Research on reservoir modeling of fault-controlled fractured-cavity reservoirs-case study of Shunbei Fault Zone No.4
-
摘要:
塔里木盆地顺北地区发育碳酸盐岩断控缝洞型油气藏储集体,现有建模算法难以精确表征其内部结构,亟需结合断控体内部构造特征开展储层建模算法研究,建立符合地质认知的精细三维地质模型,明确油气优势储集空间。以顺北4号断裂带为例,提出并应用了一种基于目标的建模方法,结合层次模拟的思想,定量表征了挤压段、拉分段与平移段的断裂面与类洞穴的发育规模。通过设计基于网格的储集体趋势线追踪算法,查找符合储集体发育走向的中心线,融合层次模拟的思想,逐层次刻画断裂面与类洞穴内部栅状结构地质模型。在建立的地质模型的基础上,基于相控的方式建立物性模型,开展储量计算与数值模拟,优选仅有断裂面的断控体模型,断裂面储量计算的结果与动态储量拟合率为96%,对井底压力、实际生产数据进行拟合,误差均小于10%。研究区主要可能储集类型为断裂面、类洞穴与杂乱体。对不同的地震属性体截断处理建立断控体轮廓模型。测井解释断裂面与类洞穴内部发育破碎带与基岩带有序排列的栅状结构,破碎带可进一步划分为角砾带与裂缝带。设计基于目标的建模方法,建立储集体内部栅状结构三维地质模型。优选仅有断裂面的断控体模型,该模型遵从钻测井条件数据,符合地质认知,对指导油气藏开发具有参考意义。
Abstract:Objective Carbonate fault-controlled fracture-cavity reservoirs are present in the Shunbei area of the Tarim Basin, NW China. Existing modeling algorithms struggle to accurately characterize the internal structure. Urgently needed is research on reservoir modeling algorithms that incorporate the internal structural characteristics of the fault-controlled body. This will establish a detailed three-dimensional geological model aligned with geological understanding and clarify the primary reservoir spaces for oil and gas.
Methods In this paper, taking the Shunbei No.4 fault zone as an example, an object-based modeling method is proposed and applied for the first time. Combined with the idea of hierarchical simulation, the fracture plane and the development scale of caves type in the extrusion, pull-apart and translation stress sections are quantitatively characterized. By designing a grille-based reservoir trend line tracking algorithm, the center line that conforms to the development trend of the reservoir is found, and the idea of hierarchical simulation is integrated to describe the fracture plane and the grille-like filling structure model inside the cave type layer by layer.
Results Based on the established geological model. A property model is created using the phase-controlled method. This model is used for reserve calculation and numerical simulation. Preference is given to the fault-controlled body model with only fracture planes. The fit between the calculated fracture plane reserves and dynamic reserves is 96%. The model also fits bottom hole pressure and actual production data, with an error less than 10%.
Conclusion The main reservoir types in the study area include fracture planes, caves type, and disordered bodies. A fault-controlled body contour model is established for different seismic attribute bodies. Logging interpretation identifies fracture plane and cave type internal developments within the bedrock and crush belt, forming an ordered grille structure. Crush belt further divided into breccia belt and fracture belt. An object-based modeling method creates a three-dimensional geological model of the reservoir’s grille structure. The model, optimized for fracture plane reservoirs, aligns with drilling and logging data and geological understanding. It provides a reference for guiding oil and gas reservoir development.
-
-
[1] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,2018,39(2):207-216. doi: 10.11743/ogg20180201JIAO F Z. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J]. Oil & Gas Geology,2018,39(2):207-216. (in Chinese with English abstract doi: 10.11743/ogg20180201 [2] 王清华,杨海军,汪如军,等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探,2021,26(4):58-71.WANG Q H,YANG H J,WANG R J,et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration,2021,26(4):58-71. (in Chinese with English abstract [3] 曹自成,唐大卿,骆满嵩,等. 塔里木盆地顺北地区中新生界断裂构造特征及演化[J]. 地质科技通报,2023,42(1):226-238.CAO Z C,TANG D Q,LUO M S,et al. Structural characteristics and tectonic evolution of Mesozoic-Cenozoic faults in the Shunbei area,Tarim Basin[J]. Bulletin of Geological Science and Technology,2023,42(1):226-238. (in Chinese with English abstract [4] 马永生,蔡勋育,李慧莉,等. 深层−超深层碳酸盐岩储层发育机理新认识与特深层油气勘探方向[J]. 地学前缘,2023,30(6):1-13.MA Y S,CAI X Y,LI H L,et al. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata[J]. Earth Science Frontiers,2023,30(6):1-13. (in Chinese with English abstract [5] 黄太柱,蒋华山,马庆佑. 塔里木盆地下古生界碳酸盐岩油气成藏特征[J]. 石油与天然气地质,2014,35(6):780-787.HUANG T Z,JIANG H S,MA Q Y. Hydrocarbon accumulation characteristics in lower Paleozoic carbonate reservoirs of Tarim basin[J]. Oil & Gas Geology,2014,35(6):780-787. (in Chinese with English abstract [6] 李源,蔡忠贤,张恒,等. 塔河油田海西早期岩溶古水系识别方法及其特征[J]. 地质科技情报,2016,35(4):184-191.LI Y,CAI Z X,ZHANG H,et al. Recognition methods and characteristics of Karst drainage system in hercynian,Tahe oilfield[J]. Geological Science and Technology Information,2016,35(4):184-191. (in Chinese with English abstract [7] 马海陇,杨德彬,王震,等. 塔河油田走滑断裂与古岩溶耦合关系研究及其对奥陶系储层发育的影响[J]. 地学前缘,2024,31(5):227-246.MA H L,YANG D B,WANG Z,et al. Coupling relationship between strike-slip fault and paleokarst in Tahe Oilfield and its influence on the development of Ordovician reservoirs[J]. Earth Science Frontiers,2024,31(5):227-246. (in Chinese with English abstract [8] 韩长城,林承焰,鲁新便,等. 塔河油田奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制[J]. 石油与天然气地质,2016,37(5):644-652.HAN C C,LIN C Y,LU X B,et al. Characterization and genesis of fault-controlled karst reservoirs in Ordovician carbonate karst slope of Tahe oilfield,Tarim Basin[J]. Oil & Gas Geology,2016,37(5):644-652. (in Chinese with English abstract [9] 鲁新便,杨敏,汪彦,等. 塔里木盆地北部“层控” 与“断控” 型油藏特征——以塔河油田奥陶系油藏为例[J]. 石油实验地质,2018,40(4):461-469.LU X B,YANG M,WANG Y,et al. Geological characteristics of "strata-bound" and "fault-controlled" reservoirs in the northern Tarim Basin:Taking the Ordovician reservoirs in the Tahe oilfield as an example[J]. Petroleum Geology & Experiment,2018,40(4):461-469. (in Chinese with English abstract [10] 李峰峰,叶禹,余义常,等. 碳酸盐岩成岩作用研究进展[J]. 地质科技通报,2023,42(1):170-190.LI F F,YE Y,YU Y C,et al. Research progress of carbonate rock diagenesis[J]. Bulletin of Geological Science and Technology,2023,42(1):170-190. (in Chinese with English abstract [11] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347-355.LU X B,HU W G,WANG Y,et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin[J]. Oil & Gas Geology,2015,36(3):347-355. (in Chinese with English abstract [12] LU X B,WANG Y,TIAN F,et al. New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin[J]. Marine and Petroleum Geology,2017,86:587-605. doi: 10.1016/j.marpetgeo.2017.06.023 [13] 李源,蔡忠贤,张恒,等. 塔河油田T738井区顺层岩溶储层特征及成因[J]. 地质科技情报,2017,36(2):80-85.LI Y,CAI Z X,ZHANG H,et al. Characteristics and genesis of bedded karstification in T738 region of Tahe oilfield[J]. Geological Science and Technology Information,2017,36(2):80-85. (in Chinese with English abstract [14] DENG S,ZHAO R,KONG Q F,et al. Two distinct strike-slip fault networks in the Shunbei area and its surroundings,Tarim Basin:Hydrocarbon accumulation,distribution,and controlling factors[J]. AAPG Bulletin,2022,106(1):77-102. doi: 10.1306/07202119113 [15] 张煜,李海英,陈修平,等. 塔里木盆地顺北地区超深断控缝洞型油气藏地质-工程一体化实践与成效[J]. 石油与天然气地质,2022,43(6):1466-1480.ZHANG Y,LI H Y,CHEN X P,et al. Practice and effect of geology-engineering integration in the development of ultra-deep fault-controlled fractured-vuggy oil/gas reservoirs,Shunbei area,Tarim Basin[J]. Oil & Gas Geology,2022,43(6):1466-1480. (in Chinese with English abstract [16] 张煜,毛庆言,李海英,等. 顺北中部超深层断控缝洞型油气藏储集体特征与实践应用[J]. 中国石油勘探,2023,28(1):1-13.ZHANG Y,MAO Q Y,LI H Y,et al. Characteristics and practical application of ultra-deep fault-controlled fracturedcavity type reservoir in central Shunbei area[J]. China Petroleum Exploration,2023,28(1):1-13. (in Chinese with English abstract [17] 陈叔阳,何云峰,王立鑫,等. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏,2024,36(2):124-135.CHEN S Y,HE Y F,WANG L X,et al. Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin[J]. Lithologic Reservoirs,2024,36(2):124-135. (in Chinese with English abstract [18] 尚浩杰,陈叔阳,何云峰,等. 断控缝洞型碳酸盐岩储层结构表征与三维地质建模:以顺北4号断裂带为例[J]. 石油学报,2024,45(11):1662-1679.SHANG H J,CHEN S Y,HE Y F,et al. Structural characterization and 3D geological modeling of fault-controlled fracture-cavity carbonate reservoirs:A case study of Shunbei No. 4 fault zone[J]. Acta Petrolei Sinica,2024,45(11):1662-1679. (in Chinese with English abstract [19] 张文彪,段太忠,刘彦锋,等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报,2019,38(3):264-275.ZHANG W B,DUAN T Z,LIU Y F,et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information,2019,38(3):264-275. (in Chinese with English abstract [20] LOUCKS R G,MESCHER P K,MCMECHAN G A. Three-dimensional architecture of a coalesced,collapsed-paleocave system in the Lower Ordovician Ellenburger Group,central Texas[J]. AAPG Bulletin,2004,88(5):545-564. doi: 10.1306/12220303072 [21] 李阳,侯加根,李永强. 碳酸盐岩缝洞型储集体特征及分类分级地质建模[J]. 石油勘探与开发,2016,43(4):600-606.LI Y,HOU J G,LI Y Q. Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J]. Petroleum Exploration and Development,2016,43(4):600-606. (in Chinese with English abstract [22] LI J,CHEN G P,ZHANG B,et al. Structure and fracture-cavity identification of epimetamorphic volcanic-sedimentary rock basement reservoir:A case study from central Hailar Basin,China[J]. Arabian Journal of Geosciences,2019,12(2):64. doi: 10.1007/s12517-018-4221-z [23] 宋志峰,张建光. 缝洞型碳酸盐岩靶向酸压目标体分类与建模[J]. 地质科技通报,2021,40(3):78-84.SONG Z F,ZHANG J G. Classification and modeling of targeted fracture-cave bodies in acid fracturing[J]. Bulletin of Geological Science and Technology,2021,40(3):78-84. (in Chinese with English abstract [24] DUAN T Z,ZHANG W B,LU X B,et al. Architectural characterization of Ordovician fault-controlled paleokarst carbonate reservoirs,Tahe oilfield,China[J]. Interpretation,2020,8(4):T953-T965. doi: 10.1190/INT-2019-0012.1 [25] ZHANG W B,DUAN T Z,LI M,et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai,Tahe oilfield,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2021,48(2):367-380. doi: 10.1016/S1876-3804(21)60029-0 [26] 张文彪,张亚雄,段太忠,等. 塔里木盆地塔河油田托甫台区奥陶系碳酸盐岩断溶体系层次建模方法[J]. 石油与天然气地质,2022,43(1):207-218. doi: 10.11743/ogg20220117ZHANG W B,ZHANG Y X,DUAN T Z,et al. Hierarchy modeling of the Ordovician fault-karst carbonate reservoir in Tuoputai area,Tahe oilfield,Tarim Basin,NW China[J]. Oil & Gas Geology,2022,43(1):207-218. (in Chinese with English abstract doi: 10.11743/ogg20220117 [27] 张文彪,段太忠,何治亮,等. 碳酸盐岩古溶洞层级约束地质建模方法探讨:以塔河油田奥陶系某缝洞单元为例[J]. 地质科技通报,2022,41(3):273-281.ZHANG W B,DUAN T Z,HE Z L,et al. Hierarchical constraint geological modelling method for carbonate paleokarst caves:A case study of Ordovician fracture-cavern unit in Tahe Oilfield[J]. Bulletin of Geological Science and Technology,2022,41(3):273-281. (in Chinese with English abstract [28] 谢鹏飞,侯加根,汪彦,等. 碳酸盐岩缝洞型储层多元信息融合建模方法在塔河油田十二区奥陶系油藏的应用[J]. 中国石油大学学报(自然科学版),2023,47(3):1-14.XIE P F,HOU J G,WANG Y,et al. Application of multi-information fusion modeling of fracture-vuggy reservoir in Ordovician reservoir of 12th block in Tahe Oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science),2023,47(3):1-14. (in Chinese with English abstract [29] 胡迅,侯加根,刘钰铭. 多源断控岩溶型溶洞训练数据集构建和生成对抗网络三维建模应用[J]. 石油科学通报,2024,9(3):422-433.HU X,HOU J G,LIU Y M. Construction of a multi-source fault-controlled karst cave training dataset and application in three-dimensional modelling using generative adversarial networks[J]. Petroleum Science Bulletin,2024,9(3):422-433. (in Chinese with English abstract [30] 姜忠正,唐大卿,沙旭光,等. 塔里木盆地塔中隆起中北部地区断裂构造特征及演化[J]. 地质科技通报,2024,43(3):120-132.JIANG Z Z,TANG D Q,SHA X G,et al. Structure and evolution of faults in central and northern parts of Tazhong Uplift,Tarim Basin[J]. Bulletin of Geological Science and Technology,2024,43(3):120-132. (in Chinese with English abstract [31] 李映涛,邓尚,张继标,等. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式:以塔里木盆地顺北4号断裂带为例[J]. 地学前缘,2023,30(6):80-94.LI Y T,DENG S,ZHANG J B,et al. Fault zone architecture of strike-slip faults in deep,tight carbonates and development of reservoir clusters under fault control:A case study in Shunbei,Tarim Basin[J]. Earth Science Frontiers,2023,30(6):80-94. (in Chinese with English abstract [32] 王来源,龚伟,李弘艳. 超深断控碳酸盐岩缝洞储集体地震预测与井轨迹设计:以顺北油田4号断裂带中北部为例[J]. 复杂油气藏,2024,17(3):288-295.WANG L Y,GONG W,LI H Y. Seismic prediction and well trajectory design for ultra-deep fault-controlled carbonate fractured cave reservoirs:Taking the north-central part of fault zone No. 4 in the Shunbei Oilfield as an example[J]. Complex Hydrocarbon Reservoirs,2024,17(3):288-295. (in Chinese with English abstract [33] 刘军,龚伟,黄超,等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报,2022,41(4):1-11.LIU J,GONG W,HUANG C,et al. Seismic attribute characteristics of an ultradeep fractured- reservoir in the northern section of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology,2022,41(4):1-11. (in Chinese with English abstract [34] 文山师,李海英,洪才均,等. 顺北油田断溶体储层地震响应特征及描述技术[J]. 断块油气田,2020,27(1):45-49.WEN S S,LI H Y,HONG C J,et al. Technology of seismic response characteristics and description of fault-karst reservoir in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field,2020,27(1):45-49. (in Chinese with English abstract [35] 刘宝增,漆立新,李宗杰,等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报,2020,41(4):412-420. doi: 10.7623/syxb202004004LIU B Z,QI L X,LI Z J,et al. Spatial characterization and quantitative description technology for ultra-deep fault-karst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica,2020,41(4):412-420. (in Chinese with English abstract doi: 10.7623/syxb202004004 [36] DEUTSCH C V,WANG L B. Hierarchical object-based stochastic modeling of fluvial reservoirs[J]. Mathematical Geology,1996,28(7):857-880. doi: 10.1007/BF02066005 [37] JONES T A. Using flowpaths and vector fields in object-based modeling[J]. Computers & Geosciences,2001,27(2):133-138. [38] DEUTSCH C V,TRAN T T. FLUVSIM:A program for object-based stochastic modeling of fluvial depositional systems[J]. Computers & Geosciences,2002,28(4):525-535. [39] BECKER J K,BONS P D,JESSELL M W. A new front-tracking method to model anisotropic grain and phase boundary motion in rocks[J]. Computers & Geosciences,2008,34(3):201-212. [40] XU J,FENG D M,WU J,et al. Robust centerline extraction for tree-like blood vessels based on the region growing algorithm and level-set method[C]//2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. August 14-16,2009,Tianjin,China. IEEE,2009:586-591. [41] KARGUPTA H,DATTA S,WANG Q,et al. On the privacy preserving properties of random data perturbation techniques[C]//Third IEEE International Conference on Data Mining. November 22-22,2003,Melbourne,FL,USA. IEEE,2003:99-106. [42] KIRKPATRICK S,GELATT C D,VECCHI M P. Optimization by simulated annealing[J]. Readings in Computer Vision,1987 :606-615. -