Organic matter as an indicator of groundwater calcium enrichment in paleo-channel area along middle reaches of Yangtze River
-
摘要:
地下水作为饮用水的重要来源,水中钙含量异常会危害人体生长发育,引发一系列与人体健康相关的疾病。现有研究多聚焦于大气CO2参与的无机碳酸平衡过程对钙循环的调控,忽视了有机碳库的重要作用,且不同组分的有机质与钙相互作用的微观机理仍不清楚。以长江中游故道区为研究区,对采集的地下水样品进行了水化学、主成分分析、三维荧光光谱平行因子分析和荧光光谱区域积分,研究发现地下水中钙的浓度为111~213 mg/L,其分布呈空间异质性,集中分布于故道区的河曲和牛轭湖等处。并且,钙浓度较高的地下水中具有较高的有机质含量,两者空间分布具有相似性。研究区地下水中有机质包括类蛋白质(组分C1)、微生物源和陆源类腐殖质(组分C2和C3)3种主要组分。随着地下水中钙浓度升高,类蛋白组分含量逐渐减少,类腐殖质组分增多。长江中游故道区埋藏的丰富有机质所形成的强还原环境有利于有机质中类蛋白组分的降解,这一过程可促进含钙矿物的溶解,是地下水中钙富集的重要控制过程。研究查明了地下水中钙的空间分布特征和赋存环境,刻画了不同钙含量地下水中有机质组成差异,揭示了有机质对钙迁移富集的作用机理。
Abstract:Objective As an important source of drinking water, abnormal calcium (Ca) concentrations in groundwater could endanger human growth and lead to health risks. Previous research has primarily focused on how inorganic carbonate equilibrium processes involving atmospheric CO2 regulate groundwater Ca cycling. However, the important role of the organic carbon pool has been overlooked, and the microscopic mechanisms underlying the interactions between different components of organic matter (OM) and Ca remain elusive.
Methods This study took the paleo-channel area along the middle reaches of the Yangtze River as the study area. Groundwater samples were analyzed using hydrochemical analysis, principal component analysis, parallel factor analysis (PARAFAC) of fluorescence excitation-emission matrix (EEM) spectroscopy, and fluorescence excitation-emission matrix regional integration.
Results The results demonstrated that groundwater Ca concentrations exhibited significant spatial heterogeneity, ranging from 111 to 213 mg/L, mainly concentrated in the meanders and oxbow lakes of the paleo-channel region. Greater OM content was observed in the groundwater with elevated Ca concentration, and the two exhibited similar spatial distribution patterns. In the study area, the EEM-PARAFAC model identified three major components in groundwater, including protein-like components (C1), microbial and terrestrial humic components (C2 and C3).
Conclusion With the increase of Ca concentration in groundwater, the content of protein-like components decreased while that of the humic-like components increased. Notably, the abundant organic matter buried in the paleo-channel area provides a strong reducing environment that favors the degradation of protein-like organic matter. This process promotes the dissolution of Ca-bearing minerals, which contributes to the groundwater Ca enrichment. This research investigated the heterogeneous spatial distribution and occurrence environments of Ca in groundwater, characterized differences in organic matter composition among groundwater with different Ca concentrations, and revealed the mechanisms by which organic matter influenced the migration and enrichment of Ca in groundwater.
-
图 5 不同钙浓度地下水中有机质三维荧光对比图
区域Ⅰ. 酪氨酸类蛋白质,Ex=200~250 nm;Em=280~330 nm;区域Ⅱ. 色氨酸类蛋白质,Ex=200~250 nm;Em=330~380 nm;区域Ⅲ. 类富里酸,Ex=200~250 nm;Em=380~550 nm;区域Ⅳ. 溶解性微生物代谢产物,Ex=250~340 nm;Em=280~380 nm;区域Ⅴ. 类腐殖酸,Ex=250~400 nm;Em=380~550 nm
Figure 5. Comparison of EEM fluorescence characteristics of organic matter in groundwater with different Ca concentrations
表 1 研究区地下水主要水化学参数
Table 1. Major hydrochemical parameters of groundwater in the study area
参数 pH Eh/mV K+ Ca2+ Na+ Mg2+ Cl− NO3− SO42− HCO3− NH4+ Fe2+ DOC ρB/(mg·L−1) 最小值 6.83 −143 1.28 111 7.18 17.5 2.48 2.54 1.38 306 0.03 0.01 3.16 最大值 7.39 33.0 5.85 213 41.5 53.1 29.6 38.4 50.7 942 25.0 39.8 13.1 平均值 7.15 −92.5 3.42 155 17.3 35.9 11.8 6.00 9.82 614 4.50 6.85 6.55 中位值 7.18 −97.8 3.56 153 15.3 34.9 8.84 4.84 2.88 601 2.43 3.98 5.85 表 2 研究区地下水水化学指标的因子贡献率
Table 2. Factor contribution rates of groundwater hydrochemical parameters in study area
指标 主因子方差 主成分PC1 主成分PC2 主成分PC3 Ca2+ 0.89 0.79 0.17 −0.48 Mg2+ 0.95 0.88 0.37 −0.20 HCO3− 0.93 0.93 0.18 −0.20 DOC 0.82 0.80 0.42 −0.09 NH4+ 0.92 0.51 0.26 0.77 Fe2+ 0.60 0.50 0.07 0.59 K+ 0.52 0.65 0.24 0.19 Na+ 0.92 −0.28 0.91 −0.12 Cl− 0.70 −0.47 0.67 0.18 NO3− 0.76 −0.56 0.66 −0.09 SO42− 0.77 −0.76 0.44 −0.02 贡献率/% 45.7 21.9 12.3 累计贡献率/% 45.7 67.6 79.8 注:加粗表示显著载荷 表 3 研究区地下水中有机质的3个荧光组分特征
Table 3. Characteristics of three fluorescent components of organic matter in groundwater in study area
组分 Ex/Em/nm 本研究中DOM组分描述 以往研究中DOM组分描述 C1 220(275)/306 酪氨酸类蛋白 C3:220(280)/352[39] C3:240(280)/344[35] C3:220(280)/352[40] B峰:270-280/300-310[41] C2 235(310)/426 微生物源类腐殖质 C1:240(320)/404[39] C2:240(320)/400[35] C3:250(320)/434[42] C3 255(345)/472 陆源类腐殖质 C2:290(360)/485[42] C3:270(370)/470[43] C1:260(340)/470[44] -
[1] KUANG X X, LIU J G, SCANLON B R, et al. The changing nature of groundwater in the global water cycle[J]. Science, 2024, 383(6686): eadf0630. doi: 10.1126/science.adf0630 [2] WANG Y X, YUAN S H, SHI J B, et al. Groundwater quality and health: Making the invisible visible[J]. Environmental Science & Technology, 2023, 57(13): 5125-5136. [3] XIE X J, SHI J B, PI K F, et al. Groundwater quality and public health[J]. Annual Review of Environment and Resources, 2023, 48: 395-418. doi: 10.1146/annurev-environ-112321-114701 [4] MISSTEAR B, VARGAS C R, LAPWORTH D, et al. A global perspective on assessing groundwater quality[J]. Hydrogeology Journal, 2023, 31(1): 11-14. doi: 10.1007/s10040-022-02461-0 [5] WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 2895-2933. [6] YANG Y J, DENG Y M, WANG Y X. Major geogenic factors controlling geographical clustering of urolithiasis in China[J]. Science of the Total Environment, 2016, 571: 1164-1171. doi: 10.1016/j.scitotenv.2016.07.117 [7] CORMICK G, BELIZÁN J M. Calcium intake and health[J]. Nutrients, 2019, 11(7): 1606. doi: 10.3390/nu11071606 [8] WANG Y X, WANG Q R, DENG Y M, et al. Assessment of the impact of geogenic and climatic factors on global risk of urinary stone disease[J]. Science of the Total Environment, 2020, 721: 137769. doi: 10.1016/j.scitotenv.2020.137769 [9] 刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59(23): 2229-2239. doi: 10.1360/N972013-00037LIU Z H. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59(23): 2229-2239. (in Chinese with English abstract doi: 10.1360/N972013-00037 [10] LI J X, DEPAOLO D J, WANG Y X, et al. Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system[J]. Journal of Hydrology, 2018, 559: 523-533. doi: 10.1016/j.jhydrol.2018.02.039 [11] LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172. doi: 10.1016/j.earscirev.2010.03.001 [12] MENG L Z, XUE J Y, ZHAO C, et al. N-containing dissolved organic matter promotes dissolved inorganic carbon supersaturation in the Yangtze River, China[J]. Water Research, 2023, 247: 120808. doi: 10.1016/j.watres.2023.120808 [13] LERMAN A, MACKENZIE F T. CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle[J]. Aquatic Geochemistry, 2005, 11(4): 345-390. doi: 10.1007/s10498-005-8620-x [14] 陈崇瑛, 刘再华. 喀斯特地表水生生态系统生物碳泵的碳汇和水环境改善效应[J]. 科学通报, 2017, 62(30): 3440-3450. doi: 10.1360/N972017-00298CHEN C Y, LIU Z H. The role of biological carbon pump in the carbon sink and water environment improvement in karst surface aquatic ecosystems[J]. Chinese Science Bulletin, 2017, 62(30): 3440-3450. (in Chinese with English abstract doi: 10.1360/N972017-00298 [15] WUDDIVIRA M N, CAMPS-ROACH G. Effects of organic matter and calcium on soil structural stability[J]. European Journal of Soil Science, 2007, 58(3): 722-727. doi: 10.1111/j.1365-2389.2006.00861.x [16] KLOSTER N, BRIGANTE M, ZANINI G, et al. Aggregation kinetics of humic acids in the presence of calcium ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427: 76-82. doi: 10.1016/j.colsurfa.2013.03.030 [17] WENG L P, KOOPAL L K, HIEMSTRA T, et al. Interactions of calcium and fulvic acid at the goethite-water interface[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 325-339. doi: 10.1016/j.gca.2004.07.002 [18] ROWLEY M C, GRAND S, VERRECCHIA É P. Calcium-mediated stabilisation of soil organic carbon[J]. Biogeochemistry, 2018, 137(1): 27-49. doi: 10.1007/s10533-017-0410-1 [19] RUIZ F, BARRETO M S C, RUMPEL C, et al. Adsorption and thermal stability of dissolved organic matter on Ca- and Mg-exchanged montmorillonite: Implications for persistence in soils and sediments[J]. Chemical Geology, 2024, 643: 121813. doi: 10.1016/j.chemgeo.2023.121813 [20] FANTLE M S, TIPPER E T. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy[J]. Earth-Science Reviews, 2014, 129: 148-177. doi: 10.1016/j.earscirev.2013.10.004 [21] 贾铁飞, 王峰, 袁世飞. 长江中游沿江牛轭湖沉积及其环境意义: 以长江荆江段天鹅洲、中洲子为例[J]. 地理研究, 2015, 34(5): 861-871.JIA T F, WANG F, YUAN S F. Oxbow lake sedimentary characteristics and their environmental significance in Tianezhou and Zhongzhouzi lakes in the middle Yangtze River[J]. Geographical Research, 2015, 34(5): 861-871. (in Chinese with English abstract [22] YANG Y J, DENG Y M, XIE X J, et al. Multiple isotope approach elucidates the calcium enrichment of groundwater in the central Yangtze River Basin[J]. Applied Geochemistry, 2024, 166: 105979. doi: 10.1016/j.apgeochem.2024.105979 [23] 喻静, 裴洪军, 汪丙国. 江汉平原双层结构包气带渗透系数不确定性对氨氮运移的影响[J]. 地质科技通报, 2025, 44(6): 249-258.YU J, PEI H J, WANG B G. Influence of saturated hydraulic conductivity uncertainty on ammonium-nitrogen transport in the double-layer vadose zone of the Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2025, 44(6): 249-258. (in Chinese with English abstract [24] LIU Z H, LI Q, SUN H L, et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1/2): 207-223. doi: 10.1016/j.jhydrol.2007.01.034 [25] 韩鹏, 甘义群, 杜尧, 等. 洪湖地下水排泄及其携带营养盐通量量化的方法学研究[J]. 地质科技通报, 2025, 44(1): 285-297. doi: 10.19509/j.cnki.dzkq.tb20230463HAN P, GAN Y Q, DU Y, et al. A methodological study on the quantification of lacustrine groundwater discharge and nutrient fluxes to Honghu Lake[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 285-297. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230463 [26] 罗义鹏, 邓娅敏, 杜尧, 等. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学, 2022, 47(2): 662-673.LUO Y P, DENG Y M, DU Y, et al. Occurrence and formation of high iodine groundwater inoxbows of the middle reach of the Yangtze River[J]. Earth Science, 2022, 47(2): 662-673. (in Chinese with English abstract [27] DU Y, DENG Y M, MA T, et al. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems[J]. Science of the Total Environment, 2018, 645: 1159-1171. doi: 10.1016/j.scitotenv.2018.07.173 [28] 高杰, 郭静, 蔡爱民, 等. 长江中游河湖−地下水交互带地下水中氮素的时空分布特征及控制因素[J]. 地质科技通报, 2025, 44(5): 247-256. doi: 10.19509/j.cnki.dzkq.tb20240595GAO J, GUO J, CAI A M, et al. Spatial-temporal distribution characteristics and driving factors of nitrogen in groundwater of river-lake-groundwater interaction zone along middle reaches of the Yangtze River[J]. Bulletin of Geological Science and Technology, 2025, 44(5): 247-256. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20240595 [29] MAIE N, PARISH K J, WATANABE A, et al. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4491-4506. doi: 10.1016/j.gca.2006.06.1554 [30] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002 [31] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746. doi: 10.1021/es0155276 [32] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. doi: 10.1021/es034354c [33] 王帅, 任宇, 郭红, 等. 河南黄河改道区浅层地下水化学特征与主控污染源解析[J]. 环境科学, 2024, 45(2): 792-801. doi: 10.13227/j.hjkx.202303263WANG S, REN Y, GUO H, et al. Chemical characteristics of shallow groundwater in the Yellow River diversion area of Henan Province and identification of main control pollution sources[J]. Environmental Science, 2024, 45(2): 792-801. (in Chinese with English abstract doi: 10.13227/j.hjkx.202303263 [34] YANG Y J, YUAN X F, DENG Y M, et al. Seasonal dynamics of dissolved organic matter in high arsenic shallow groundwater systems[J]. Journal of Hydrology, 2020, 589: 125120. doi: 10.1016/j.jhydrol.2020.125120 [35] KULKARNI H V, MLADENOV N, JOHANNESSON K H, et al. Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility[J]. Applied Geochemistry, 2017, 77: 194-205. doi: 10.1016/j.apgeochem.2016.06.002 [36] CHEN J, LEBOEUF E J, DAI S, et al. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere, 2003, 50(5): 639-647. doi: 10.1016/S0045-6535(02)00616-1 [37] GUÉGUEN C, BURNS D C, MCDONALD A, et al. Structural and optical characterization of dissolved organic matter from the lower Athabasca River, Canada[J]. Chemosphere, 2012, 87(8): 932-937. doi: 10.1016/j.chemosphere.2012.01.047 [38] CARSTEA E M, BAKER A, BIEROZA M, et al. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching[J]. Water Research, 2014, 61: 152-161. doi: 10.1016/j.watres.2014.05.013 [39] WEI Z M, WANG X Q, ZHAO X Y, et al. Fluorescence characteristics of molecular weight fractions of dissolved organic matter derived from composts[J]. International Biodeterioration & Biodegradation, 2016, 113: 187-194. doi: 10.1016/j.ibiod.2016.03.010 [40] MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry, 2008, 108(1/2): 40-58. doi: 10.1016/j.marchem.2007.10.003 [41] SUN Q Y, WANG C, WANG P F, et al. Absorption and fluorescence characteristics of chromophoric dissolved organic matter in the Yangtze estuary[J]. Environmental Science and Pollution Research, 2014, 21(5): 3460-3473. doi: 10.1007/s11356-013-2287-4 [42] WANG X W, LIU Z Q, XIONG K N, et al. Soil organic carbon distribution and its response to soil erosion based on EEM-PARAFAC and stable carbon isotope, a field study in the rocky desertification control of South China karst[J]. International Journal of Environmental Research and Public Health, 2022, 19(6): 3210. doi: 10.3390/ijerph19063210 [43] QUANG V L, KIM H C, MAQBOOL T, et al. Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances[J]. Chemosphere, 2016, 165: 126-133. doi: 10.1016/j.chemosphere.2016.09.029 [44] CHEN M L, PRICE R M, YAMASHITA Y, et al. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics[J]. Applied Geochemistry, 2010, 25(6): 872-880. doi: 10.1016/j.apgeochem.2010.03.005 [45] AUDETTE Y, SMITH D S, PARSONS C T, et al. Phosphorus binding to soil organic matter via ternary complexes with calcium[J]. Chemosphere, 2020, 260: 127624. doi: 10.1016/j.chemosphere.2020.127624 [46] XUE S G, ZHANG Y F, JIANG J, et al. Effect of calcium ions on the interaction of alkaline minerals with dissolved organic matter: Implications for organic carbon sequestration in bauxite residue[J]. Plant and Soil, 2024, 497(1): 79-91. [47] 吕书丛, 焦茹媛, 王芳, 等. 长江下游河−湖系统溶解性有机碳化学组成、变化特征及其与二氧化碳分压的关系[J]. 环境科学学报, 2018, 38(5): 2034-2044. doi: 10.13671/j.hjkxxb.2018.0001LV S C, JIAO R Y, WANG F, et al. Characteristics and chemical compositions of DOC linking to the partial pressure of carbon dioxide in the lake-river systems of lower Changjiang River basin[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 2034-2044. (in Chinese with English abstract doi: 10.13671/j.hjkxxb.2018.0001 -
下载:
