Hydrothermal sandstone geothermal-reservoir evaluation of the key oil-producing area in the Songliao Basin
-
摘要:
现行的热储行业评价标准是基于有水优储(中高孔中高渗)制定的,按此标准我国大多数盆地的热储属于有水差储(中低孔低渗),故现行热储行业评价标准存在不适应性。另外,在地热资源预可行性勘查阶段,常用的评价方法需要大量的参数和数据,而这一阶段能获取的资料往往较少,因此,探索少参数的快速评价方法很有必要。松辽盆地重点油区的水热型砂岩热储具有中薄层中低孔低渗的特点,属于有水差储,本研究以此为例,探索研究有水差储的评价标准及少参数条件下热储的快速评价方法。首先,在了解了目的层热储的厚度、孔隙度和渗透率等基本特征的基础上,对其进行统计分析,应用黄金分割法划分等级,确定这些参数的评价标准。由于其属于低温热储,单井日产水量对热储的评价更为重要,选取开发区的砂体厚度、孔隙度、渗透率和单井日产水量数据,利用多元线性回归对其进行分析后构建热储评价公式,计算各评价单元的得分,并按照黄金分割法划分等级。将此方法的得分排名与现有2种评价方法的两两对比表明,纳入砂体厚度而弃用温度是合理的,且此方法的得分标准差较大,能够更好地反映各评价单元之间的差异,因此,此方法较为可行,针对有水差储制定的评价标准较为合理。本研究所确定的有水差储评价标准对其他盆地的热储评价有一定的参考意义,考虑到各盆地之间的差异,本研究确定的少参数快速评价方法对其他盆地不一定适用,但是确定评价公式的过程有借鉴意义。
Abstract:Current industry criteria for geothermal-reservoir classification were established for high-quality hydrothermal systems (medium–high porosity and permeability). Consequently, most Chinese basinal reservoirs exhibit medium to low porosity and low permeability are misclassified as "poor," rendering the standards inapplicable. Moreover, the multi-parameter methods commonly used in pre-feasibility assessments require extensive data sets that are seldom, available during early exploration phases. Rapid, low-parameter evaluation protocols are therefore urgently needed.
Objective Hydrothermal sandstone reservoirs in the Songliao Basin's key oil-producing area are typified by medium–thin beds, medium–low porosity, and low permeability. These characteri-stics are traditionally labelled as "poor." Using these reservoirs as a case study, we recalibrate the classification criteria for low-quality hydrothermal systems and develop parsimonious, rapid-assessment protocols that minimize data requirements.
Methods First, the fundamental reservoir characteristics (thickness, porosity, and permeability) were statistically analyzed. The Golden Section Method was applied to classify parameter levels and establish evaluation criteria. Second, given the limited temperature variation among the studied low-temperature geothermal reservoirs, single-well daily production rate emerged as a critical evaluation metric. Consequently, sand body thickness, porosity, permeability, and single-well daily production rate within the study area were selected as input variables. Multivariate linear regression analysis was employed to derive a geothermal reservoir evaluation formula. This formula was then used to calculate evaluation unit scores, with final grading established using the Golden Section Method.
Results Pairwise comparison of the score rankings from this method against those of two established evaluation methods demonstrated the validity of incorporating sand body thickness while excluding temperature. Furthermore, the relatively high standard deviation of the scores obtained by this method enhances its ability to delineate variations among the evaluation units. Consequently, this approach demonstrates greater feasibility, and the formulated evaluation criteria are particularly well-suited for hydrothermal reservoirs with limited storage capacity.
Conclusion The evaluation criteria for low-storage hydrothermal systems developed in this study provide a valuable reference for geothermal-reservoir assessment in other basins. While basin-specific heterogeneity limits the direct transferability of the concise, few-parameter rapid-assessment model, the methodological framework used to derive the evaluation equation offers a robust, replicable template for analogous studies.
-
表 1 砂体厚度、孔隙度、渗透率评价标准
Table 1. Evaluation criteria for sandstone thickness, porosity and permeability
参数 类别 概率累计
百分比/%黄金分
割数/个实际个
数/个黄金分割
比例/%评价标准 砂体厚度 Ⅰ类 13 40 36 14.6 >60 m Ⅱ类 23 65 67 23.6 [30,60] m Ⅲ类 64 171 174 61.8 <30 m 孔隙度 Ⅰ类 16 33 36 14.6 <17% Ⅱ类 24 54 55 23.6 [17%,23%] Ⅲ类 60 140 136 61.8 >23% 渗透率 Ⅰ类 15 36 38 14.6 >65×10−3 μm2 Ⅱ类 21 58 51 23.6 [15,65]×10−3 μm2 Ⅲ类 64 152 157 61.8 <15×10−3 μm2 表 2 松辽盆地部分地热田热储参数(据文献[30-32]修改)
Table 2. Geothermal reservoir parameters of selected geothermal fields in the Songliao Basin
地热田 编号 砂体厚度 孔隙度 渗透率 日产水量 数值/m 归一化值 数值/% 归一化值 数值/10−3 μm2 归一化值 数值/(t·d−1) 归一化值 大庆东风 1 2.60 0.013 25.00 0.833 136.71 0.169 25.26 0.023 2 3.80 0.019 17.00 0.567 0.46 0.001 0.07 0.000 3 4.00 0.020 25.00 0.833 224.03 0.278 26.58 0.024 4 4.00 0.020 26.00 0.867 278.33 0.345 29.97 0.027 5 4.40 0.022 25.00 0.833 136.71 0.169 17.41 0.016 6 4.80 0.024 26.50 0.883 359.40 0.445 55.09 0.050 7 5.40 0.027 26.50 0.883 359.40 0.445 167.75 0.153 8 6.00 0.030 22.00 0.733 16.20 0.020 7.60 0.007 9 7.60 0.038 24.00 0.800 163.47 0.202 28.95 0.026 10 10.80 0.054 24.00 0.800 163.47 0.202 57.53 0.053 11 12.60 0.063 20.30 0.677 4.84 0.006 6.97 0.006 12 16.00 0.080 26.00 0.867 807.29 1.000 245.56 0.224 13 20.00 0.100 27.00 0.900 302.73 0.375 557.63 0.509 14 25.60 0.127 23.40 0.780 43.83 0.054 61.17 0.056 15 26.00 0.129 22.00 0.733 25.90 0.032 63.85 0.058 16 26.60 0.132 25.00 0.833 136.71 0.169 391.03 0.357 17 34.20 0.170 16.00 0.533 4.69 0.006 4.30 0.004 18 39.80 0.198 22.00 0.733 25.90 0.032 60.20 0.055 19 43.60 0.217 24.50 0.817 191.37 0.237 264.43 0.242 20 48.00 0.239 24.50 0.817 191.37 0.237 179.54 0.164 21 49.00 0.244 25.50 0.850 262.26 0.325 353.97 0.323 22 49.80 0.248 21.50 0.717 22.46 0.028 99.15 0.091 23 50.60 0.252 21.00 0.700 19.48 0.024 66.15 0.060 24 52.80 0.263 24.00 0.800 45.75 0.057 395.78 0.361 25 54.80 0.273 25.00 0.833 136.71 0.169 440.60 0.402 26 74.60 0.371 25.00 0.833 60.82 0.075 598.95 0.547 27 82.60 0.411 17.50 0.583 7.19 0.009 24.76 0.023 28 2.30 0.011 17.00 0.567 1.23 0.002 30.66 0.028 29 3.20 0.016 21.00 0.700 21.66 0.027 2.10 0.002 30 6.40 0.032 25.20 0.840 254.89 0.316 83.13 0.076 31 6.40 0.032 22.00 0.733 13.33 0.017 0.92 0.001 32 7.20 0.036 21.25 0.708 24.20 0.030 48.51 0.044 33 7.42 0.037 22.20 0.740 110.30 0.137 22.42 0.020 34 8.60 0.043 19.80 0.660 12.70 0.016 25.69 0.023 35 8.60 0.043 21.80 0.727 12.12 0.015 1.82 0.002 36 9.00 0.045 20.00 0.667 59.68 0.074 6.64 0.006 37 9.60 0.048 30.00 0.950 640.49 0.793 230.00 0.210 38 12.20 0.061 17.70 0.590 31.40 0.039 0.68 0.001 39 12.60 0.063 23.66 0.789 165.81 0.205 57.53 0.053 40 14.20 0.071 27.00 0.900 421.33 0.522 228.51 0.209 41 15.40 0.077 27.50 0.917 484.45 0.600 222.94 0.204 42 16.60 0.083 14.60 0.487 0.39 0.000 24.47 0.022 43 17.20 0.086 19.00 0.633 45.14 0.056 21.16 0.019 44 19.60 0.098 22.43 0.748 117.62 0.146 28.13 0.026 45 21.40 0.106 19.04 0.635 9.05 0.011 10.34 0.009 46 21.60 0.107 18.40 0.613 6.81 0.008 0.57 0.001 47 22.20 0.110 17.40 0.580 28.88 0.036 4.52 0.004 48 22.60 0.112 21.87 0.729 100.59 0.125 77.02 0.070 49 26.80 0.133 19.90 0.663 4.90 0.006 4.24 0.004 50 27.20 0.135 25.20 0.840 254.89 0.316 437.51 0.400 51 27.60 0.137 19.61 0.654 53.52 0.066 34.72 0.032 52 27.60 0.137 26.40 0.880 108.86 0.135 100.93 0.092 53 28.60 0.142 23.80 0.793 31.48 0.039 24.62 0.022 54 29.80 0.148 21.45 0.715 89.46 0.111 161.84 0.148 55 30.20 0.150 22.60 0.753 123.33 0.153 111.64 0.102 56 30.20 0.150 17.12 0.571 26.70 0.033 3.64 0.003 57 30.30 0.151 17.94 0.598 5.55 0.007 0.10 0.000 58 31.40 0.156 22.84 0.761 49.11 0.061 1.70 0.002 杜蒙 59 32.20 0.160 11.20 0.373 0.28 0.000 0.50 0.000 60 32.40 0.161 22.25 0.742 37.77 0.047 40.46 0.037 61 33.00 0.164 25.36 0.845 266.54 0.330 365.92 0.334 62 33.20 0.165 24.33 0.811 199.92 0.248 255.55 0.233 63 34.00 0.169 16.60 0.553 3.06 0.004 4.69 0.004 64 36.60 0.182 22.30 0.743 15.39 0.019 62.08 0.057 65 38.00 0.189 21.85 0.728 12.41 0.015 13.61 0.012 66 38.80 0.193 22.57 0.752 122.30 0.151 98.37 0.090 67 40.60 0.202 21.74 0.725 30.10 0.037 38.73 0.035 68 42.80 0.213 21.30 0.710 9.55 0.012 96.28 0.088 69 53.90 0.268 20.80 0.693 19.81 0.025 8.68 0.008 70 55.00 0.274 19.58 0.653 4.20 0.005 15.79 0.014 71 57.20 0.285 24.67 0.822 219.83 0.272 615.59 0.562 72 58.40 0.291 22.96 0.765 51.80 0.064 183.36 0.167 73 64.80 0.322 23.51 0.784 66.16 0.082 235.94 0.215 74 86.20 0.429 18.40 0.613 2.39 0.003 45.49 0.042 75 92.00 0.458 25.70 0.857 175.30 0.217 699.71 0.639 林甸 76 103.20 0.513 16.28 0.543 2.65 0.003 93.19 0.085 77 105.80 0.526 18.88 0.629 8.43 0.010 2.04 0.002 78 134.20 0.668 20.70 0.690 18.95 0.023 277.67 0.254 79 28.60 0.142 20.00 0.667 22.10 0.027 25.06 0.023 80 40.00 0.199 24.00 0.800 117.32 0.145 447.49 0.409 81 40.80 0.203 25.00 0.833 443.19 0.549 144.33 0.132 82 41.20 0.205 23.00 0.767 65.15 0.081 45.23 0.041 83 42.40 0.211 23.00 0.767 133.57 0.165 105.57 0.096 84 42.60 0.212 23.05 0.768 67.09 0.083 189.99 0.174 85 44.40 0.221 25.50 0.850 598.15 0.741 161.81 0.148 86 47.80 0.238 23.00 0.767 133.57 0.165 116.71 0.107 87 48.80 0.243 16.00 0.533 2.01 0.002 4.49 0.004 88 50.60 0.252 26.00 0.867 380.52 0.471 388.54 0.355 89 50.60 0.252 23.00 0.767 65.15 0.081 170.49 0.156 90 52.80 0.263 26.00 0.867 380.52 0.471 396.05 0.362 91 53.60 0.267 26.00 0.867 380.52 0.471 100.35 0.092 92 54.30 0.270 25.50 0.850 195.06 0.242 277.53 0.253 93 56.20 0.280 25.00 0.833 211.29 0.262 242.69 0.222 94 56.40 0.281 25.00 0.833 211.29 0.262 265.35 0.242 95 57.50 0.286 26.00 0.867 380.52 0.471 316.92 0.289 96 58.20 0.290 25.00 0.833 211.29 0.262 151.26 0.138 97 59.40 0.296 19.00 0.633 12.13 0.015 20.83 0.019 98 60.40 0.300 13.00 0.433 0.33 0.000 0.78 0.001 99 64.60 0.321 26.50 0.883 510.66 0.633 174.07 0.159 100 66.00 0.328 22.00 0.733 73.33 0.091 64.76 0.059 101 66.60 0.331 24.50 0.817 157.45 0.195 235.02 0.215 102 67.80 0.337 25.00 0.833 136.71 0.169 247.22 0.226 103 68.80 0.342 22.00 0.733 36.17 0.045 235.02 0.215 104 77.10 0.384 18.00 0.600 6.66 0.008 8.51 0.008 105 85.00 0.423 20.00 0.667 22.10 0.027 152.56 0.139 106 87.00 0.433 24.00 0.800 67.15 0.083 281.47 0.257 107 97.60 0.486 19.00 0.633 12.13 0.015 17.07 0.016 108 108.00 0.537 26.00 0.867 278.33 0.345 619.67 0.566 109 114.00 0.567 22.50 0.750 23.11 0.029 17.06 0.016 110 115.80 0.576 23.00 0.767 32.98 0.041 243.59 0.222 111 120.60 0.600 24.00 0.800 67.15 0.083 547.90 0.500 112 130.20 0.648 24.50 0.817 95.81 0.119 511.80 0.467 113 142.80 0.710 26.50 0.883 397.14 0.492 810.46 0.740 114 146.80 0.730 27.00 0.900 566.66 0.702 1094.89 1.000 115 155.80 0.775 25.00 0.833 136.71 0.169 734.23 0.671 116 160.40 0.798 26.00 0.867 278.33 0.345 590.05 0.539 117 176.00 0.876 23.00 0.767 32.98 0.041 508.95 0.465 118 201.00 1.000 22.00 0.733 16.20 0.020 300.39 0.274 表 3 日产水量与特征参数相关性分析
Table 3. Correlation analysis between daily water yield and characteristic parameters
日产水量 砂体厚度 孔隙度 渗透率 日产水量 皮尔逊相关系数 1 0.590 0.571 0.455 显著性sig.值 / 0.000 0.000 0.000 个案数 118 118 118 118 砂体厚度 皮尔逊相关系数 / 1 0.085 −0.026 显著性sig.值 / / 0.358 0.776 个案数 / 118 118 118 孔隙度 皮尔逊相关系数 / / 1 0.712 显著性sig.值 / / / 0.000 个案数 / / 118 118 渗透率 皮尔逊相关系数 / / / 1 显著性sig.值 / / / / 个案数 / / / 118 表 4 线性回归分析模型及其评价
Table 4. Linear regression analysis models and their assessment
模型 干扰项ε与
自变量X未标准化系数 标准化
系数t检验 显著性sig.值 共线性诊断 相关系数
R决定系数
R2调整后
R2标准估算
误差回归系数 标准误差 容差 方差膨胀因子 1 ε 0.024 0.022 / 1.116 0.267 / / 0.590 0.348 0.342 0.152 H 0.548 0.070 0.590 7.866 0.000 1.000 1 2 ε −0.566 0.097 / −5.814 0.000 / / 0.572 0.327 0.321 0.154 φ 0.966 0.129 0.572 7.503 0.000 1.000 1 3 ε 0.086 0.020 / 4.275 0.000 / / 0.455 0.207 0.200 0.167 K 0.428 0.078 0.455 5.505 0.000 1.000 1 4 ε −0.494 0.127 / −3.896 0.000 / / 0.576 0.331 0.320 0.154 φ 0.849 0.184 0.502 4.623 0.000 0.493 2.029 K 0.092 0.102 0.097 0.897 0.371 0.493 2.029 5 ε −0.630 0.074 / −8.546 0.000 / / 0.788 0.621 0.615 0.116 φ 0.887 0.097 0.525 9.116 0.000 0.993 1.007 H 0.506 0.054 0.545 9.461 0.000 0.993 1.007 6 ε −0.052 0.020 / −2.535 0.013 / / 0.755 0.570 0.562 0.124 H 0.560 0.057 0.602 9.839 0.000 0.999 1.001 K 0.443 0.058 0.471 7.695 0.000 0.999 1.001 7 ε −0.485 0.093 / −5.192 0.000 / / 0.800 0.640 0.631 0.114 K 0.185 0.076 0.197 2.443 0.016 0.485 1.023 φ 0.648 0.137 0.383 4.734 0.000 0.482 2.057 H 0.523 0.053 0.562 9.893 0.000 0.977 2.061 表 5 方法1对应的砂岩热储厚度与物性参数评价标准及取值标准(参数取值标准据文献[9])
Table 5. Evaluation criteria and quantitative value standards for sandstone geothermal storage thickness and petrophysical parameters under Method 1
评价分类 砂体厚度/m 孔隙度/% 渗透率/10−3 μm2 参数取值标准 Ⅰ类热储 >60 >23 >65 100 Ⅱ类热储 [30,60] [17,23] [15,65] [20,100) Ⅲ类热储 <30 <17 <15 [10,20) 表 6 方法2和方法3对应的砂岩热储厚度与物性参数评价标准及取值标准(据文献[9]修改)
Table 6. Evaluation criteria and quantitative value standards for sandstone geothermal-reservoir thickness and petrophysical parameters under Method 2 and Method 3
评价分类 砂体厚度H/m 孔隙度φ/% 渗透率K/10−3 μm2 参数取值标准 Ⅰ类热储 ≥100 ≥25 ≥500 100 Ⅱ类热储 (100,20] (25,15] (500,100] [20,100) Ⅲ类热储 <20 <15 <100 [10, 20) 表 7 方法2和方法3对应的砂岩热储温度评价标准及取值标准(据文献[9]修改)
Table 7. Temperature-based evaluation criteria and value standards for sandstone geothermal reservoirs under Method 2 and Method 3
评价分类 温度中部温度T/℃ 参数取值标准 Ⅰ类热储 ≥150 100 Ⅱ类热储 [120,150) 100 [90,120) [70, 90) Ⅲ类热储 [30,90) [10,70) 表 8 3种评价方法评价结果对比
Table 8. Comparison of evaluation results from three assessment methods
评价单元编号 方法1
(H,K,φ)方法2
(H,T,K,φ)方法3
(T,K,φ)方法1与方法2
评价得分排名
差异的绝对值方法2与方法3
评价得分排名
差异的绝对值方法3与方法1
评价得分排名
差异的绝对值得分 排名 评价分类 得分 排名 评价分类 得分 排名 评价分类 qn3-2 129.66 1 Ⅰ 45.28 2 Ⅰ 34.77 8 Ⅰ 1 6 7 qn3-1 127.72 2 Ⅰ 46.43 1 Ⅰ 40.14 4 Ⅰ 1 3 2 qn1-3 124.26 3 Ⅰ 40.65 4 Ⅰ 35.10 7 Ⅰ 1 3 4 q3-1 123.66 4 Ⅰ 38.75 9 Ⅰ 31.39 12 Ⅰ 5 3 8 qn2-1 110.58 5 Ⅰ 40.38 5 Ⅰ 32.02 10 Ⅰ 0 5 5 qn3-3 107.08 6 Ⅰ 44.05 3 Ⅰ 45.25 1 Ⅰ 3 2 5 y2+3-4 106.94 7 Ⅰ 37.72 11 Ⅰ 36.82 5 Ⅰ 4 6 2 y2+3-2 106.29 8 Ⅰ 37.32 12 Ⅰ 36.45 6 Ⅰ 4 6 2 y1-3 104.15 9 Ⅰ 40.15 6 Ⅰ 40.73 3 Ⅰ 3 3 6 qn3-6 101.80 10 Ⅰ 38.05 10 Ⅰ 29.10 16 Ⅱ 0 6 6 y1-2 100.25 11 Ⅰ 39.49 8 Ⅰ 40.90 2 Ⅰ 3 6 9 y1-4 99.09 12 Ⅰ 29.70 28 Ⅱ 26.37 27 Ⅱ 16 1 15 qn3-4 96.63 13 Ⅰ 31.10 22 Ⅱ 28.08 19 Ⅱ 9 3 6 qn1-1 93.78 14 Ⅰ 39.50 7 Ⅰ 32.36 9 Ⅰ 7 2 5 qn3-8 93.78 15 Ⅱ 26.31 49 Ⅲ 18.82 70 Ⅲ 34 21 55 q4-1 92.53 16 Ⅱ 28.99 34 Ⅱ 26.58 25 Ⅱ 18 9 9 y2+3-1 85.17 17 Ⅱ 28.35 38 Ⅲ 31.32 13 Ⅰ 21 25 4 qn2-3 83.28 18 Ⅱ 35.66 13 Ⅰ 27.79 20 Ⅱ 5 7 2 qn1-2 83.12 19 Ⅱ 24.88 52 Ⅲ 28.40 18 Ⅱ 33 34 1 qn2-2 81.79 20 Ⅱ 35.47 14 Ⅰ 26.59 24 Ⅱ 6 10 4 q3-4 80.64 21 Ⅱ 33.71 17 Ⅱ 26.32 28 Ⅱ 4 11 7 q4-2 79.76 22 Ⅱ 29.24 31 Ⅱ 21.67 48 Ⅲ 9 17 26 q4-3 78.34 23 Ⅱ 30.14 25 Ⅱ 29.66 14 Ⅰ 2 11 9 qn2-5 76.85 24 Ⅱ 31.71 20 Ⅱ 26.74 23 Ⅱ 4 3 1 q4-4 75.32 25 Ⅱ 32.95 18 Ⅱ 25.41 31 Ⅱ 7 13 6 q3-6 72.25 26 Ⅱ 34.03 16 Ⅱ 26.76 22 Ⅱ 10 6 4 y1-1 69.89 27 Ⅱ 30.97 23 Ⅱ 29.58 15 Ⅱ 4 8 12 q4-5 68.95 28 Ⅱ 30.00 26 Ⅱ 22.43 40 Ⅲ 2 14 12 q3-3 68.03 29 Ⅱ 29.61 29 Ⅱ 22.26 43 Ⅲ 0 14 14 q3-2 67.97 30 Ⅱ 34.06 15 Ⅱ 24.59 32 Ⅱ 15 17 2 q4-9 67.68 31 Ⅱ 28.39 37 Ⅱ 20.84 53 Ⅲ 6 16 22 qn2-4 66.85 32 Ⅱ 30.56 24 Ⅱ 22.98 37 Ⅱ 8 13 5 qn2-8 66.40 33 Ⅱ 29.06 33 Ⅱ 21.49 49 Ⅲ 0 16 16 qn2-7 66.23 34 Ⅱ 29.44 30 Ⅱ 21.87 46 Ⅲ 4 16 12 qn1-7 65.74 35 Ⅱ 30.00 27 Ⅱ 22.42 41 Ⅲ 8 14 6 y2+3-3 65.63 36 Ⅱ 31.38 21 Ⅱ 26.54 26 Ⅱ 15 5 10 q3-5 65.57 37 Ⅱ 32.54 19 Ⅱ 29.05 17 Ⅱ 18 2 20 y2+3-5 65.06 38 Ⅲ 21.70 65 Ⅲ 22.30 42 Ⅲ 27 23 4 qn1-6 64.34 39 Ⅲ 27.79 41 Ⅲ 20.25 58 Ⅲ 2 17 19 qn2-6 63.72 40 Ⅲ 28.17 40 Ⅲ 20.62 54 Ⅲ 0 14 14 q3-11 63.39 41 Ⅲ 28.22 39 Ⅲ 18.57 72 Ⅲ 2 33 31 q4-12 63.17 42 Ⅲ 26.67 45 Ⅲ 19.17 65 Ⅲ 3 20 23 q4-10 62.47 43 Ⅲ 28.53 36 Ⅱ 20.97 52 Ⅲ 7 16 9 q4-11 62.47 44 Ⅲ 23.99 54 Ⅲ 16.65 85 Ⅲ 10 31 41 q3-8 62.00 45 Ⅲ 27.24 43 Ⅲ 23.62 33 Ⅱ 2 10 12 q4-6 61.21 46 Ⅲ 26.57 47 Ⅲ 19.07 68 Ⅲ 1 21 22 qn1-8 61.21 47 Ⅲ 25.71 51 Ⅲ 18.25 75 Ⅲ 4 24 28 qn3-9 53.95 48 Ⅲ 25.81 50 Ⅲ 21.30 50 Ⅲ 2 0 2 qn3-5 50.55 49 Ⅲ 27.46 42 Ⅲ 23.14 35 Ⅱ 7 7 14 qn1-4 49.35 50 Ⅲ 28.68 35 Ⅱ 31.70 11 Ⅰ 15 24 39 y1-5 49.27 51 Ⅲ 29.21 32 Ⅱ 27.10 21 Ⅱ 19 11 30 y2+3-6 48.74 52 Ⅲ 19.33 76 Ⅲ 19.25 63 Ⅲ 24 13 11 qn1-5 47.00 53 Ⅲ 21.15 69 Ⅲ 20.30 57 Ⅲ 16 12 4 qn1-9 45.93 54 Ⅲ 27.18 44 Ⅲ 22.82 38 Ⅲ 10 6 16 qn3-11 45.93 55 Ⅲ 23.06 60 Ⅲ 18.33 74 Ⅲ 5 14 19 q4-8 44.64 56 Ⅲ 26.51 48 Ⅲ 22.04 44 Ⅲ 8 4 12 q4-15 43.02 57 Ⅲ 23.75 56 Ⅲ 25.43 30 Ⅱ 1 26 27 qn3-10 40.62 58 Ⅲ 21.64 66 Ⅲ 20.06 59 Ⅲ 8 7 1 q4-7 40.29 59 Ⅲ 23.95 55 Ⅲ 19.27 62 Ⅲ 4 7 3 qn1-10 39.42 60 Ⅲ 23.26 59 Ⅲ 21.79 47 Ⅲ 1 12 13 qn3-7 38.79 61 Ⅲ 22.81 61 Ⅲ 18.43 73 Ⅲ 0 12 12 q3-17 38.43 62 Ⅲ 22.22 64 Ⅲ 18.75 71 Ⅲ 2 7 9 q3-10 37.38 63 Ⅲ 26.59 46 Ⅲ 25.46 29 Ⅱ 17 17 34 qn1-11 35.83 64 Ⅲ 23.27 58 Ⅲ 19.31 61 Ⅲ 6 3 3 q3-9 35.55 65 Ⅲ 24.61 53 Ⅲ 21.17 51 Ⅲ 12 2 14 qn2-13 33.02 66 Ⅲ 13.58 92 Ⅲ 11.27 93 Ⅲ 26 1 27 q3-19 31.07 67 Ⅲ 19.49 72 Ⅲ 16.36 87 Ⅲ 5 15 20 q3-16 28.22 68 Ⅲ 19.47 73 Ⅲ 20.00 60 Ⅲ 5 13 8 q3-18 28.09 69 Ⅲ 21.63 67 Ⅲ 23.08 36 Ⅱ 2 31 33 q4-14 27.47 70 Ⅲ 23.55 57 Ⅲ 20.53 56 Ⅲ 13 1 14 qn2-10 23.87 71 Ⅲ 18.92 79 Ⅲ 15.62 89 Ⅲ 8 10 18 q3-15 23.86 72 Ⅲ 15.78 89 Ⅲ 16.58 86 Ⅲ 17 3 14 q3-12 23.70 73 Ⅲ 20.84 70 Ⅲ 22.64 39 Ⅲ 3 31 34 q4-16 23.41 74 Ⅲ 22.69 62 Ⅲ 20.54 55 Ⅲ 12 7 19 q3-26 23.25 75 Ⅲ 20.30 71 Ⅲ 18.89 69 Ⅲ 4 2 6 y1-6 22.72 76 Ⅲ 18.65 80 Ⅲ 18.22 76 Ⅲ 4 4 0 y1-8 22.72 77 Ⅲ 14.57 91 Ⅲ 13.11 91 Ⅲ 14 0 14 q3-14 22.52 78 Ⅲ 16.71 88 Ⅲ 14.78 90 Ⅲ 10 2 12 q3-7 22.10 79 Ⅲ 22.63 63 Ⅲ 23.59 34 Ⅱ 16 29 45 q3-27 22.10 80 Ⅲ 19.38 75 Ⅲ 19.18 64 Ⅲ 5 11 16 q3-20 21.81 81 Ⅲ 12.07 94 Ⅲ 11.19 94 Ⅲ 13 0 13 y1-7 21.79 82 Ⅲ 21.27 68 Ⅲ 22.03 45 Ⅲ 14 23 37 qn1-12 21.59 83 Ⅲ 17.11 87 Ⅲ 17.94 77 Ⅲ 4 10 6 qn1-13 21.37 84 Ⅲ 19.21 78 Ⅲ 19.14 66 Ⅲ 6 12 18 q3-24 20.28 85 Ⅲ 15.44 90 Ⅲ 17.84 78 Ⅲ 5 12 7 q3-21 20.11 86 Ⅲ 18.46 81 Ⅲ 16.33 88 Ⅲ 5 7 2 q3-25 19.59 87 Ⅲ 19.31 77 Ⅲ 19.09 67 Ⅲ 10 10 20 q3-23 19.59 88 Ⅲ 17.75 83 Ⅲ 17.06 81 Ⅲ 5 2 7 q3-22 19.59 89 Ⅲ 17.52 85 Ⅲ 16.76 83 Ⅲ 4 2 6 q3-13 19.59 90 Ⅲ 8.97 95 Ⅲ 6.87 95 Ⅲ 5 0 5 q4-13 19.48 91 Ⅲ 19.39 74 Ⅲ 17.30 80 Ⅲ 17 6 11 qn1-15 19.03 92 Ⅲ 17.48 86 Ⅲ 16.72 84 Ⅲ 6 2 8 qn2-12 17.80 93 Ⅲ 8.66 96 Ⅲ 5.85 96 Ⅲ 3 0 3 qn1-14 16.52 94 Ⅲ 17.66 84 Ⅲ 16.94 82 Ⅲ 10 2 12 qn2-11 16.52 95 Ⅲ 13.40 93 Ⅲ 11.72 92 Ⅲ 2 1 3 qn2-9 16.17 96 Ⅲ 17.95 82 Ⅲ 17.60 79 Ⅲ 14 3 17 标准差 30.85 / / 7.98 / / 7.07 / / / / / 绝对值之和 / / / / / / / / / 772 1002 1262 -
[1] 汪集暘,庞忠和,罗霁,等. 一带一路,“水”、“热”先行[M]. 北京:中国科学院地质与地球物理研究所,2016:6.WANG J Y,PANG Z H,LUO J,et al. Construction of One Road Shall Be headed by "Water" and "Heating" Undertakings[M]. Beijing:Institute of Geology and Geophysics,Chinese Academy of Sciences,2016:6. (in Chinese) [2] 多吉,赵睿. 地热能开发还须国家探路[N]. 中国科学报,2017-08-08(1).DUO J,ZHAO R. The development of geothermal energy still needs to be explored by the state[N]. Chinese Science Bulletin,2017-08-08,(1). (in Chinese) [3] 王转转,欧成华,王红印,等. 国内地热资源类型特征及其开发利用进展[J]. 水利水电技术,2019,50(6):187-195.WANG Z Z,OU C H,WANG H Y,et al. The characteristics and development of geothermal resources in China[J]. Water Resources and Hydropower Engineering,2019,50(6):187-195. (in Chinese with English abstract [4] 王社教,施亦做,方朝合,等. 中国油田地热开发利用现状与发展方向[J]. 岩性油气藏,2024,36(2):23-32. doi: 10.12108/yxyqc.20240203WANG S J,SHI Y Z,FANG C H,et al. Status and development trends of geothermal development and utilization in oilfields of China[J]. Lithologic Reservoirs,2024,36(2):23-32. (in Chinese with English abstract doi: 10.12108/yxyqc.20240203 [5] 黄尚瑶,王钧,汪集旸. 关于地热带分类及地热田模型[J]. 水文地质工程地质,1983,10(5):1-7.HUANG S Y,WANG J,WANG J Y. On the classification of geothermal zone and geothermal field model[J]. Hydrogeology and Engineering Geology,1983,10(5):1-7. (in Chinese) [6] 张英,冯建赟,何治亮,等. 地热系统类型划分与主控因素分析[J]. 地学前缘,2017,24(3):190-198.ZHANG Y,FENG J Y,HE Z L,et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers,2017,24(3):190-198. (in Chinese with English abstract [7] HE Z L,ZHANG Y,FENG J Y,et al. An EGS site evaluation method for geothermal resources based on geology engineering and economic considerations[J]. Workshop on Geothermal Reservoir Engineering,2018. [8] 国家能源局. 地热储层评价方法:NB/T10263-2019[S]. 北京:中国石化出版社,2020:1-4.National Energy Bureau of the People's Republic of China. Geothermal reservoir evaluation methods:NB/T10263-2019[S]. Beijing:China Petrochemical Press,2020:1-4. (in Chinese) [9] FENG J Y,ZHANG Y,HE Z L,et al. Discussion on evaluation methodology of hydrothermal geothermal reservoir[J]. Journal of Groundwater Science and Engineering,2019,7(1):29-41. [10] 翟光明,侯启军,马永生等. 中国石油地质志第二版. 卷七,华北油气区(上册)[M]. 北京:石油工业出版社,2023:247-248.ZHAI G M,HOU Q J,MA Y S,et al. Petroleum geology of China,Volume 7,North China oil and gas zone (Volume I) [M]. Beijing:Petroleum Industry Press,2023:247-248. (in Chinese) [11] 王社教,李峰,闫家泓,等. 油田地热资源评价方法及应用[J]. 石油学报,2020,41(5):553-564. doi: 10.7623/syxb202005004WANG S J,LI F,YAN J H,et al. Evaluation methods and application of geothermal resources in oilfields[J]. Acta Petrolei Sinica,2020,41(5):553-564. (in Chinese with English abstract doi: 10.7623/syxb202005004 [12] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 地热资源地质勘查规范:GB/T11615-2010[S]. 北京:中国标准出版社,2011:6-7.General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China. Geologic exploration standard of geothermal resources:GB/T11615-2010[S]. Beijing:Standards Press of China,2011:6-7. (in Chinese) [13] 李同彪. 地热资源评估方法综述[J]. 能源与环境,2015(5):91-92. doi: 10.3969/j.issn.1672-9064.2015.05.044LI T B. Summary of geothermal resources evaluation methods[J]. Energy and Environment,2015(5):91-92. (in Chinese) doi: 10.3969/j.issn.1672-9064.2015.05.044 [14] 杨峰田,罗霁,雷海飞,等. 地热资源评价的蒙特卡罗方法及其在雄县的应用[J]. 科技促进发展,2020,16(增刊1):307-315.YANG F T,LUO J,LEI H F,et al. Application of Monte Carlo simulation in the evaluation of regional geothermal resources[J]. Science & Technology for Development,2020,16(S1):307-315. (in Chinese with English abstract [15] 周建飞. 基于热储法的卜南堡地热田地热资源评价及利用方向研究[J]. 现代矿业,2023,39(10):52-55. doi: 10.3969/j.issn.1674-6082.2023.10.012ZHOU J F. Study on evaluation and utilization direction of geothermal resources in Bunanpu geothermal field based on thermal storage method[J]. Modern Mining,2023,39(10):52-55. (in Chinese with English abstract doi: 10.3969/j.issn.1674-6082.2023.10.012 [16] 朱喜,张庆莲,刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报,2016,35(4):172-177.ZHU X,ZHANG Q L,LIU Y G. Evaluation of the geothermal resources in the plain of west Shandong Province[J]. Geological Science and Technology Information,2016,35(4):172-177. (in Chinese with English abstract [17] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892-2910. doi: 10.6038/cjg20160815JIANG G Z,GAO P,RAO S,et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892-2910. (in Chinese with English abstract doi: 10.6038/cjg20160815 [18] 翟光明,侯启军,马永生,等. 中国石油地质志第二版. 卷二:大庆油气区[M]. 北京:石油工业出版社,2023:111-127.ZHAI G M,HOU Q J,MA Y S,et al. Petroleum geology of China,Volume 2:Daqing oil and gas zone[M]. Beijing:Petroleum Industry Press,2023:111-127. (in Chinese) [19] 胡望水. 松辽裂谷型盆地构造特征与含油气系统[J]. 江汉石油学院学报,1997,19(1):13-18.HU W S. Structural characteristics and petroleum system in rift type Songliao Basin in Mesozoic and Cenozoic[J]. Journal of Jianghan Petroleum Institute,1997,19(1):13-18. (in Chinese with English abstract [20] 薛丹,胡明毅,邓猛,等. 松辽盆地浅水三角洲沉积特征及模式研究:以卫星地区泉头组三、四段为例[J]. 科学技术与工程,2014,14(25):35-42. doi: 10.3969/j.issn.1671-1815.2014.25.007XUE D,HU M Y,DENG M,et al. Study of sedimentary characteristics and model of shallow-water delta:An example from Quan 3th and Quan 4th Member in Weixing area,Songliao Basin[J]. Science Technology and Engineering,2014,14(25):35-42. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2014.25.007 [21] 李君君,王志章,张枝焕,等. 松辽盆地新立油田泉三段沉积相研究[J]. 新疆石油地质,2013,34(5):534-537.LI J J,WANG Z Z,ZHANG Z H,et al. The sedimentary facies of Member-3 of Quantou Formation in Xinli oilfield,Songliao Basin[J]. Xinjiang Petroleum Geology,2013,34(5):534-537. (in Chinese with English abstract [22] 张志坚,张国斌,佟卉,等. 松辽盆地北部泰康地区青山口组一段沉积微相特征[J]. 大庆石油学院学报,2004,28(6):84-86.ZHANG Z J,ZHANG G B,TONG H,et al. Microfacies characteristics of No. 1 section of Qingshankou Formation:Taikang area of north Songliao Basin[J]. Journal of Daqing Petroleum Institute,2004,28(6):84-86. (in Chinese with English abstract [23] 辛仁臣,王树恒,梁江平,等. 松辽盆地北部西斜坡青山口组三段四级层序格架内沉积微相分布[J]. 现代地质,2014,28(4):782-790. doi: 10.3969/j.issn.1000-8527.2014.04.014XIN R C,WANG S H,LIANG J P,et al. Sedimentary microfacies distribution under the 4th-order sequence stratigraphic framework of the Third Member of Qingshankou Formation in west slope of the northern part of Songliao Basin[J]. Geoscience,2014,28(4):782-790. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8527.2014.04.014 [24] 冯路尧,张建国,姜在兴,等. 松辽盆地青山口组高精度沉积旋回格架及有机质富集响应[J]. 石油学报,2023,44(2):299-311. doi: 10.7623/syxb202302006FENG L Y,ZHANG J G,JIANG Z X,et al. High-precision sedimentary cycle framework and organic matter enrichment response of Qingshankou Formation in Songliao Basin[J]. Acta Petrolei Sinica,2023,44(2):299-311. (in Chinese with English abstract doi: 10.7623/syxb202302006 [25] 胡玉双,蒋波,年喜. 松辽盆地北部泰康北地区姚家组层序地层分析与沉积相特征[J]. 大庆石油学院学报,2006,30(5):111-113.HU Y S,JIANG B,NIAN X. Sequence stratigraphic analysis and sedimentary study on Yaojia Formation in northern Taikang area of northern Songliao Basin[J]. Journal of Daqing Petroleum Institute,2006,30(5):111-113. (in Chinese with English abstract [26] 翟志伟,施尚明,朱焕来. 大庆长垣西部地区地热资源潜力分布[J]. 科学技术与工程,2011,11(4):834-837. doi: 10.3969/j.issn.1671-1815.2011.04.035ZHAI Z W,SHI S M,ZHU H L. Potential distribution of geothermal resource in western region of Daqing placanticline[J]. Science Technology and Engineering,2011,11(4):834-837. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2011.04.035 [27] 王贵玲,马峰,侯贺晟,等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报,2023,44(1):21-32. doi: 10.3975/cagsb.2022.121901WANG G L,MA F,HOU H S,et al. Study of depression and layer controlled geothermal system in Songliao Basin[J]. Acta Geoscientica Sinica,2023,44(1):21-32. (in Chinese with English abstract doi: 10.3975/cagsb.2022.121901 [28] 朱焕来. 松辽盆地北部沉积盆地型地热资源研究[D]. 黑龙江 大庆:东北石油大学,2011.ZHU H L. Research on the sedimentary:Geothermal resources in North Songliao Basin[D]. Daqing Heilongjiang:Northeast Petroleum University,2011. (in Chinese with English abstract [29] 程启贵,郭少斌,王海红,等. 鄂尔多斯盆地中西部长6油层组储层综合评价[J]. 石油实验地质,2010,32(5):415-419. doi: 10.3969/j.issn.1001-6112.2010.05.002CHENG Q G,GUO S B,WANG H H,et al. Comprehensive reservoir evaluation of Chang-6 oil-bearing layers in Midwest Ordos Basin[J]. Petroleum Geology & Experiment,2010,32(5):415-419. (in Chinese with English abstract doi: 10.3969/j.issn.1001-6112.2010.05.002 [30] 苏玉娟. 松辽盆地典型地热田成因机制及合理开发利用研究:以林甸地热田为例[D]. 长春:吉林大学,2021.SU Y J. Genesis and rational development of typical geothermal field in the Songliao Basin[D]. Changchun:Jilin University,2021. (in Chinese with English abstract [31] 施龙. 松辽盆地构造热演化及地热资源定量评价研究:以杜蒙地区为例[D]. 广州:中国科学院研究生院(广州地球化学研究所),2004.SHI L. Study of the tectonic-thermal evolution of the Songliao Basin and quantitative assessment of its geothermal resource:A case study on the Dumeng district[D]. Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2004. (in Chinese with English abstract [32] 王琦. 沉积盆地型地热田定量评价系统研究[D]. 黑龙江 大庆:大庆石油学院,2010.WANG Q. Research on quantitative evaluation system of geothermal fields in sedimentary basin[D]. Daqing Heilongjiang:Daqing Petroleum Institute,2010. (in Chinese with English abstract [33] 赵鹏大. 数字地质学[M]. 北京:科学出版社,2023:57-63.ZHAO P D. Digital geology[M]. Beijing:Science Press,2023:57-63. (in Chinese) [34] 李积永,张平,胡光明,等. 一种单砂体多因素分类评价方法:以柴达木盆地扎11井区下油砂山组为例[J]. 科学技术与工程,2021,21(10):4005-4010. doi: 10.3969/j.issn.1671-1815.2021.10.020LI J Y,ZHANG P,HU G M,et al. A method on multi-factor evaluation and classification of single sand body:A case from Lower Youshashan Formation in Zha 11 wellblock,Qaidam Basin[J]. Science Technology and Engineering,2021,21(10):4005-4010. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2021.10.020 [35] 杨维忠,张甜. SPSS统计分析入门与应用精解:视频教学版[M]. 北京:清华大学出版社,2022:157-160.YANG W Z,ZHANG T. Introduction and application of SPSS statistical analysis:Video teaching edition[M]. Beijing:Tsinghua University Press,2022:157-160. (in Chinese) [36] 张翘然. 松辽盆地现今地温场特征与影响因素研究[D]. 武汉:长江大学,2024.ZHANG Q R. Characteristics and controlling factors of present geothermal field in the Songliao Basin[D]. Wuhan:Yangtze University,2024. (in Chinese with English abstract [37] 刘晨璞,钟鑫,朱焕来. 松辽盆地北部中低地温场形成机制探讨[J]. 地质调查与研究,2016,39(4):316-320.LIU C P,ZHONG X,ZHU H L. Research on the formation mechanism for the medium-low geothermal field in the north of Songliao Basin[J]. Geological Survey and Research,2016,39(4):316-320. (in Chinese with English abstract [38] 刘雨晨,柳波,朱焕来,等. 松辽盆地现今地温场分布特征及主控因素[J]. 地质学报,2023,97(8):2715-2727.LIU Y C,LIU B,ZHU H L,et al. The distribution characteristics and main controlling factors of present-day geothermal regime of the Songliao Basin[J]. Acta Geologica Sinica,2023,97(8):2715-2727. (in Chinese with English abstract [39] 张翘然,肖红平,饶松,等. 松辽盆地现今地温场特征及控制因素[J]. 地质科技通报,2023,42(5):191-204.ZHANG Q R,XIAO H P,RAO S,et al. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology,2023,42(5):191-204. (in Chinese with English abstract [40] 臧亚辉,李继木,宁君,等. 松辽盆地南部海力锦地区上白垩统姚家组砂岩物源示踪及其构造背景综合研究:来自岩石地球化学及锆石U-Pb年代学的制约[J]. 地质科技通报,2023,42(5):175-190.ZANG Y H,LI J M,NING J,et al. Provenance and tectonic setting of the Upper Cretaceous Yaojia Formation sandstones in the Hailijin area, southern Songliao Basin: Constraints from petrogeochemistry and zircon U-Pb chronology[J]. Bulletin of Geological Science and Technology,2023,42(5):175-190. (in Chinese with English abstract -
下载:
