Dynamic assessment of landslide susceptibility considering the InSAR deformation influenced by Typhoon Megi: A case study of Songyang Country in Zhejiang Province
-
摘要:
滑坡易发性评价在预测滑坡发生和潜在风险方面至关重要,但静态易发性制图因忽略了滑坡动态演化特征而导致预测结果的可靠性受限。以2016年台风“鲇鱼”影响下的浙江省松阳县为研究区域,通过引入Sentinel-1A的SAR地表形变数据,开展滑坡动态易发性评价。首先采用D-InSAR技术获取台风前后的地表形变量,以−20 mm/a的形变速率为阈值确定新增滑坡;然后利用SBAS-InSAR技术获得了2015年11月22日−2017年3月4日的研究区地表形变量;最后选取地形、地质、水文和人类工程活动等9个静态评价因子以及垂直向和LOS方向的InSAR地表形变量2个动态评价因子,构建MIV-BP神经网络模型生成滑坡动态易发性图。结果表明:(1)InSAR地表形变动态因子可显著提升滑坡易发性的整体预测精度,当缺失该类因子时,预测精度由0.901下降至0.857;此外,模型对台风“鲇鱼”诱发滑坡的识别具有良好的效果。(2)研究区内滑坡极低和低易发区基本不受台风“鲇鱼”的影响,但地形陡峭或地势较高的区域则由台风前的中高易发区升级为极高易发区,且极高易发区域的变化与InSAR地表形变的发展具有高度的一致性。研究结果可为今后类似极端天气下松阳县的地质灾害防灾减灾提供有价值的参考。
Abstract:Objective Landslide susceptibility assessment (LSA) plays a vital role in predicting landslide occurrence and potential risks. However, static susceptibility maps are limited in reliability their failure to account for dynamic evolution of landslides. This study aims to enhance landslide susceptibility assessment by incorporating dynamic factors through Sentinel-1A SAR data, which is derived from Songyang County, Zhejiang Province: A resion impacted by Typhoon Megi in 2016.
Methods The methodology involved three key steps. First, D-InSAR technology was used to measure ground deformation before and after Typhoon Megi. A deformation rate of −20 mm/a was set as the threshold to augment the landslide inventory. Second, SBAS-InSAR technology was applied to obtain ground deformation data from November 22, 2015, to March 4, 2017. Third, nine static factors, including terrain, geology, hydrology, and human activities, were combined with vertical and line-of-sight (LOS) of InSAR ground deformation to produce a dynamic landslide susceptibility map using the MIV-BP neural network framework.
Results The inclusion of dynamic factors, particularly InSAR ground deformation, significantly improved the accuracy of LSA. When these factors were excluded, prediction accuracy decreased from 0.901 to 0.857. Areas with extremely low and low susceptibility were largely unaffected by Typhoon Megi, while regions with steep or elevated terrain experienced an increase in susceptibility, shifting from medium-high to extremely high susceptibility after the typhoon. The changes in the extremely high susceptibility areas closely aligned with the observed ground deformation from InSAR data.
Conclusion The findings offer valuable insights for geological disaster prevention and mitigation in Songyang County and other regions facing similar extreme weather events in the future.
-
表 1 MIV-BP神经网络模型中评价因子的重要性排序
Table 1. Importance ranking of assessment factors in MIV-BP neural network model
评价因子 AUC 缺少因子类别 全 0.901 无 缺1个 0.894 垂直向InSAR形变 缺2个 0.857 垂直向及LOS方向InSAR形变 缺3个 0.861 垂直向及LOS方向InSAR形变、植被覆盖率(NDVI) 缺3个 0.816 垂直向及LOS方向InSAR形变、年代地层 缺3个 0.806 垂直向及LOS方向InSAR形变、距河流距离 缺3个 0.798 垂直向及LOS方向InSAR形变、坡度 缺3个 0.787 垂直向及LOS方向InSAR形变、高程 缺3个 0.780 垂直向及LOS方向InSAR形变、距道路距离 注:AUC. 受试者工作特征曲线下的面积,表示模型预测精度 -
[1] TSOU C Y,FENG Z Y,CHIGIRA M. Catastrophic landslide induced by Typhoon Morakot,Shiaolin,Taiwan[J]. Geomorphology,2011,127(3/4):166-178. [2] OUYANG C J,ZHAO W,XU Q,et al. Failure mechanisms and characteristics of the 2016 catastrophic rockslide at Su Village,Lishui,China[J]. Landslides,2018,15(7):1391-1400. doi: 10.1007/s10346-018-0985-1 [3] ZHUANG Y,XING A G,JIANG Y H,et al. Typhoon,rainfall and trees jointly cause landslides in coastal regions[J]. Engineering Geology,2022,298:106561. doi: 10.1016/j.enggeo.2022.106561 [4] 王佳佳,殷坤龙,肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价:以三峡库区万州区为例[J]. 岩石力学与工程学报,2014,33(4):797-808.WANG J J,YIN K L,XIAO L L. Landslide susceptibility assessment based on GIS and weighted information value:A case study of Wanzhou District,Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(4):797-808. (in Chinese with English abstract [5] HEARN G J,HART A B. Landslide susceptibility mapping:A practitioner's view[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):5811-5826. doi: 10.1007/s10064-019-01506-1 [6] 窦杰,向子林,许强,等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学,2023,48(5):1657-1674.DOU J,XIANG Z L,XU Q,et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science,2023,48(5):1657-1674. (in Chinese with English abstract [7] 郭衍昊,窦杰,向子林,等. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价[J]. 地质科技通报,2024,43(3):251-265.GUO Y H,DOU J,XIANG Z L,et al. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology,2024,43(3):251-265. (in Chinese with English abstract [8] 郭子正,殷坤龙,付圣,等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学,2019,44(12):4299-4312.GUO Z Z,YIN K L,FU S,et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science,2019,44(12):4299-4312. (in Chinese with English abstract [9] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156-167.HUANG F M,YIN K L,JIANG S H,et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156-167. (in Chinese with English abstract [10] GAO B H,HE Y,CHEN X Y,et al. A deep neural network framework for landslide susceptibility mapping by considering time-series rainfall[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2024,17:5946-5969. doi: 10.1109/JSTARS.2024.3370218 [11] DOU J,YUNUS A P,MERGHADI A,et al. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning[J]. Science of the Total Environment,2020,720:137320. doi: 10.1016/j.scitotenv.2020.137320 [12] SAMEEN M I,PRADHAN B,LEE S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment[J]. Catena,2020,186:104249. doi: 10.1016/j.catena.2019.104249 [13] FANG Z C,WANG Y,PENG L,et al. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping[J]. Computers & Geosciences,2020,139:104470. [14] 贾俊,毛伊敏,孟晓捷,等. 深度随机森林和随机森林算法的滑坡易发性评价对比:以汉中市略阳县为例[J]. 西北地质,2023,56(3):239-249. doi: 10.12401/j.nwg.2023084JIA J,MAO Y M,MENG X J,et al. Comparison of landslide susceptibility evaluation by deep random forest and random forest model:A case study of Lueyang County,Hanzhong City[J]. Northwestern Geology,2023,56(3):239-249. (in Chinese with English abstract doi: 10.12401/j.nwg.2023084 [15] YANG Z Q,XU C,SHAO X Y,et al. Landslide susceptibility mapping based on CNN-3D algorithm with attention module embedded[J]. Bulletin of Engineering Geology and the Environment,2022,81(10):412. doi: 10.1007/s10064-022-02889-4 [16] VAN NATIJNE A L,BOGAARD T A,VAN LEIJEN F J,et al. World-wide InSAR sensitivity index for landslide deformation tracking[J]. International Journal of Applied Earth Observation and Geoinformation,2022,111:102829. doi: 10.1016/j.jag.2022.102829 [17] ZHOU C,CAO Y,HU X,et al. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area[J]. Landslides,2022,19(7):1585-1597. doi: 10.1007/s10346-021-01796-1 [18] CHEN L,MA P F,YU C,et al. Landslide susceptibility assessment in multiple urban slope settings with a landslide inventory augmented by InSAR techniques[J]. Engineering Geology,2023,327:107342. doi: 10.1016/j.enggeo.2023.107342 [19] DAI K R,CHEN C,SHI X L,et al. Dynamic landslides susceptibility evaluation in Baihetan Dam area during extensive impoundment by integrating geological model and InSAR observations[J]. International Journal of Applied Earth Observation and Geoinformation,2023,116:103157. doi: 10.1016/j.jag.2022.103157 [20] 高秉海,何毅,张立峰,等. 顾及InSAR形变的CNN滑坡易发性动态评估:以刘家峡水库区域为例[J]. 岩石力学与工程学报,2023,42(2):450-465.GAO B H,HE Y,ZHANG L F,et al. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation:A case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):450-465. (in Chinese with English abstract [21] 曾韬睿,邬礼扬,金必晶,等. 基于stacking集成策略和SBAS-InSAR的滑坡动态易发性制图[J]. 岩石力学与工程学报,2023,42(9):2266-2282.ZENG T R,WU L Y,JIN B J,et al. Landslide dynamic susceptibility mapping based on stacking ensemble strategy and SBAS-InSAR[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2266-2282. (in Chinese with English abstract [22] WEI Y D,QIU H J,LIU Z J,et al. Refined and dynamic susceptibility assessment of landslides using InSAR and machine learning models[J]. Geoscience Frontiers,2024,15(6):101890. doi: 10.1016/j.gsf.2024.101890 [23] 杨寅,包红军,彭涛. 台风“鲇鱼”强降水引发的地质灾害气象风险预警检验与分析[J]. 暴雨灾害,2019,38(3):221-228.YANG Y,BAO H J,PENG T. Verification and analysis of meteorological early warning of geological hazards during precipitation of Typhoon “MEGI”[J]. Torrential Rain and Disasters,2019,38(3):221-228. (in Chinese with English abstract [24] SARA F,SILVIA B,SANDRO M. Landslide inventory updating by means of persistent scatterer interferometry (PSI):The setta basin (Italy) case study[J]. Geomatics,Natural Hazards and Risk,2015,6(5/6/7):419-438. [25] 黄发明,吴敦筱,常志璐,等. 滑坡样本缺失下易发性规律和潜在滑坡识别的易发性:InSAR多源信息法[J]. 岩石力学与工程学报,2025,44(3):584-601. doi: 10.3724/1000-6915.jrme.2024.0449HUANG F M,WU D X,CHANG Z L,et al. Landslide susceptibility law under the absence of landslide sample and the susceptibility:InSAR multi-source information method considering the potential landslide identification[J]. Chinese Journal of Rock Mechanics and Engineering,2025,44(3):584-601. (in Chinese with English abstract doi: 10.3724/1000-6915.jrme.2024.0449 [26] HUNGR O,LEROUEIL S,PICARELLI L. The Varnes classification of landslide types,an update[J]. Landslides,2014,11(2):167-194. doi: 10.1007/s10346-013-0436-y [27] 张迎宾,徐佩依,林剑锋,等. 基于BP神经网络的九寨沟地区地震滑坡危险性预测研究[J]. 工程地质学报,2024,32(1):133-145.ZHANG Y B,XU P Y,LIN J F,et al. Earthquake-triggered landslide susceptibility prediction in Jiuzhaigou based on BP neural network[J]. Journal of Engineering Geology,2024,32(1):133-145. (in Chinese with English abstract [28] 赵久彬,刘元雪,刘娜,等. 海量监测数据下分布式BP神经网络区域滑坡空间预测方法[J]. 岩土力学,2019,40(7):2866-2872.ZHAO J B,LIU Y X,LIU N,et al. Spatial prediction method of regional landslide based on distributed BP neural network algorithm under massive monitoring data[J]. Rock and Soil Mechanics,2019,40(7):2866-2872. (in Chinese with English abstract [29] 黄发明,曾诗怡,姚池,等. 滑坡易发性预测建模的不确定性:不同“非滑坡样本”选择方式的影响[J]. 工程科学与技术,2024,56(1):169-182.HUANG F M,ZENG S Y,YAO C,et al. Uncertainties of landslide susceptibility prediction modeling:Influence of different selection methods of "non-landslide samples"[J]. Advanced Engineering Sciences,2024,56(1):169-182. (in Chinese with English abstract [30] KE C Y,HE S,QIN Y G. Comparison of natural breaks method and frequency ratio dividing attribute intervals for landslide susceptibility mapping[J]. Bulletin of Engineering Geology and the Environment,2023,82(10):384. doi: 10.1007/s10064-023-03392-0 [31] 缪海波,王功辉. 风振影响下乔木坡地暴雨型浅层滑坡演化机制[J]. 地质科技通报,2022,41(2):60-70.MIAO H B,WANG G H. Evolution mechanism of rainstorm-induced shallow landslides on slopes covered by arbors considering the influence of wind-induced vibration[J]. Bulletin of Geological Science and Technology,2022,41(2):60-70. (in Chinese with English abstract [32] CUI Y L,YANG L,XU C,et al. Spatial distribution of shallow landslides caused by Typhoon Lekima in 2019 in Zhejiang Province,China[J]. Journal of Mountain Science,2024,21(5):1564-1580. doi: 10.1007/s11629-023-8377-y [33] 黄发明,胡松雁,闫学涯,等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报,2022,41(2):79-90.HUANG F M,HU S Y,YAN X Y,et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):79-90. (in Chinese with English abstract [34] CHEN X L,LIU C G,CHANG Z F,et al. The relationship between the slope angle and the landslide size derived from limit equilibrium simulations[J]. Geomorphology,2016,253:547-550. doi: 10.1016/j.geomorph.2015.01.036 [35] 姜建伟,赵法锁,祝俊华,等. 陕西省吴起县斜坡几何形态与地质灾害相关性研究[J]. 灾害学,2018,33(2):188-192. doi: 10.3969/j.issn.1000-811X.2018.02.033JIANG J W,ZHAO F S,ZHU J H,et al. Study on the correlation between slope geometrical morphology and geological disasters in Wuqi County of Shaanxi Province[J]. Journal of Catastrophology,2018,33(2):188-192. (in Chinese with English abstract doi: 10.3969/j.issn.1000-811X.2018.02.033 [36] CAPITANI M,RIBOLINI A,BINI M. The slope aspect:A predisposing factor for landsliding?[J]. Comptes Rendus Geoscience,2013,345(11/12):427-438. [37] WANG F W,CHEN Y,PENG X L,et al. The fault-controlled Chengtian landslide triggered by rainfall on 20 May 2021 in Songyang County,Zhejiang Province,China[J]. Landslides,2022,19(7):1751-1765. doi: 10.1007/s10346-022-01891-x [38] FU Z J,WANG F W,DOU J,et al. Enhanced absence sampling technique for data-driven landslide susceptibility mapping:A case study in Songyang County,China[J]. Remote Sensing,2023,15(13):3345. doi: 10.3390/rs15133345 [39] ROHAN T,SHELEF E,MIRUS B,et al. Prolonged influence of urbanization on landslide susceptibility[J]. Landslides,2023,20(7):1433-1447. doi: 10.1007/s10346-023-02050-6 [40] LI G R,LEI Y L,YAO H J,et al. The influence of land urbanization on landslides:An empirical estimation based on Chinese provincial panel data[J]. Science of the Total Environment,2017,595:681-690. doi: 10.1016/j.scitotenv.2017.03.258 -