west Sag and Shawan Sag of Well 1

    表  1  准噶尔盆地中央坳陷超压实测点信息统计表

    Table  1.   Statistics of over-compaction measurement points in the central Depression of Junggar Basin

    层系 测点数/个 深度范围/m 剩余压力/MPa 压力系数
    白垩系 4 57405971.5 36~52 1.60~1.88
    侏罗系 21 35566161 0~55 1.00~1.92
    三叠系 4 52076342 34~57 1.56~2.05
    二叠系 4 63477625 57~68 1.83~2.00
    下载: 导出CSV
  • [1] HAO F,LI S T,SUN Y C,et al. Characteristics and origin of the gas and condensate in the Yinggehai Basin,offshore South China Sea:Evidence for effects of overpressure on petroleum generation and migration[J]. Organic Geochemistry,1996,24(3):363-375. doi: 10.1016/0146-6380(96)00009-5
    [2] QUICK J C,TABET D E. Suppressed vitrinite reflectance in the Ferron coalbed gas fairway,central Utah:Possible influence of overpressure[J]. International Journal of Coal Geology,2003,56(1/2):49-67.
    [3] HUNT J M. Generation and migration of petroleum from abnormally pressured fluid Compartments1[J]. 1990,74(1):1-12.
    [4] HAO F,LI S T,GONG Z S,et al. Thermal regime,interreservoir compositional heterogeneities,and reservoir-filling history of the Dongfang gas field,Yinggehai Basin,South China Sea:Evidence for episodic fluid injections in overpressured basins?[J]. 2000,84(5):607-626.
    [5] HAO F,ZHU W L,ZOU H Y,et al. Factors controlling petroleum accumulation and leakage in overpressured reservoirs[J]. AAPG Bulletin,2015,99(5):831-858. doi: 10.1306/01021514145
    [6] 操应长,徐涛玉,王艳忠,等. 东营凹陷古近系储层超压成因及其成藏意义[J]. 西南石油大学学报(自然科学版),2009,31(3):34-38.

    CAO Y C,XU T Y,WANG Y Z,et al. The origin of reservoir overpressure and its implication in hydrocarbon accumulation in the Paleogene of Dongying Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2009,31(3):34-38. (in Chinese with English abstract
    [7] 张守春,张林晔,查明,等. 东营凹陷压力系统发育对油气成藏的控制[J]. 石油勘探与开发,2010,37(3):289-296. doi: 10.1016/S1876-3804(10)60033-X

    ZHANG S C,ZHANG L Y,ZHA M,et al. Control of pressure system development on reservoir formation in the Dongying Sag,Shengli Oilfield,East China[J]. Petroleum Exploration and Development,2010,37(3):289-296. (in Chinese with English abstract doi: 10.1016/S1876-3804(10)60033-X
    [8] 张凤奇,王震亮,赵雪娇,等. 库车坳陷迪那2气田异常高压成因机制及其与油气成藏的关系[J]. 石油学报,2012,33(5):739-747. doi: 10.7623/syxb201205002

    ZHANG F Q,WANG Z L,ZHAO X J,et al. Genetic mechanism of overpressure and its relationship with hydrocarbon accumulation in Dina-2 gasfield,Kuqa Depression[J]. Acta Petrolei Sinica,2012,33(5):739-747. (in Chinese with English abstract doi: 10.7623/syxb201205002
    [9] CAILLET G,JUDGE N C,BRAMWELL N P,et al. Overpressure and hydrocarbon trapping in the chalk of the Norwegian central graben[J]. 1997,3(1):33-42.
    [10] 鲁雪松,赵孟军,张凤奇,等. 准噶尔盆地南缘前陆冲断带超压发育特征、成因及其控藏作用[J]. 石油勘探与开发,2022,49(5):859-870. doi: 10.11698/PED.20220103

    LU X S,ZHAO M J,ZHANG F Q,et al. Characteristics,origin and controlling effects on hydrocarbon accumulation of overpressure in foreland thrust belt of southern margin of Junggar Basin,NW China[J]. Petroleum Exploration and Development,2022,49(5):859-870. (in Chinese with English abstract doi: 10.11698/PED.20220103
    [11] VAN RUTH P,HILLIS R,TINGATE P,et al. The origin of overpressure in ‘old’ sedimentary basins:An example from the Cooper Basin,Australia[J]. Geofluids,2003,3(2):125-131. doi: 10.1046/j.1468-8123.2003.00055.x
    [12] WANGEN M. Generation of overpressure by cementation of pore space in sedimentary rocks[J]. Geophysical Journal International,2000,143(3):608-620. doi: 10.1046/j.1365-246X.2000.00248.x
    [13] TINGAY M R P,HILLIS R R,SWARBRICK R E,et al. Â Vertically transferredâ overpressures in Brunei:Evidence for a new mechanism for the formation of high-magnitude overpressure[J]. 2007,35(11):1023-1026.
    [14] WEBSTER M,O’CONNOR S,PINDAR B,et al. Overpressures in the Taranaki basin:Distribution,causes,and implications for exploration[J]. 2011,95(3):339-370.
    [15] 赵靖舟,李军,徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报,2017,38(9):973-998.

    ZHAO J Z,LI J,XU Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica,2017,38(9):973-998. (in Chinese with English abstract
    [16] 李雪哲,王艳忠,孟涛,等. 砂砾岩储层超压成因及超压对储层的影响:以车镇凹陷陡坡带沙三段砂砾岩为例[J]. 沉积学报,2025,43(1):237-253.

    LI X Z,WANG Y Z,MENG T,et al. Origin of the overpressure in the sandstone and conglomerate reservoir and its effect on reservoir quality:A case of sandstones and conglomerates from the third member of the shahejie formation from the steep slope belt of Chezhen Sag[J]. Acta Sedimentologica Sinica,2025,43(1):237-253. (in Chinese with English abstract
    [17] 刘宏坤,艾勇,王贵文,等. 深层、超深层致密砂岩储层成岩相测井定量评价:以库车坳陷博孜-大北地区为例[J]. 地质科技通报,2023,42(1):299-310.

    LIU H K,AI Y,WANG G W,et al. Quantitative well logging evaluation of diagenetic facies of deep and ultra deep tight sandstone reservoirs:A case study of Bozi-Dabei area in Kuqa Depression[J]. Bulletin of Geological Science and Technology,2023,42(1):299-310. (in Chinese with English abstract
    [18] 王翠丽,李红波,陈东,等. 克深气田巴什基奇克组致密砂岩储层孔隙结构特征及影响因素分析[J]. 地质科技情报,2018,37(5):70-77.

    WANG C L,LI H B,CHEN D,et al. Porosity structure characteristics and influencing factors analysis of basijiqike tight sandstone reservoir in keshen gasfield[J]. Geological Science and Technology Information,2018,37(5):70-77. (in Chinese with English abstract
    [19] 刘惠民,张关龙,范婕,等. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质,2023,44(5):1118-1128. doi: 10.11743/ogg20230504

    LIU H M,ZHANG G L,FAN J,et al. Exploration discoveries and implications of Well Zheng 10 in the Zhengshacun area of the Junggar Basin[J]. Oil & Gas Geology,2023,44(5):1118-1128. (in Chinese with English abstract doi: 10.11743/ogg20230504
    [20] 王金铎,张关龙,庄新明,等. 准噶尔盆地重点领域油气勘探研究进展及潜力方向[J]. 油气地质与采收率,2024,31(4):24-41.

    WANG J D,ZHANG G L,ZHUANG X M,et al. Research progress and potential directions of oil and gas exploration in key fields of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency,2024,31(4):24-41. (in Chinese with English abstract
    [21] 张仲培,张宇,张明利,等. 准噶尔盆地中部凹陷区二叠系—三叠系油气成藏主控因素与勘探方向[J]. 石油实验地质,2022,44(4):559-568. doi: 10.11781/sysydz202204559

    ZHANG Z P,ZHANG Y,ZHANG M L,et al. Main controlling factors and exploration direction of Permian to Triassic reservior in the central sag of Junggar Basin[J]. Petroleum Geology & Experiment,2022,44(4):559-568. (in Chinese with English abstract doi: 10.11781/sysydz202204559
    [22] 吴海生,郑孟林,何文军,等. 准噶尔盆地腹部地层压力异常特征与控制因素[J]. 石油与天然气地质,2017,38(6):1135-1146.

    WU H S,ZHENG M L,HE W J,et al. Formation pressure anomalies and controlling factors in central Juggar Basin[J]. Oil & Gas Geology,2017,38(6):1135-1146. (in Chinese with English abstract
    [23] 何生,何治亮,杨智,等. 准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J]. 地球科学,2009,34(3):457-470. doi: 10.3321/j.issn:1000-2383.2009.03.010

    HE S,HE Z L,YANG Z,et al. Characteristics,well-log responses and mechanisms of overpressures within the Jurassic Formation in the central part of Junggar Basin[J]. Earth Science,2009,34(3):457-470. (in Chinese with English abstract doi: 10.3321/j.issn:1000-2383.2009.03.010
    [24] 宫亚军,张奎华,曾治平,等. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏[J]. 地球科学,2021,46(10):3588-3600.

    GONG Y J,ZHANG K H,ZENG Z P,et al. Origin of overpressure,vertical transfer and hydrocarbon accumulation of Jurassic in Fukang Sag,Junggar Basin[J]. Earth Science,2021,46(10):3588-3600. (in Chinese with English abstract
    [25] 吾尔妮萨罕·麦麦提敏,李军,赵靖舟,等. 准噶尔盆地莫索湾凸起侏罗系超压成因[J]. 天然气地球科学,2024,35(9):1590-1600. doi: 10.11764/j.issn.1672-1926.2024.01.004

    MAI MAI TIMIN W E N S H,LI J,ZHAO J Z,et al. Genesis of Jurassic overpressure in the Mosuowan uplift of the Junggar Basin[J]. Natural Gas Geoscience,2024,35(9):1590-1600. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2024.01.004
    [26] ZHANG L K,LI C,LUO X R,et al. Vertically transferred overpressures along faults in Mesozoic reservoirs in the central Junggar Basin,northwestern China:Implications for hydrocarbon accumulation and preservation[J]. Marine and Petroleum Geology,2023,150:106152. doi: 10.1016/j.marpetgeo.2023.106152
    [27] 苟宇杰,张凤奇,江青春,等. 准噶尔盆地盆1井西凹陷及周缘深层二叠系超压形成机制及演化特征[J]. 油气地质与采收率,2024,31(3):16-30.

    GOU Y J,ZHANG F Q,JIANG Q C,et al. Formation mechanism and evolution characteristics of deep Permian overpressure in western Well Pen-1 Sag and its periphery,Junggar Basin[J]. Petroleum Geology and Recovery Efficiency,2024,31(3):16-30. (in Chinese with English abstract
    [28] 魏成林,张凤奇,江青春,等. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏,2024,36(5):167-177.

    WEI C L,ZHANG F Q,JIANG Q C,et al. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin[J]. Lithologic Reservoirs,2024,36(5):167-177. (in Chinese with English abstract
    [29] 夏世威,马强,黄传炎,等. 准噶尔盆地东部吉木萨尔−吉南凹陷构造演化及原型盆地恢复[J]. 地质科技通报,2024,43(3):170-179.

    XIA S W,MA Q,HUANG C Y,et al. Tectonic evolution and prototype basin reconstruction in the Jimsar and Jinan depressions,eastern Junggar Basin[J]. Bulletin of Geological Science and Technology,2024,43(3):170-179. (in Chinese with English abstract
    [30] 张朝军,何登发,吴晓智,等. 准噶尔多旋回叠合盆地的形成与演化[J]. 中国石油勘探,2006,11(1):47-58. doi: 10.3969/j.issn.1672-7703.2006.01.008

    ZHANG C J,HE D F,WU X Z,et al. Formation and evolution of multicycle superimposed basins in Junggar Basin[J]. China Petroleum Exploration,2006,11(1):47-58. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2006.01.008
    [31] 何登发,张磊,吴松涛,等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质,2018,39(5):845-861.

    HE D F,ZHANG L,WU S T,et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology,2018,39(5):845-861. (in Chinese with English abstract
    [32] 陈发景,汪新文,汪新伟. 准噶尔盆地的原型和构造演化[J]. 地学前缘,2005,12(3):77-89.

    CHEN F J,WANG X W,WANG X W. Prototype and tectonic evolution of the Junggar Basin,northwestern China[J]. Earth Science Frontiers,2005,12(3):77-89. (in Chinese with English abstract
    [33] 石好果. 准中1区块古构造恢复及其演化对油气成藏的作用[J]. 断块油气田,2017,24(4):456-461. doi: 10.6056/dkyqt201704005

    SHI H G. Recovery and evolution of paleostructure of Block 1 in central Junggar Basin on hydrocarbon accumulation[J]. Fault-Block Oil & Gas Field,2017,24(4):456-461. (in Chinese with English abstract doi: 10.6056/dkyqt201704005
    [34] 何文军,王绪龙,邹阳,等. 准噶尔盆地石油地质条件、资源潜力及勘探方向[J]. 海相油气地质,2019,24(2):75-84. doi: 10.3969/j.issn.1672-9854.2019.02.008

    HE W J,WANG X L,ZOU Y,et al. The geological conditions,resource potential and exploration direction of oil in Junggar Basin[J]. Marine Origin Petroleum Geology,2019,24(2):75-84. (in Chinese with English abstract doi: 10.3969/j.issn.1672-9854.2019.02.008
    [35] 张凤奇,鲁雪松,卓勤功,等. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征[J]. 石油与天然气地质,2020,41(5):1004-1016. doi: 10.11743/ogg20200511

    ZHANG F Q,LU X S,ZHUO Q G,et al. Genetic mechanism and evolution characteristics of overpressure in the lower play at the southern margin of the Junggar Basin,northwestern China[J]. Oil & Gas Geology,2020,41(5):1004-1016. (in Chinese with English abstract doi: 10.11743/ogg20200511
    [36] 罗晓容,杨计海,王振峰. 盆地内渗透性地层超压形成机制及钻前压力预测[J]. 地质论评,2000,46(1):22-31. doi: 10.3321/j.issn:0371-5736.2000.01.004

    LUO X R,YANG J H,WANG Z F. The overpressuring mechanisms in aquifers and pressure prediction in basins[J]. Geological Review,2000,46(1):22-31. (in Chinese with English abstract doi: 10.3321/j.issn:0371-5736.2000.01.004
    [37] 何玉,周星,李少轩,等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏,2022,34(3):60-69. doi: 10.12108/yxyqc.20220306

    HE Y,ZHOU X,LI S X,et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin[J]. Lithologic Reservoirs,2022,34(3):60-69. (in Chinese with English abstract doi: 10.12108/yxyqc.20220306
    [38] BOWERS G L. Detecting high overpressure[J]. The Leading Edge,2002,21(2):174-177. doi: 10.1190/1.1452608
    [39] BOWERS G L. Determining an appropriate pore-pressure estimation strategy[C]. Houston,Texas:OTC,2001,OTC-13042-MS.
    [40] LAHANN R W,SWARBRICK R E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids,2011,11(4):362-375. doi: 10.1111/j.1468-8123.2011.00350.x
    [41] BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10(2):89-95.
    [42] TERZAGHI K. Theoretical soil mechanics[M]. Hoboken:John Wi ley & Sons,Inc. ,1943.
    [43] 周立宏,刘国芳. 利用泥岩声波时差估算地层压力[J]. 石油实验地质,1996,18(2):195-199. doi: 10.11781/sysydz199602195

    ZHOU L H,LIU G F. Formation pressure estimated by interval transit time of mudstones[J]. Experimental Petroleum Geology,1996,18(2):195-199. (in Chinese with English abstract doi: 10.11781/sysydz199602195
    [44] 臧艳彬,王瑞和,王子振,等. 利用Eaton法计算地层孔隙压力的不确定性分析[J]. 西南石油大学学报(自然科学版),2012,34(4):55-61.

    ZANG Y B,WANG R H,WANG Z Z,et al. Evaluation of uncertainties for pore-pressure taking Eaton method as an example[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2012,34(4):55-61. (in Chinese with English abstract
    [45] 赵前华,王显南,关利军,等. 基于修正Bowers法的地层压力检测方法:以白云凹陷为例[J]. 工业技术创新,2022,9(1):123-130.

    ZHAO Q H,WANG X N,GUAN L J,et al. Formation pressure detection method based on modified bowers method:Taking Baiyun Sag as an example[J]. Industrial Technology Innovation,2022,9(1):123-130. (in Chinese with English abstract
    [46] 张向涛,李军,向绪洪,等. 珠江口盆地深水区白云凹陷超压成因机制及其勘探意义[J]. 石油学报,2022,43(1):41-57. doi: 10.7623/syxb202201004

    ZHANG X T,LI J,XIANG X H,et al. Genetic mechanism of overpressure and its significance on petroleum exploration in Baiyun Sag in the deep water zone of Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2022,43(1):41-57. (in Chinese with English abstract doi: 10.7623/syxb202201004
    [47] 张关龙,王继远,王斌,等. 准噶尔盆地腹部深层—超深层碎屑岩储层发育特征与孔隙演化定量表征[J]. 石油实验地质,2023,45(4):620-631. doi: 10.11781/sysydz202304620

    ZHANG G L,WANG J Y,WANG B,et al. Development characteristics and quantitative characterization of pore evolution of deep and ultra-deep clastic reservoirs in the hinterland of the Junggar Basin[J]. Petroleum Geology & Experiment,2023,45(4):620-631. (in Chinese with English abstract doi: 10.11781/sysydz202304620
    [48] 王捷,王千军,郑胜,等. 准噶尔盆地沙湾凹陷三叠系超深层碎屑岩储层特征及主控因素:以征10井区克拉玛依组为例[J]. 油气地质与采收率,2024,31(4):164-173.

    WANG J,WANG Q J,ZHENG S,et al. Characteristics and main controlling factors of Triassic ultra-deep clastic rock reservoirs in Shawan Sag,Junggar Basin:A case study of Karamay Formation in Well Zheng10 area[J]. Petroleum Geology and Recovery Efficiency,2024,31(4):164-173. (in Chinese with English abstract
    [49] LI B C,HE D X,LI M J,et al. Biomarkers and carbon isotope of monomer hydrocarbon in application for oil-source correlation and migration in the moxizhuang-yongjin block,Junggar Basin,NW China[J]. ACS Omega,2022,7(50):47317-47329. doi: 10.1021/acsomega.2c06628
    [50] 田安琦,陈石,余一欣,等. 准噶尔盆地莫索湾凸起西缘走滑断裂分层变形特征及形成机理[J]. 现代地质,2023,37(2):296-306.

    TIAN A Q,CHEN S,YU Y X,et al. Layered deformation characteristics,formation mechanism of strike-slip faults on the western margin of Mosuowan uplift,Junggar Basin[J]. Geoscience,2023,37(2):296-306. (in Chinese with English abstract
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-27
  • 录用日期:  2025-01-11
  • 修回日期:  2025-01-10
  • 网络出版日期:  2025-06-09

目录

    /

    返回文章
    返回