留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散裂隙网络的多期邻近地下洞库水封安全评价

王敬奎 陈源 张彬 刘康能 彭益 孙哲 王金昌 彭振华

王敬奎,陈源,张彬,等. 基于离散裂隙网络的多期邻近地下洞库水封安全评价[J]. 地质科技通报,2026,45(2):1-14 doi: 10.19509/j.cnki.dzkq.tb20240486
引用本文: 王敬奎,陈源,张彬,等. 基于离散裂隙网络的多期邻近地下洞库水封安全评价[J]. 地质科技通报,2026,45(2):1-14 doi: 10.19509/j.cnki.dzkq.tb20240486
WANG Jingkui,CHEN Yuan,ZHANG Bin,et al. Water seal safety evaluation of multi-period adjacent underground caverns based on discrete fracture network[J]. Bulletin of Geological Science and Technology,2026,45(2):1-14 doi: 10.19509/j.cnki.dzkq.tb20240486
Citation: WANG Jingkui,CHEN Yuan,ZHANG Bin,et al. Water seal safety evaluation of multi-period adjacent underground caverns based on discrete fracture network[J]. Bulletin of Geological Science and Technology,2026,45(2):1-14 doi: 10.19509/j.cnki.dzkq.tb20240486

基于离散裂隙网络的多期邻近地下洞库水封安全评价

doi: 10.19509/j.cnki.dzkq.tb20240486
基金项目: 国家自然科学基金项目(41972300);中海油石化工程有限公司科研课题(KJFZ-3-2022FB-01);基于新型电力系统下抽蓄电站规划布局及电力市场需求研究(Z422302039)
详细信息
    作者简介:

    王敬奎:E-mail:wangjk@cnooc.com.cn

    通讯作者:

    E-mail:sc_zhb@cugb.edu.cn

Water seal safety evaluation of multi-period adjacent underground caverns based on discrete fracture network

More Information
  • 摘要:

    我国很多大型地下洞库都采用多期建设的方法,而扩建地下洞库可能会对邻近运营的同类洞库渗流场产生一定影响,导致油气外泄等一系列安全事故,因此保障扩建后的水封安全至关重要。以某大型地下洞库扩建项目为依托,分析库区地质条件和裂隙分布特征,考虑连通两期洞库的节理密集带,基于现场水文试验成果,反演裂隙等效开度,并基于离散裂缝网络(DFN)建立两期地下洞库简化模型,研究了扩建地下洞库的水封安全,同时进行了扩建地下洞库对运营洞库水封安全影响因素的研究。研究表明:本项目扩建洞库对运营洞库的水封安全没有影响,但节理密集带会严重影响扩建洞库的水封安全;且通过对扩建洞库对邻近运营洞库水封安全影响因素的研究,确定了洞库最小安全间距为200 m,垂直水幕压力和水平水幕压力设置为0.4 MPa时,可以保障扩建洞库与运营洞库的水封安全。因此,对于大型地下洞库扩建项目,节理密集带是影响水封安全的关键因素,确保最小安全间距和适当水幕压力设置,能有效保障扩建洞库与运营洞库的安全性。研究成果为大型地下洞库扩建工程可能遇到的水封安全问题提出了理论依据。

     

  • 图 1  地下水水位标高统计图

    Figure 1.  Groundwater level

    图 2  各随机种子模型侧窗面密度变化

    Figure 2.  Variation of side window density of each random seed model

    图 3  二维随机裂隙网络模型示意图

    Figure 3.  Schematic diagram of two-dimensional random fracture network model

    图 4  岩体裂隙等效开度反演计算结果

    Figure 4.  Inversion calculation results of equivalent aperture of rock fracture

    图 5  地下水封洞库裂隙网络模型示意图

    Figure 5.  Schematic diagram of fracture network model of underground water sealed oil storage

    图 6  全开挖水平测线裂隙水压力

    Figure 6.  Water pressure of full excavation horizontal line

    图 7  地下水位监测图

    Figure 7.  Groundwater level monitoring map

    图 8  不同间距下水平测线裂隙水压力

    a. 两期洞库间距50 m;b. 两期洞库间距100 m;c. 两期洞库间距150 m;d. 两期洞库间距200 m

    Figure 8.  Water pressure of horizontal fracture line under different spacing

    图 9  不同间距下各洞室上方地下水位变化

    Figure 9.  Changes of groundwater level above each cavern under different spacing

    图 10  不同垂直水幕压力下水平测线裂隙水压力

    Figure 10.  Fissure water pressure of horizontal survey line under different vertical water curtain pressure

    图 11  不同垂直水幕压力下各洞室上方地下水位变化

    Figure 11.  Changes of groundwater level above each cavern under different vertical water curtain pressures

    图 12  不同水平水幕压力下水平测线裂隙水压力

    Figure 12.  Fissure water pressure of horizontal survey line under different horizontal water curtain pressure

    图 13  不同水平水幕压力下各洞室上方地下水位变化

    Figure 13.  Changes of groundwater level above each cavern under different horizontal water curtain pressures

    表  1  各组节理统计频数分布

    Table  1.   Statistical frequency distribution of each group of joints

    参数名节理1节理2节理3节理4
    倾向/(°)范围SW200°~SW290°SE100°~SW190°SE230°~SW280°SE230°~SW280°
    期望μ238140252126
    标准差δ17.620.512.214.6
    倾角/(°)范围50~9050~9050~9050~90
    期望μ71687265
    标准差δ8.38.19.216.2
    迹长/m范围55~7055~7055~7055~70
    期望μ55705570
    标准差δ9.3712.169.3711.25
    线密度(条/m)0.050.060.190.14
    下载: 导出CSV

    表  2  岩石物理力学参数和裂隙参数

    Table  2.   Rock Physical and Mechanical Parameters

    岩石物理力学参数取值裂隙参数取值
    密度/(kg/m3)2620法向刚度/(GPa/m)0.95
    体积模量/GPa21切向刚度/(GPa/m)0.7
    剪切模量/GPa10.81抗拉强度/MPa2.52
    抗压强度/MPa91.84粘聚力/MPa0.13
    抗拉强度/MPa5.63摩擦角/(°)45.7
    粘聚力/MPa16.33
    摩擦角/(°)57.85
    下载: 导出CSV

    表  3  各组节理等效开度取值

    Table  3.   Value table of equivalent opening of joints in each group

    节理编号水力开度/mm
    最大节理时最小节理时法向应力为0时
    J130.010.43
    J230.010.43
    J330.011.18
    J430.011.18
    下载: 导出CSV
  • [1] 柴军瑞, 仵彦卿. 岩体多重裂隙网络渗流模型研究[J]. 煤田地质与勘探, 2000, 28(2): 33-36.

    CHAI J R, WU Y Q. On seepage model for rock mass of multi-level fracture network[J]. Coal Geology & Exploration, 2000, 28(2): 33-36. (in Chinese with English abstract
    [2] 王者超, 张彬, 乔丽苹, 等. 中国地下水封储存理论与关键技术研究进展[J]. 油气储运, 2022, 41(9): 995-1003. doi: 10.6047/j.issn.1000-8241.2022.09.001

    WANG Z C, ZHANG B, QIAO L P, et al. Research progress on theories and key technologies of underground water-sealed storage in China[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 995-1003. (in Chinese with English abstract doi: 10.6047/j.issn.1000-8241.2022.09.001
    [3] 张彬, 石磊, 杨森, 等. 新建地下水封油库对附近运行油库水封可靠性影响研究[J]. 工程地质学报, 2016, 24(5): 815-822. doi: 10.13544/j.cnki.jeg.2016.05.011

    ZHANG B, SHI L, YANG S, et al. Minimum separation distance between existing and newly constructing underground water-sealed oil storages[J]. Journal of Engineering Geology, 2016, 24(5): 815-822. (in Chinese with English abstract doi: 10.13544/j.cnki.jeg.2016.05.011
    [4] 冯树荣, 蒋中明, 张金龙, 等. 地下水封石油洞库水封准则研究[J]. 岩土工程学报, 2014, 36(5): 886-891. doi: 10.11779/CJGE201405011

    FENG S R, JIANG Z M, ZHANG J L, et al. Water sealing criteria for underground oil storage in unlined rock caverns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 886-891. (in Chinese with English abstract doi: 10.11779/CJGE201405011
    [5] ÅBERG B. Prevention of gas leakage from unlined reservoirs in rock[M]. Amsterdam: Elsevier, 1978: 399-413.
    [6] GOODALL D C, ÅBERG B, BREKKE T L. Fundamentals of gas containment in unlined rock caverns[J]. Rock Mechanics and Rock Engineering, 1988, 21(4): 235-258. doi: 10.1007/BF01020278
    [7] SUH J K, CHUNG H S, KIM C W. Study on the condition of preventing gas leakage from the unlined rock cavern[C]//Anon. Proceedings of the International Symposium on Large Rock Caverns. [S. 1. ]: [s. n. ], 1986: 725-736.
    [8] 王者超, 李术才, 乔丽苹, 等. 大型地下石油洞库自然水封性应力–渗流耦合分析[J]. 岩土工程学报, 2013, 35(8): 1535-1543.

    WANG Z C, LI S C, QIAO L P, et al. Assessment of natural containment properties of an underground crude oil storage cavern using fluid flow-stress coupling method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1535-1543. (in Chinese with English abstract
    [9] 张振刚, 谭忠盛, 万姜林, 等. 水封式LPG地下储库渗流场三维分析[J]. 岩土工程学报, 2003, 25(3): 331-335.

    ZHANG Z G, TAN Z S, WAN J L, et al. Three-dimensional seepage analysis of underground LPG storage with water curtain[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 331-335. (in Chinese with English abstract
    [10] 谭忠盛, 万姜林, 张振刚. 地下水封式液化石油气储藏洞库修建技术[J]. 土木工程学报, 2006, 39(6): 88-93. doi: 10.3321/j.issn:1000-131X.2006.06.016

    TAN Z S, WAN J L, ZHANG Z G. Construction technology of underground water-seal liquefied petroleum gas storage[J]. China Civil Engineering Journal, 2006, 39(6): 88-93. (in Chinese with English abstract doi: 10.3321/j.issn:1000-131X.2006.06.016
    [11] 李术才, 平洋, 王者超, 等. 基于离散介质流固耦合理论的地下石油洞库水封性和稳定性评价[J]. 岩石力学与工程学报, 2012, 31(11): 2161-2170.

    LI S C, PING Y, WANG Z C, et al. Assessments of containment and stability of underground crude oil storage caverns based on fluid-solid coupling theory for discrete medium[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2161-2170. (in Chinese with English abstract
    [12] 王者超, 李术才, 梁建毅, 等. 地下水封石油洞库渗水量预测与统计[J]. 岩土工程学报, 2014, 36(8): 1490-1497. doi: 10.11779/CJGE201408015

    WANG Z C, LI S C, LIANG J Y, et al. Prediction and measurement of groundwater flow rate of underground crude oil storage caverns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1490-1497. (in Chinese with English abstract doi: 10.11779/CJGE201408015
    [13] 荆少东, 许国辉, 吴尚彬, 等. 基于三维精细化数值模型的地下油库水封安全评价[J]. 地质科技通报, 2023, 42(6): 1-11. doi: 10.19509/j.cnki.dzkq.tb20220097

    JING S D, XU G H, WU S B, et al. Assessment of the water-sealed safety of underground crude oil storage based on a three-dimensional refined numerical model[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 1-11. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220097
    [14] SHI L, ZHANG B, WANG L, et al. Functional efficiency assessment of the water curtain system in an underground water-sealed oil storage cavern based on time-series monitoring data[J]. Engineering Geology, 2018, 239: 79-95. doi: 10.1016/j.enggeo.2018.03.015
    [15] 彭振华, 乔丽苹, 黄安达, 等. 基于地下水化学特征的水封油库水幕系统有效性评价[J]. 水文地质工程地质, 2024, 51(3): 34-42. doi: 10.16030/j.cnki.issn.1000-3665.202305049

    PENG Z H, QIAO L P, HUANG A D, et al. Evaluation of water curtain system effectiveness for underground crude oil storage caverns based on hydrogeochemical characteristics[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 34-42. (in Chinese with English abstract doi: 10.16030/j.cnki.issn.1000-3665.202305049
    [16] 刘乾灵, 张彬, 李玉涛, 等. MICP技术在地下水封油库渗控注浆中的应用潜力[J]. 工程地质学报, 2024, 32(4): 1412-1423. doi: 10.13544/j.cnki.jeg.2021-0824

    LIU Q L, ZHANG B, LI Y T, et al. Application potential of micp in seepage control grouting of underground water-sealed oil storage cavern[J]. Journal of Engineering Geology, 2024, 32(4): 1412-1423. (in Chinese with English abstract doi: 10.13544/j.cnki.jeg.2021-0824
    [17] 蒋中明, 肖喆臻, 唐栋, 等. 基于裂隙渗流效应的水封油库涌水量预测分析[J]. 岩土力学, 2022, 43(4): 1041-1047. doi: 10.16285/j.rsm.2021.1217

    JIANG Z M, XIAO Z Z, TANG D, et al. Prediction of water inflow in water-sealed oil storage caverns based on fracture seepage effect[J]. Rock and Soil Mechanics, 2022, 43(4): 1041-1047. (in Chinese with English abstract doi: 10.16285/j.rsm.2021.1217
    [18] ZHANG B, SHI L, YU X, et al. Assessing the water-sealed safety of an operating underground crude oil storage adjacent to a new similar cavern: A case study in China[J]. Engineering Geology, 2019, 249: 257-272. doi: 10.1016/j.enggeo.2019.01.008
    [19] 李玉涛, 张彬, 石磊, 等. 垂直水幕作用下扩建地下水封油库布局方式研究[J]. 隧道建设(中英文), 2019, 39(8): 1308-1318. doi: 10.3973/j.issn.2096-4498.2019.08.012

    LI Y T, ZHANG B, SHI L, et al. Enlargement layout of underground water-sealed oil storage cavern with vertical water curtain system[J]. Tunnel Construction, 2019, 39(8): 1308-1318. (in Chinese with English abstract doi: 10.3973/j.issn.2096-4498.2019.08.012
    [20] 张彬, 李玉涛, 石磊, 等. 海岛环境下地下水封油库海水入侵数值模拟研究[J]. 工程地质学报, 2018, 26(5): 1366-1374.

    ZHANG B, LI Y T, SHI L, et al. Numerical simulation of seawater intrusion in underground oil storage cavern in island environment[J]. Journal of Engineering Geology, 2018, 26(5): 1366-1374. (in Chinese with English abstract
    [21] 彭振华, 张彬, 李玉涛, 等. 海岛地下水封洞库围岩稳定性及水封可靠性研究[J]. 地下空间与工程学报, 2020, 16(6): 1875-1881.

    PENG Z H, ZHANG B, LI Y T, et al. Study on surrounding rock stability and water-sealed reliability of underground crude oil storage cavern in island[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1875-1881. (in Chinese with English abstract
    [22] 孙哲, 张彬, 陈大伟, 等. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. doi: 10.13745/j.esf.sf.2022.12.54

    SUN Z, ZHANG B, CHEN D W, et al. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation[J]. Earth Science Frontiers, 2023, 30(3): 465-475. (in Chinese with English abstract doi: 10.13745/j.esf.sf.2022.12.54
    [23] YU C, DENG S C, LI H B, et al. The anisotropic seepage analysis of water-sealed underground oil storage caverns[J]. Tunnelling and Underground Space Technology, 2013, 38: 26-37. doi: 10.1016/j.tust.2013.05.003
    [24] 李术才, 张立, 马秀媛, 等. 大型地下水封石油洞库渗流场时空演化特征研究[J]. 岩土力学, 2013, 34(7): 1979-1986.

    LI S C, ZHANG L, MA X Y, et al. Space-time evolution behaviour of seepage field around a large underground petroleum storage caverns with groundwater curtaining[J]. Rock and Soil Mechanics, 2013, 34(7): 1979-1986. (in Chinese with English abstract
    [25] WANG Z C, LI S C, QIAO L P. Design and test aspects of a water curtain system for underground oil storage caverns in China[J]. Tunnelling and Underground Space Technology, 2015, 48: 20-34. doi: 10.1016/j.tust.2015.01.009
    [26] 张奇华, 李玉婕, 袁东, 等. 地下水封洞库水幕孔注水试验及岩体等效渗透参数分析[J]. 岩土力学, 2015, 36(9): 2648-2658. doi: 10.16285/j.rsm.2015.09.027

    ZHANG Q H, LI Y J, YUAN D, et al. Water injection test about water curtain borehole for underground water-sealed cavern and analysis of rock equivalent permeability parameter[J]. Rock and Soil Mechanics, 2015, 36(9): 2648-2658. (in Chinese with English abstract doi: 10.16285/j.rsm.2015.09.027
    [27] 吴越. 地下水封油库围岩优势渗流通道辨识方法及应用[D]. 北京: 中国地质大学(北京), 2018.

    WU Y. The identification method and application of advantage seepage channel in surrounding rock of underground oil storage caverns[D]. Beijing: China University of Geosciences(Beijing), 2018. (in Chinese with English abstract
    [28] 程锦波, 夏露, 于青春. 基于三维裂隙网络模拟和单孔压水试验的裂隙张开度确定方法[J]. 地质科技通报, 2024, 43(4): 262-272. doi: 10.19509/j.cnki.dzkq.tb20230128

    CHENG J B, XIA L, YU Q C. Determination method of fracture aperture based on three-dimensional fracture network simulation and water injection tests[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 262-272. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230128
    [29] 董晓飞, 胡成, 曹孟雄, 等. 裂隙介质渗透性的升尺度转换研究[J]. 地质科技通报, 2023, 42(4): 259-267. doi: 10.19509/j.cnki.dzkq.tb20230023

    DONG X F, HU C, CAO M X, et al. Study on the upscaling transformation of hydraulic conductivity in fractured media[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 259-267. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230023
    [30] 李露露, 李牧阳, 周志超, 等. 基于统计均质区方法的裂隙几何及渗流特性评价[J]. 地质科技通报, 2023, 42(4): 288-298.

    LI L L, LI M Y, ZHOU Z C, et al. Assessment of fractures geometries and seepage characteristics based on statistical homogeneous zone method[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 288-298. (in Chinese with English abstract
    [31] SNOW D T. A parallel plate model of fractured permeable media[D]. San Francisco: University of California, Berkeley, 1965.
    [32] BEAR J. Dynamics of fluids in porous media[M]. NEW YORK: Elsevier, 1972.
    [33] BAGHBANAN A, JING L R. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 704-719. doi: 10.1016/j.ijrmms.2006.11.001
    [34] 冯军伟. 地下水封油库裂隙围岩渗流等效性研究[D]. 北京: 中国地质大学(北京), 2018.

    FENG J W. Study on the seepage equivalent of fractures surrounding rock in underground water seal reservoir[D]. Beijing: China University of Geosciences, 2018. (in Chinese with English abstract
    [35] 刘海军. 基于蒙特卡罗法的岩体裂隙网络模型及渗透张量的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    LIU H J. Studies on discrete fracture network modeling based on Monte-Carlo and permeability tensor of rock masses[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese with English abstract
    [36] 陈剑平. 岩体随机不连续面三维网络数值模拟技术[J]. 岩土工程学报, 2001, 23(4): 397-402.

    CHEN J P. 3-D net work numerical modeling technique for random discontinuities of rock mass[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 397-402. (in Chinese with English abstract
    [37] 贾洪彪, 马淑芝, 唐辉明, 等. 岩体结构面网络三维模拟的工程应用研究[J]. 岩石力学与工程学报, 2002, 21(7): 976-979. doi: 10.3321/j.issn:1000-6915.2002.07.008

    JIA H B, MA S Z, TANG H M, et al. Study on engineering application of 3-D modeling of rock discontinuity network[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 976-979. (in Chinese with English abstract doi: 10.3321/j.issn:1000-6915.2002.07.008
    [38] 张超. 大型地下水封油库水幕系统作用机理与优化研究[D]. 北京: 中国地质大学(北京), 2016.

    ZHANG C. Study of mechanism and optimization setting about large underground water oil storage’s water curtain system[D]. Beijing: China University of Geosciences, 2016. (in Chinese with English abstract
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  33
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 录用日期:  2025-01-02
  • 修回日期:  2024-12-29
  • 网络出版日期:  2025-12-18

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部