-
摘要:
海洋生态观测是海洋探索、生态保护修复、灾害预警预报、防灾减灾的重要手段和途径。21世纪以来,为进一步开展海洋生态观测,应对在人类活动和全球气候变化影响下各类生态灾害预警、典型生态系统面临退化等威胁,海洋生态观测技术已逐步迈入自动化、智能化、实时反映动态结果的时代,对生态文明建设下海洋生态观测系统研究提出了更高的要求。讨论了国际近岸海域、深海、海底海洋生态观测系统发展和研究现状,对现有观测系统进行了总结,分析了我国改革开发以来海洋生态观测系统技术的发展趋势、海洋生态观测系统发展的必要性,以及目前我国以近岸生态浮标为主的生态观测系统在我国沿海省市发展现状,并对此类观测系统在应对脆弱典型生态系统、新型生态灾害等预警研究中存在的局限性。提出我国生态观测应由简单的生态浮标向立体观测网发展,并且针对不同的典型生态系统建立有针对性的“岸–海–空–天”立体观测网络。
Abstract:Objective/Significance In light of the increasing need of ocean exploring and the demand of marine ecological disaster warning, scientists now making further efforts in real-time integrated ocean observing system including buoys and instrument suites.
Analysis/Discussion/Progress In this paper, we introduced current measurement approaches in global ocean observation systems. These systems are automated and operational, including nearshore, deep sea and seafloor observation. Comparisons of these systems are presented and the current observing technologies in the challenging of monitoring marine ecological disaster are discussed. Limits of our national ocean ecological observing systems and suggestions for establishing stereoscopic observing network are given.
Conclusions and Prospects Instead of simple Eco-buoy observing system, collaborative stereoscopic network ecological real-time observation system should be established as an emerging trend in ocean observing.
-
图 1 我国典型生态系统健康程度[79]
Figure 1. Health risk of national ecological system in 2023
观测技术 主要观测参数 优/缺点 浮标/潜标 锚系浮标主要用于水文气象、水质等;潜标主要用于水下观测 布放回收方便,同时可通过通信系统实现数据的实时传输,
实现在受控条件下全天候全天时多参数、多功能的立体观测岸基台站 水文气象、环境质量 需要在观测海域沿岸或者石油平台上设立基站 船基 温盐深、海流、水声探测等 需要使用船舶作为移动平台 海洋遥感 海洋表面环境观测,如海岸带环境和资源观测、赤潮及溢油应急观测等 可实现用宏观大尺度、快速、同步、高频度动态的海洋表面观测 海床基 主要用于海底沉积观测、剖面参数测量、水下长期生态系统环境变化观测、近海动力要素观测等 实现长期、同步、自动的海底观测 水下自航式观测平台 主要用于大范围、无人的长期水下环境观测,包括载人潜水器(HOV)、缆控无人遥控潜水器(ROV)、无人自主潜水器(AUV)及混合型深潜器(HROV)。包括海洋物理学、海洋地质学、地球物理等参数 可用于多层次分层观测,与浮标/潜标、卫星观测结合可集合
形成海洋立体观测系统。观测网系统 观测系统组成 观测目标 美国沿海海洋自动观测网 自动观测站、浮标和地面观测站 近岸海区的水文、物理、化学、生物的多参数多时空实时观测 美国海洋综合观测系统 浮标、岸基站等 赤潮、生态、海平面及表层流 美国近海海洋观测实验室 生态观测站、滑翔机观测队、岸基海洋动力环境观测雷达
及卫星遥感近海及海岸带地区的水下环境、赤潮、涡流等海洋灾害事件、海洋动力环境及海洋表面信息 英国全国海洋观测系统 近海观测站、生态观测浮标 英国海岸区域的水文、物理、化学、生物的多参数多时空
实时观测希腊爱琴海观测预报系统 浮标、航运观测船 海洋物理、化学、生物参数 新西兰近岸海洋观测网 浮标 海洋物理、水文气象、化学参数 爱尔兰海观测系统 近岸观测站、锚系浮标等 沿岸海域的水文、物理、化学变化 地中海业务化海洋观测网 该观测网是一个集合系统,整合了地中海区域9个浮标、
遥感观测系统地中海区域的水文、物理、化学、生物的多参数多时空
实时观测澳大利亚综合海洋观测系统 包括调查船、深水锚设备、卫星、海洋雷达、Argo浮标、
水下滑翔机、自助式水下航行器等沿海至公海海域的海洋生态状况 日本无线浮标海洋观测系统 浮标、近海观测站 海洋物理、化学、生物参数 观测网系统 主要观测目标 美国“海洋立体观测网集成系统”(OOI) 兼顾海水上层、海水深部及海底,可实现物理、化学、生物多参数多尺度立体综合观测 加拿大“海王星” 海水物理化学变化,洋流变化,海底板块动力学、板块活动,海洋气候动力学及对海洋生态系统的影响,矿物、金属、碳氢化合物等能源,渔业资源及海洋哺乳动物探索等科学问题 欧洲海洋观测系统 从海面到海底的多学科观测 欧洲深海观测站整合项目(EuroSITES) 从海面到海底的多学科观测 表 4 海底观测系统概况
Table 4. Introduction of seafloor observation network
观测网系统 主要观测目标 美国“火星” 生物物理海洋、海水、海洋二氧化碳等 加拿大“海王星” 陆架/陆坡系统的营养状况和海底峡谷沉积物搬运、海底地震和滑坡、海底天然气水合物的活动情况和板块构造、洋中脊、热液喷口及生态系统等 加拿大“金星” 河口、浮游动物、海洋哺乳动物、潮汐、海流、鱼类、沉积物搬运及海底形态动力雪、底栖生态学等 欧洲海底综合观测系统 海洋生物多样性、海流、热液喷口、海啸、地震等 日本DONET1&DONET2 地震及海啸等灾害实时观测和预警 日本海沟地震海啸观测网 地震及海啸等灾害实时观测和预警 发展阶段 时期 重点目标 起步阶段 “九五” 设立海洋技术领域,并成立海洋探测与监视主题。开始建立以上海、珠江口作为第一批海洋观测技术发展示范区 模仿学习阶段 “十五” 重点发展固定式海洋环境通用观测平台,启动实施台海海洋环境立体观测、渤海生态环境观测、海洋赤潮观测预警等集成示范系统的建设和研发 “十一五” 围绕200海里专属经济区开展业务化近浅海生态环境观测示范系统建设,开展移动平台观测系统及海底观测网技术研发,启动“台湾海峡海洋动力环境立体监测示范系统” 重点发展阶段 “十二五” 启动实施深远海海洋动力环境观测系统、海底观测网试验系统、深海潜水器技术与装备等技术研发。完成相关海洋环境观测技术的下海试验 “十三五” 统筹国家海洋观测网布局,推进国家海洋环境实时在线监控系统和海外观测点建设,逐步形成全球海洋立体观测系统,加强对海洋生态环境的观测研究 “十四五” 重点针对近岸海域海洋生态环境观测,以海湾为突破口,推进海洋生态系统预警观测研究 表 6 我国已有的生态环境立体观测系统[36, 57-59]
Table 6. National existing eco-system environmental monitoring system
名称 建成时间 系统组成 观测目标 “海洋环境立体监测和信息服务系统
”上海示范区2000年 岸站、海床基、地波雷达、
卫星遥感等第一套自行研发的海洋环境立体观测系统,可为上海区域提供海洋环境信息服务,对东海进行赤潮预警等 台湾海峡海洋动力环境立体监测示范系统 2005年 卫星遥感、船基等 第一套离岸区域性海洋动力环境立体综合观测系统,可实现对台湾海峡附近海域的风暴潮预警 渤海海洋生态环境海空准实时综合监测
示范系统2005年 船基、卫星遥感、水下观测平台、
浮标等主要针对生态环境观测,可实现对所在海域生态环境数据实时连续的获取、对赤潮、溢油等海洋灾害进行预警观测 中国近海海洋观测系统 2008年 沿岸观测站、近岸浮标及观测船 实现对黄海、东海和南海进行生态环境连续实时观测,也可进行预警观测 省市 数量 地点 浮标类型 观测目标 山东 17 沿海港湾、青岛、烟台、鸡鸣岛 气象浮标站、水质浮标、海-气界面浮标 水文、气象、营养盐、常规水质、海表二氧化碳分压 福建 10 厦门、青山岛、台湾海峡、福鼎、霞浦、连江、平潭等海域 气象浮标站、水质生态浮标 水文、气象、常规水质 江苏 1 南通洋口港 水文气象观测浮标 水文、气象、常规水质 浙江 20 舟山、温州、台州、宁波、嘉兴、象山港等近岸生态敏感区 气象浮标、生态浮标、海滨浮标、专项浮标 气象、常规参数、营养盐、γ射线、碳氢化合物 河北 5 北戴河、金山嘴、洋河口 水文气象观测浮标、水质浮标 常规水质、水文、气象、营养盐 上海 2 东海 气象浮标 常规水质、气象、营养盐水文、石油、波浪 广西 32 北海海域、钦州海域、防城港海域、廉州湾 海上自动观测浮标 常规水质、水文、气象、营养盐、石油 广东 17 大亚湾、大鹏湾、深圳湾、珠江口、茂名、汕头、南海区 气象浮标、水质浮标、海啸浮标 气象、常规水质、水中油、光合有效辐射、总溶解性固体、蓝绿藻、60Co、134Cs、137Cs、89Sr、营养盐 辽宁 1 獐子岛 ADCP组合潜标 水文、气象、水质 海南 4 博鳌附近海域、文昌、海口湾、澄迈湾 水质浮标、气象浮标 常规水质、蓝绿藻、营养盐、气象 合计 109 表 8 国内船载生态观测系统研究概况
Table 8. General situation of shipborne online marine ecological monitoring system
研究单位 搭载船体 观测目标 自然资源部北海局 向阳红08 常规水质、叶绿素、营养盐、
总有机碳、重金属等自然资源部东海局 海监47 常规水质、叶绿素、营养盐、赤潮生物等 国家海洋技术中心 商业船 常规水质、营养盐等 表 9 我国主要生态问题统计[2]
Table 9. National Ecological problem in 2023
发生海区 赤潮发现次数/次 局地性生物暴发事件/次 渤海 9 3 黄海 6 1 东海 24 1 南海 7 0 表 10 营养盐要素传统监测与海洋观测系统对比分析
Table 10. Comparison between traditional monitoring and ocean observing system in nutrients parameters
要素 观测方法 氨氮 亚硝酸盐–氮 硝酸盐–氮 活性磷酸盐 监测方法 传统监测 分光光度法 流动分析法 流动分析法 流动分析法 海洋观测系统 OPA荧光法 盐酸萘乙二胺分光光度法 紫外还原–分光光度法 磷钼蓝分光光度法 监测频率 传统监测 月度/季度/次 海洋观测系统 4 h/次 分析精度 传统监测 0.0044 mg/L0.0005 mg/L0.0030 mg/L0.0008 mg/L海洋观测系统 0.005 mg/L 0.002 mg/L 0.010 mg/L 0.003 mg/L 注:传统分析方法数据采用美国哈希流动注射分析仪测得,海洋观测系统采用广州和时通电子科技有限公司的原位水质营养盐分析仪测得 -
[1] 王初升, 唐森铭, 宋普庆. 我国赤潮灾害的经济损失评估[J]. 海洋环境科学, 2011, 30(3): 428-431. doi: 10.3969/j.issn.1007-6336.2011.03.027WANG C S, TANG S M, SONG P Q. Assessment on economic losses caused by red tide disasters in China seas[J]. Marine Environmental Science, 2011, 30(3): 428-431. (in Chinese with English abstract doi: 10.3969/j.issn.1007-6336.2011.03.027 [2] 中华人民共和国自然资源部. 2023年中国海洋生态预警监测公报[R]. 2024.Ministry of Natural Resources of the People's Republic of China. Bulletin of China's Marine Ecological Early Warning and Monitoring in 2023[R]. Beijing: Ministry of Natural Resources of the People's Republic of China. 2024.(in Chinese) [3] 苏纪兰, 唐启升. 我国海洋生态系统基础研究的发展: 国际趋势和国内需求[J]. 地球科学进展, 2005, 20(2): 139-143. doi: 10.3321/j.issn:1001-8166.2005.02.001SU J L, TANG Q S. A new direction for China's research on marine ecosystems: International trend and national needs[J]. Advance in Earth Sciences, 2005, 20(2): 139-143. (in Chinese with English abstract doi: 10.3321/j.issn:1001-8166.2005.02.001 [4] 李永祺, 唐学玺, 张鑫鑫, 等. 退化海洋生态系统修复相关概念与修复模式的探讨[J]. 中国海洋大学学报(自然科学版), 2024, 54(11): 1-9.LI Y Q, TANG X X, ZHANG X X, et al. Discussion on related concepts and rehabilitation of degraded marine ecosystem[J]. Periodical of Ocean University of China, 2024, 54(11): 1-9. (in Chinese with English abstract [5] BORJA A, ANDERSEN J H, ARVANITIDIS C D, et al. Past and future grand challenges in marine ecosystem ecology[J]. Frontiers in Marine Science, 2020, 7: 362. doi: 10.3389/fmars.2020.00362 [6] TANHUA T, MCCURDY A, FISCHER A, et al. What we have learned from the framework for ocean observing: Evolution of the global ocean observing system[J]. Frontiers in Marine Science, 2019, 6: 471. doi: 10.3389/fmars.2019.00471 [7] Vuillemin R, Sanfilipoo L, Moscetta, et al. Continuous nutrient automated monitoring on the Mediterranean sea using in situ flow analyzer[C]//Anon. OCEAN 2009, MTS/IEEE Biloxi. Marine Technology for Our Future: Global and Local Challenges. [S.l.]: [s.n.], 2009: 1-8. [8] JOHNSON K S, COLETTI L J, CHAVEZ F P. Diel nitrate cycles observed with in situ sensors predict monthly and annual new production[J]. Deep Sea Research Part I (Oceanographic Research Papers), 2006, 53(3): 561-573. doi: 10.1016/j.dsr.2005.12.004 [9] JOHNSON K S. Simultaneous measurements of nitrate, oxygen, and carbon dioxide on oceanographic moorings: Observing the Redfield ratio in real time[J]. Limnology and Oceanography, 2010, 55(2): 615-627. doi: 10.4319/lo.2010.55.2.0615 [10] SANDFORD R C, EXENBERGER A, WORSFOLD P J. Nitrogen cycling in natural waters using in situ, reagentless UV spectrophotometry with simultaneous determination of nitrate and nitrite[J]. Environmental Science & Technology, 2007, 41(24): 8420-8425. [11] MOORE T S, MULLAUGH K M, HOLYOKE R R, et al. Marine chemical technology and sensors for marine waters: Potentials and limits[J]. Annual Review of Marine Science, 2009, 1: 91-115. doi: 10.1146/annurev.marine.010908.163817 [12] GLENN S, DICKEY T, PARKER B, et al. Long-term real-time coastal ocean observation networks[J]. Oceanography, 2000, 13(1): 24-34. doi: 10.5670/oceanog.2000.50 [13] 陈鹰. 海洋观测方法之研究[J]. 海洋学报, 2019, 41(10): 182-188. doi: 10.3969/j.issn.0253-4193.2019.10.013CHEN Y. On the ocean observing methodology[J]. Haiyang Xuebao, 2019, 41(10): 182-188. (in Chinese with English abstract doi: 10.3969/j.issn.0253-4193.2019.10.013 [14] 林涛. 近岸海域水质在线自动监测系统的营养盐数据质量控制方法研究[J]. 环境科学与管理, 2013, 38(7): 109-113. doi: 10.3969/j.issn.1673-1212.2013.07.026LIN T. Nutrients data quality control methods of water quality automatic online monitoring system in Xiamen coastal waters[J]. Environmental Science and Management, 2013, 38(7): 109-113. (in Chinese with English abstract doi: 10.3969/j.issn.1673-1212.2013.07.026 [15] MACKENZIE B, CELLIERS L, DE FREITAS ASSAD L P, et al. The role of stakeholders in creating societal value from coastal and ocean observations[J]. Frontiers in Marine Science, 2019, 6: 137. doi: 10.3389/fmars.2019.00137 [16] 蔡树群, 张文静, 王盛安. 海洋环境观测技术研究进展[J]. 热带海洋学报, 2007, 26(3): 76-81.CAI S Q, ZHANG W J, WANG S A. An advance in marine environment observation technology[J]. Journal of Tropical Oceanography, 2007, 26(3): 76-81. (in Chinese with English abstract [17] UMEDA A, SHIMIZU E. A wireless based ocean observation buoy system and legal status of underwater radio wave communication in Japan[C]//Anon. 2018. OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO). Kobe: [s.n.], 2018: 1-6 [18] 王宁, 李燕, 杨鹏程, 等. 海洋生态在线监测技术研究进展[J]. 应用海洋学学报, 2023, 42(1): 178-186. doi: 10.3969/J.ISSN.2095-4972.2023.01.020WANG N, LI Y, YANG P C, et al. Advances in marine ecological on-line monitoring technology[J]. Journal of Applied Oceanography, 2023, 42(1): 178-186. (in Chinese with English abstract doi: 10.3969/J.ISSN.2095-4972.2023.01.020 [19] 赵吉浩, 高艳波, 朱光文, 等. 海洋观测技术进展[J]. 海洋技术, 2008, 27(4): 1-4.ZHAO J H, GAO Y B, ZHU G W, et al. Progress in marine observation technology[J]. Ocean Technology, 2008, 27(4): 1-4. (in Chinese with English abstract [20] MOORE C, BARNARD A, FIETZEK P, et al. Optical tools for ocean monitoring and research[J]. Ocean Science, 2009, 5(4): 661-684. doi: 10.5194/os-5-661-2009 [21] 孙思萍. 海床基自动监测平台技术的研究应用[J]. 海洋技术, 2003, 22(3): 81-84.SUN S P. The development and application of automatic seabed-based monitoring platform technology[J]. Ocean Technology, 2003, 22(3): 81-84. (in Chinese with English abstract [22] 刘方, 丁页, 李俊龙, 等. 近岸海域水质自动监测规范化研究[J]. 中国环境监测, 2016, 32(2): 121-126. doi: 10.3969/j.issn.1002-6002.2016.02.020LIU F, DING Y, LI J L, et al. Research for standardized and normalization coastal waters automatic monitoring[J]. Environmental Monitoring in China, 2016, 32(2): 121-126. (in Chinese with English abstract doi: 10.3969/j.issn.1002-6002.2016.02.020 [23] Freeland H J, Roemmich D, Garzoli S L, et al. Argo-A decade of progress[C]//Anon. Venice: Ocean Obs'09 Meeting. [S.l.]: [s.n.], 2009. [24] 于宇, 黄孝鹏, 崔威威, 等. 国外海洋环境观测系统和技术发展趋势[J]. 舰船科学技术, 2017, 39(23): 179-183.YU Y, HUANG X P, CUI W W, et al. Development trends of foreign marine environment observing systems and technologies[J]. Ship Science and Technology, 2017, 39(23): 179-183. (in Chinese with English abstract [25] RANTAJARVI E. Effect of sampling frequency on detection of natural variability in phytoplankton: Unattended high-frequency measurements on board ferries in the Baltic Sea[J]. ICES Journal of Marine Science, 1998, 55(4): 697-704. doi: 10.1006/jmsc.1998.0384 [26] SMITH L, BARTH J, KELLEY D, et al. The ocean observatories initiative[J]. Oceanography, 2018, 31(1): 16-35. doi: 10.5670/oceanog.2018.105 [27] STAMEY B, CAREY K, SMITH W, et al. An integrated coastal observation and flood warning system: Rapid prototype development[C]//Anon. OCEANS 2006. Boston, MA, USA. IEEE, 2006: 1-6. [28] MOLTMANN T, TURTON J, ZHANG H-M, et al. A global ocean observing system (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies[J]. Frontiers in Marine Science, 2019, 6: 291. doi: 10.3389/fmars.2019.00291 [29] 王春谊, 李芝凤, 吴迪, 等. 美国海洋观测系统分析[J]. 海洋技术, 2012, 31(3): 90-92.WANG C Y, LI Z F, WU D, et al. Analysis of US ocean observing system[J]. Ocean Technology, 2012, 31(3): 90-92. (in Chinese with English abstract [30] 王祎, 高艳波, 齐连明, 等. 我国业务化海洋观测发展研究: 借鉴美国综合海洋观测系统[J]. 海洋技术学报, 2014, 33(6): 34-39.WANG Y, GAO Y B, QI L M, et al. Research on the development of operational ocean observation in China by using the U. S. IOOS for reference[J]. Journal of Ocean Technology, 2014, 33(6): 34-39. (in Chinese with English abstract [31] PETTIGREW N R, WALLINGA J P, NEVILLE F P, et al. Gulf of Maine ocean observing system (GoMOOS): Current measurement approaches in a prototype integrated ocean observing system[C]//Anon. Proceedings of the IEEE/OES Eighth Working Conference on Current Measurement Technology, Southampton, UK: IEEE, 2005: 127-131. [32] PETTIGREW N R, FIKES C P, BEARD M K. Advances in the ocean observing system in the gulf of Maine: Technical capabilities and scientific results[J]. Marine Technology Society Journal, 2011, 45(1): 85-97. doi: 10.4031/MTSJ.45.1.11 [33] 陈令新, 王巧宁, 孙西艳, 等. 海洋环境分析监测技术[M]. 北京: 科学出版社, 2017: 375-377.CHEN L X, WANG Q N, SUN X Y, et al. Marine environment analysis and monitoring technology[M]. Beijing: Science Press, 2017: 375-377 [34] 李慧青, 朱光文, 李燕, 等. 欧洲国家的海洋观测系统及其对我国的启示[J]. 海洋开发与管理, 2011, 28(1): 1-5. doi: 10.3969/j.issn.1005-9857.2011.01.001LI H Q, ZHU G W, LI Y, et al. Ocean observation system of European countries and its enlightenment to China[J]. Ocean Development and Management, 2011, 28(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1005-9857.2011.01.001 [35] JAMES C, COLLOPY M, WYATT L R, et al. Suitability of the southern Australia integrated marine observing system's (SA-IMOS) HF-radar for operational forecasting[J]. Journal of Operational Oceanography, 2019, 12(2): 73-85. doi: 10.1080/1755876X.2019.1567450 [36] HIDAS M G, PROCTOR R, ATKINS N, et al. Information infrastructure for Australia's integrated marine observing system[J]. Earth Science Informatics, 2016, 9(4): 525-534. doi: 10.1007/s12145-016-0266-2 [37] O’CALLAGHAN J, STEVENS C, ROUGHAN M, et al. Developing an integrated ocean observing system for New Zealand[J]. Frontiers in Marine Science, 2019, 6: 143. [38] MARTÍN MÍGUEZ B, NOVELLINO A, VINCI M, et al. The European marine observation and data network (EMODnet): Visions and roles of the gateway to marine data in Europe[J]. Frontiers in Marine Science, 2019, 6: 313. doi: 10.3389/fmars.2019.00313 [39] 马毅. 我国海洋观测预报系统概述[J]. 海洋预报, 2008, 25(1): 31-40. doi: 10.3969/j.issn.1003-0239.2008.01.006MA Y. Overview of marine observation and forecast system for China[J]. Marine Forecasts, 2008, 25(1): 31-40. (in Chinese with English abstract doi: 10.3969/j.issn.1003-0239.2008.01.006 [40] PETERSEN W. FerryBox systems: State-of-the-art in Europe and future development[J]. Journal of Marine Systems, 2014, 140: 4-12. doi: 10.1016/j.jmarsys.2014.07.003 [41] PETERSEN W, SCHROEDER F, BOCKELMANN F D. FerryBox: Application of continuous water quality observations along transects in the North Sea[J]. Ocean Dynamics, 2011, 61(10): 1541-1554. doi: 10.1007/s10236-011-0445-0 [42] PETERSEN W, REINKE S, BREITBACH G, et al. FerryBox data in the north sea from 2002 to 2005[J]. Earth System Science Data, 2018, 10(3): 1729-1734. doi: 10.5194/essd-10-1729-2018 [43] 王宁, 程长阔, 杨鹏程, 等. 船载海洋生态在线监测技术研究与应用进展[J]. 海洋科学, 2021, 45(10): 133-140.WANG N, CHENG C K, YANG P C, et al. Research and application progress of shipborne marine ecological online monitoring technology[J]. Marine Sciences, 2021, 45(10): 133-140. (in Chinese with English abstract [44] 张伙带, 韩冰, 刘丽强, 等. 海底观测新技术[M]. 北京: 海洋出版社, 2019: 37-111.ZHANG H D, HAN B, LIU L G, et al. New technologies for seabed observation[M]. Beijing: Ocean press, 2019: 37-111. (in Chinese) [45] 王波, 李民, 刘世萱, 等. 海洋资料浮标观测技术应用现状及发展趋势[J]. 仪器仪表学报, 2014, 35(11): 2401-2414.WANG B, LI M, LIU S X, et al. Current status and trend of ocean data buoy observation technology applications[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2401-2414. (in Chinese with English abstract [46] MARTIN TAYLOR S. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems[J]. Nuclear Instruments and Methods in Physics Research Section A (Accelerators, Spectrometers, Detectors and Associated Equipment), 2009, 602(1): 63-67. [47] 吴自军, 周怀阳. 加拿大海底科学长期观测网的研究进展[J]. 工程研究(跨学科视野中的工程), 2016, 8(2): 131-138. doi: 10.3724/SP.J.1224.2016.00131WU Z J, ZHOU H Y. Research advances of ocean networks Canada[J]. Journal of Engineering Studies, 2016, 8(2): 131-138. (in Chinese with English abstract doi: 10.3724/SP.J.1224.2016.00131 [48] 姬再良, 董树文. 世界首座海洋观测网体系: 加拿大“海王星” 海底观测技术[J]. 地球学报, 2012, 33(1): 13-22. doi: 10.3975/cagsb.2012.01.03JI Z L, DONG S W. The first marine observation network system: Neptune Canada submarine observation technology[J]. Acta Geoscientica Sinica, 2012, 33(1): 13-22. (in Chinese with English abstract doi: 10.3975/cagsb.2012.01.03 [49] 陈绍艳, 张多, 麻常雷. 加拿大VENUS海底观测网[J]. 海洋开发与管理, 2015, 32(11): 17-19. doi: 10.3969/j.issn.1005-9857.2015.11.004CHEN S Y, ZHANG D, MA C L. VENUS undersea observation network of Canada[J]. Ocean Development and Management, 2015, 32(11): 17-19. (in Chinese) doi: 10.3969/j.issn.1005-9857.2015.11.004 [50] 李健, 陈荣裕, 王盛安, 等. 国际海洋观测技术发展趋势与中国深海台站建设实践[J]. 热带海洋学报, 2012, 31(2): 123-133.LI J, CHEN R Y, WANG S A, et al. Development of international marine observation system and construction of deep-sea station in China[J]. Journal of Tropical Oceanography, 2012, 31(2): 123-133. (in Chinese with English abstract [51] 蒋成竹, 张涛, 吴林强, 等. 欧盟海洋探测和观测体系构建现状与发展趋势[J]. 自然资源情报, 2023, 42(6): 29-34. doi: 10.3969/j.issn.1674-3709.2023.06.006JIANG C Z, ZHANG T, WU L Q, et al. Current situation and development trend of the European Union marine exploration and observation system[J]. Natural Resources Information, 2023, 42(6): 29-34. (in Chinese with English abstract doi: 10.3969/j.issn.1674-3709.2023.06.006 [52] GASPARIN F, GUINEHUT S, MAO C Y, et al. Requirements for an integrated in situ Atlantic Ocean observing system from coordinated observing system simulation experiments[J]. Frontiers in Marine Science, 2019, 6: 83. doi: 10.3389/fmars.2019.00083 [53] 李风华, 路艳国, 王海斌, 等. 海底观测网的研究进展与发展趋势[J]. 中国科学院院刊, 2019, 34(3): 321-330.LI F H, LU Y G, WANG H B, et al. Research progress and development trend of seafloor observation network[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 321-330. (in Chinese with English abstract [54] PEDERSEN G, ZHANG G S, ANICETO S, et al. Long term acoustic time series of the Lofoten Vesterålen ocean observatory[J]. The Journal of the Acoustical Society of America, 2020, 148(4S): 2627. [55] 钱洪宝, 徐文, 张杰, 等. 我国海洋监测高技术发展的回顾与思考[J]. 海洋技术学报, 2015, 34(3): 59-63.QIAN H B, XU W, ZHANG J, et al. Review and deliberation on the development of marine monitoring high technology in China[J]. Journal of Ocean Technology, 2015, 34(3): 59-63. (in Chinese with English abstract [56] 国家发展改革委国家海洋局. 全国海洋经济发展“十三五”规划[R]. 北京: 国家发展改革委国家海洋局, 2017.State Oceanic Administration, National Development and Reform Commission. The 13th Five-Year plan for the Development of the National Marine Economy[R]. Beijing: State Oceanic Administration, National Development and Reform Commission, 2017. (in Chinese) [57] 王瑞文, 叶冬. 中国近海现场海洋观测系统设计评估[J]. 海洋通报, 2012, 31(2): 121-130. doi: 10.3969/j.issn.1001-6392.2012.02.001WANG R W, YE D. Assessment on the design of in situ ocean observing system in Chinese marginal seas[J]. Marine Science Bulletin, 2012, 31(2): 121-130. (in Chinese with English abstract doi: 10.3969/j.issn.1001-6392.2012.02.001 [58] 庞仁松, 周凯, 冷科明, 等. 深圳市海域浮标监测网的站位设计和数据应用[J]. 海洋开发与管理, 2018, 35(2): 49-53. doi: 10.3969/j.issn.1005-9857.2018.02.010PANG R S, ZHOU K, LENG K M, et al. The station design and data application of buoy monitoring network in Shenzhen Sea area[J]. Ocean Development and Management, 2018, 35(2): 49-53. (in Chinese with English abstract doi: 10.3969/j.issn.1005-9857.2018.02.010 [59] 戴洪磊, 牟乃夏, 王春玉, 等. 我国海洋浮标发展现状及趋势[J]. 气象水文海洋仪器, 2014, 31(2): 118-121. doi: 10.3969/j.issn.1006-009X.2014.02.032DAI H L, MOU N X, WANG C Y, et al. Development status and trend of ocean buoy in China[J]. Meteorological, Hydrological and Marine Instruments, 2014, 31(2): 118-121. (in Chinese with English abstract doi: 10.3969/j.issn.1006-009X.2014.02.032 [60] 李斌, 刘保良, 魏春雷. 广西海洋水质监测浮标设计与建设[J]. 科技资讯, 2018, 16(21): 66-68.LI B, LIU B L, WEI C L. Design and construction of marine water quality monitoring buoy in Guangxi[J]. Science & Technology Information, 2018, 16(21): 66-68. (in Chinese) [61] 赵聪蛟, 冯辉强, 祝翔宇, 等. 象山港海洋监测浮标在强台风“海葵” 影响期间的可靠性分析[J]. 热带海洋学报, 2015, 34(2): 8-14. doi: 10.3969/j.issn.1009-5470.2015.02.002ZHAO C J, FENG H Q, ZHU X Y, et al. Reliability analysis of marine monitoring buoy in the Xiangshan Harbor during Typhoon Haikui (1211)[J]. Journal of Tropical Oceanography, 2015, 34(2): 8-14. (in Chinese with English abstract doi: 10.3969/j.issn.1009-5470.2015.02.002 [62] 赵聪蛟, 孔梅, 孙笑笑, 等. 浙江省海洋水质浮标在线监测系统构建及应用[J]. 海洋环境科学, 2016, 35(2): 288-294.ZHAO C J, KONG M, SUN X X, et al. Construction and application of the marine online monitoring buoy system in Zhejiang Province[J]. Marine Environmental Science, 2016, 35(2): 288-294. (in Chinese with English abstract [63] 罗金福, 李天深, 蓝文陆. 近岸海域自动监测网络在广西环境管理服务中的应用[J]. 广西科学院学报, 2019, 35(2): 109-112.LUO J F, LI T S, LAN W L. Application of automatic monitoring system in offshore area in the environmental management service of Guangxi[J]. Journal of Guangxi Academy of Sciences, 2019, 35(2): 109-112. (in Chinese with English abstract [64] 周学杭, 张洪海, 马昕, 等. 基于浮标观测的春季青岛近岸海水PCO2变化及海–气CO2通量研究[J]. 海洋学研究, 2023, 41(3): 14-21.ZHOU X H, ZHANG H H, MA X, et al. Variations of PCO2 and sea-air CO2 flux in Qingdao coastal seawater in spring based on buoy observations[J]. Journal of Marine Sciences, 2023, 41(3): 14-21. (in Chinese with English abstract [65] 于灏, 吕海良, 关一, 等. 船载海洋生态环境监测系统集成平台设计研究[J]. 船舶工程, 2013, 35(3): 108-111.YU H, LÜ H L, GUAN Y, et al. Design and study of integrated system of onboard marine ecological environmental monitoring system[J]. Ship Engineering, 2013, 35(3): 108-111. (in Chinese with English abstract [66] 李晖, 杜军兰, 哈谦, 等. 船载海洋水质自动监测系统研制和应用[J]. 环境影响评价, 2018, 40(6): 67-70.LI H, DU J L, HA Q, et al. Research and application of shipboard automatic monitoring system for marine water quality[J]. Environmental Impact Assessment, 2018, 40(6): 67-70. (in Chinese with English abstract [67] 吴亚楠, 王祎, 姜民, 等. 《2019年美国NOAA科学报告》对我国海洋观测网建设与发展的启示[J]. 海洋技术学报, 2021, 40(3): 84-89.WU Y N, WANG Y, JIANG M, et al. Enlightment on building and developing ocean observation network of China from 2019 NOAA Science Report[J]. Journal of Ocean Technology, 2021, 40(3): 84-89. (in Chinese with English abstract [68] 张增健, 李程, 徐珊珊, 等. 国外海洋观测系统对我国的启示[J]. 海洋技术学报, 2023, 42(6): 95-104. doi: 10.3969/j.issn.1003-2029.2023.06.012ZHANG Z J, LI C, XU S S, et al. The enlightenment of foreign ocean observation systems on China[J]. Journal of Ocean Technology, 2023, 42(6): 95-104. (in Chinese with English abstract doi: 10.3969/j.issn.1003-2029.2023.06.012 [69] DONG C, CHEN D K, WANG D X, et al. Intelligent swift ocean observing system[J]. Ocean-Land-Atmosphere Research, 2023, 2: 22. doi: 10.34133/olar.0022 [70] 翟方国, 李培良, 顾艳镇, 等. 海底有缆在线观测系统研究与应用综述[J]. 海洋科学, 2020, 44(8): 14-28.ZHAI F G, LI P L, GU Y Z, et al. Review of the research and application of the submarine cable online observation system[J]. Marine Sciences, 2020, 44(8): 14-28. (in Chinese with English abstract [71] 付龙文, 杜志强, 高歌, 等. 海洋牧场多水层溶解氧在线监测系统的构建及应用[J]. 海洋环境科学, 2020, 39(6): 909-917. doi: 10.12111/j.mes.20190159FU L W, DU Z Q, GAO G, et al. Construction and application of on-line monitoring system for dissolved oxygen in multi-water layer of marine ranching[J]. Marine Environmental Science, 2020, 39(6): 909-917. (in Chinese with English abstract doi: 10.12111/j.mes.20190159 [72] 贾文娟, 张孝薇, 闫晨阳, 等. 海洋牧场生态环境在线监测物联网技术研究[J]. 海洋科学, 2022, 46(1): 83-89.JIA W J, ZHANG X W, YAN C Y, et al. Internet of things technology for online monitoring of marine ranch ecological environments[J]. Marine Sciences, 2022, 46(1): 83-89. (in Chinese with English abstract [73] 熊小飞, 吴加欣, 陈栋, 等. 珊瑚礁生态环境在线监测系统的设计研究[J]. 海洋湖沼通报, 2017, 39(6): 61-66.XIONG X F, WU J X, CHEN D, et al. Design of an online monitoring system for coral reef ecological environments[J]. Transactions of Oceanology and Limnology, 2017, 39(6): 61-66. (in Chinese with English abstract [74] 刘春琳, 陈亮, 乔延龙, 等. 天津大神堂牡蛎礁海洋特别保护区监视监控平台应用探讨[J]. 科技资讯, 2016, 14(1): 16-17.LIU C L, CHEN L, QIAO Y L, et al. Discussion on the application of monitoring platform in Tianjin Dashentang oyster reef marine special reserve[J]. Science & Technology Information, 2016, 14(1): 16-17. (in Chinese) [75] 伯云台, 王岚, 姜源庆, 等. 海洋在线水质生态观测系统研究进展[J]. 环境影响评价, 2018, 40(2): 81-85.BO Y T, WANG L, JIANG Y Q, et al. Advances in study of automatic monitoring system for seawater quality[J]. Environmental Impact Assessment, 2018, 40(2): 81-85. (in Chinese with English abstract [76] 李鹏, 许啸春, 潘灵芝. 东海海洋环境监测网浮标观测站布设及其科学意义[J]. 上海国土资源, 2014, 35(1): 71-76. doi: 10.3969/j.issn.2095-1329.2014.01.017LI P, XU X C, PAN L Z. The distribution and scientific significance of marine environmental-monitoring buoys in the East China Sea[J]. Shanghai Land & Resources, 2014, 35(1): 71-76. (in Chinese with English abstract doi: 10.3969/j.issn.2095-1329.2014.01.017 [77] 中华人民共和国生态环境部, 2023中国海洋生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2024.Ministry of Ecology and Environment of People's Republic of China. Bulletin on the Status of China's Marine Ecological Environment[R]. Beijing: Ministry of Ecology and Environment of People's Republic of China, 2014. [78] 杨颖, 徐韧. 岸/岛基站海洋生态环境在线监测系统建设选址调查方案探讨[J]. 海洋技术学报, 2018, 37(3): 25-29.YANG Y, XU R. Research and discussion on the site selection survey plan for marine eco-environment online monitoring system built in shore-site stations and island stations[J]. Journal of Ocean Technology, 2018, 37(3): 25-29. (in Chinese with English abstract [79] 赵聪蛟, 赵斌, 周燕. 基于海洋生态文明及绿色发展的海洋环境实时监测[J]. 海洋开发与管理, 2017, 34(5): 91-97. doi: 10.3969/j.issn.1005-9857.2017.05.016ZHAO C J, ZHAO B, ZHOU Y. Marine ecological civilization, green development and real-time monitoring of marine environment[J]. Ocean Development and Management, 2017, 34(5): 91-97. (in Chinese with English abstract doi: 10.3969/j.issn.1005-9857.2017.05.016 [80] 陈旭阳, 刘保良. 海洋在线监测浮标在赤潮监测中的应用研究[J]. 热带海洋学报, 2018, 37(5): 20-24.CHEN X Y, LIU B L. Application of real-time monitoring buoy in monitoring red tide[J]. Journal of Tropical Oceanography, 2018, 37(5): 20-24. (in Chinese with English abstract [81] 彭模, 周超凡, 郑江鹏, 等. 江苏省离岸式海洋生态环境在线监测系统建设浅析[C]. //佚名. 2020 年全国海洋生态环境保护及监测技术研讨会论文集. [出版地不详]: [出版社不详], 2020: 33-37.PENG M, ZHOU C F, ZHENG J P, et al. A brief analysis of the construction of offshore marine ecological environment online monitoring system in Jiangsu Province[C]. //Anon. Proceedings of the 2020 national symposium on marine ecological environment protection and Monitoring technology. [S. l]: [s. n.], 2020: 33-37.(in Chinese) [82] 李斌, 刘保良, 陈旭阳, 等. 基于海洋生态在线监测浮标数据的钦州湾藻华过程研究[J]. 广西科学, 2021, 28(1): 30-36.LI B, LIU B L, CHEN X Y, et al. Analysis of algal bloom in Qinzhou Bay based on marine ecology online monitoring buoy data[J]. Guangxi Sciences, 2021, 28(1): 30-36. (in Chinese with English abstract [83] 赵聪蛟, 刘希真, 付声景, 等. 基于水质浮标在线监测的米氏凯伦藻赤潮过程及环境因子变化特征分析[J]. 热带海洋学报, 2020, 39(2): 88-97.ZHAO C J, LIU X Z, FU S J, et al. Variation characteristics of the evolution of Karenia Mikimotoi bloom and environmental factors based on online monitoring buoy data[J]. Journal of Tropical Oceanography, 2020, 39(2): 88-97. (in Chinese with English abstract [84] 李天深, 蓝文陆, 卢印思, 等. 近岸海域自动监测浮标在赤潮预警中的应用及其缺陷[J]. 海洋预报, 2015, 32(1): 70-78.LI T S, LAN W L, LU Y S, et al. Application of automatic monitoring buoy in early warning for algal blooms in offshore area[J]. Marine Forecasts, 2015, 32(1): 70-78. (in Chinese with English abstract [85] 李天深, 李远强, 赖春苗, 等. 廉洲湾赤潮自动监测结果与分析[J]. 中国环境监测, 2011, 27(4): 32-35. doi: 10.3969/j.issn.1002-6002.2011.04.008LI T S, LI Y Q, LAI C M, et al. Analyze red tide with automatic monitoring system of water quality in Lianzhou Gulf[J]. Environmental Monitoring in China, 2011, 27(4): 32-35. (in Chinese with English abstract doi: 10.3969/j.issn.1002-6002.2011.04.008 [86] 庄宏儒. 水质自动监测系统在厦门同安湾赤潮短期预报中的应用[J]. 海洋环境科学, 2006, 25(2): 58-61. doi: 10.3969/j.issn.1007-6336.2006.02.016ZHUANG H R. Application of automatic monitoring system of water quality on short-term prediction of red tide in Tongan Bay, Xiamen[J]. Marine Environmental Science, 2006, 25(2): 58-61. (in Chinese with English abstract doi: 10.3969/j.issn.1007-6336.2006.02.016 [87] 张文斌, 孙伟, 许歆, 等. 某核电厂附近海域生态环境特征及潜在致灾生物研究[J]. 海洋科学, 2022, 46(7): 32-43.ZHANG W B, SUN W, XU X, et al. Ecological environment and the potential hazard-causing organisms in the sea area near the nuclear power plant[J]. Marine Sciences, 2022, 46(7): 32-43. (in Chinese with English abstract [88] 於凡, 许波涛, 吴昕, 等. 基于核电冷源安全的海洋生物调查及筛选评价方法研究[J]. 海洋环境科学, 2021, 40(1): 139-143. doi: 10.12111/j.mes.20190239YU F, XU B T, WU X, et al. Study on the method of marine organisms investigation, screening and evaluation based on nuclear power plant cold source safety[J]. Marine Environmental Science, 2021, 40(1): 139-143. (in Chinese with English abstract doi: 10.12111/j.mes.20190239 [89] 贺立燕, 宋秀贤, 於凡, 等. 潜在影响防城港核电冷源系统的藻类暴发特点及其监测防控技术[J]. 海洋与湖沼, 2019, 50(3): 700-706.HE L Y, SONG X X, YU F, et al. Potential risk and prevention of phytoplankton outbreak to water-cooling system in nuclear power plant in Fangchenggang, Guangxi[J]. Oceanologia et Limnologia Sinica, 2019, 50(3): 700-706. (in Chinese with English abstract [90] 齐占会, 史荣君, 戴明, 等. 尖笔帽螺(Creseis acicula)研究进展及其在大亚湾暴发机制初探[J]. 热带海洋学报, 2021, 40(5): 147-152. doi: 10.11978/2020112QI Z H, SHI R J, DAI M, et al. A review on ecological characteristics of Creseis acicula and preliminary analysis on its outbreak triggers in Daya Bay[J]. Journal of Tropical Oceanography, 2021, 40(5): 147-152. (in Chinese with English abstract doi: 10.11978/2020112 [91] 於凡, 许波涛, 李勇, 等. 海生物暴发对核电厂冷源系统的影响分析及对策探讨[J]. 给水排水, 2018, 54(2): 61-64.YU F, XU B T, LI Y, et al. Analysis of the influence of marine organism outbreak on cold source system of nuclear power plant and its countermeasures[J]. Water & Wastewater Engineering, 2018, 54(2): 61-64. (in Chinese) [92] 朱鹏光, 甘义群, 赖咏毅, 等. 海南东寨港红树林湿地沉积物氮形态空间分布特征及影响因素[J]. 地质科技通报, 2023, 42(1): 369-377.ZHU P G, GAN Y Q, LAI Y Y, et al. Spatial distribution and controlling factors of sediment nitrogen forms in the mangrove wetland at Dongzhai Port, Hainan Province[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 369-377. (in Chinese with English abstract [93] 江汝锋, 曹立成, 邓孝亮, 等. 琼东南盆地宝岛21-1区陵水组沉积特征及其油气地质意义[J]. 地质科技通报, 2024, 43(5): 31-44.JIANG R F, CAO L C, DENG X L, et al. Sedimentary characteristics of the Lingshui Formation in the Baodao 21-1 area of the Qiongdongnan Basin and their significance in hydrocarbon exploration[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 31-44. (in Chinese with English abstract [94] 王延欣. 枯竭油气藏储集库储热供暖耦合CO2封存性能分析[J]. 地质科技通报, 2024, 43(3): 12-21.WANG Y X. Performance analysis of thermal energy storage for space heating and CO2 sequestration in depleted oil and gas reservoirs[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 12-21. (in Chinese with English abstract [95] 杨泽森, 林晶晶, 常启昕, 等. 地下水与湖泊交互作用的研究趋势与前沿[J]. 地质科技通报, 2024, 43(6): 306-317.YANG Z S, LIN J J, CHANG Q X, et al. Research trends and frontiers of groundwater-lake interaction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 306-317. (in Chinese with English abstract -