-
摘要:
地球深部探测是一项多学科、复杂的工作,旨在了解大陆及其边缘的结构、动态和演变。研究地球内部并深入了解地球的运作方式,关乎全世界社会的共同利益。开展地球深部探测半个世纪以来,全球多个国家开展了一系列战略计划,在技术方法取得显著突破的同时积累了丰富的经验和成果,对于我国深地探测具有重要借鉴意义。通过整理21世纪以来美国、欧洲、澳大利亚等国家和地区代表性的地球深部探测相关计划最新进展,对其所采用的研究技术手段和取得成果进行分析,把握地球深部探测国际动态。总结出地震层析成像与地球深部结构探测,大地电磁与矿产资源勘查,全球导航卫星系统监测地球运动和状态变化,地球表面和深部动力学过程耦合作用,先进数据处理、分析与建模能力,数据开放共享与交流6个地球深部探测前沿及重点发展方向,以期为我国“SinoProbe-Ⅱ”深部探测计划、“Earth CT”国际合作研究计划以及地球深部探测和矿产资源勘查国家科技重大专项等相关研究提供信息支撑和参考。
Abstract:Significance Deep Earth exploration is a multidisciplinary scientific endeavor aimed at uncovering the structure, dynamics, and evolution of continents and their margins. Understanding of the Earth’s interior is crucial for advancing scientific knowledge and comprehending the fundamental processes that shape our planet. Over the past half-century, many countries worldwide have implemented various deep Earth exploration programs, accumulating valuable experience and achieving significant breakthroughs in technology and methods. These advancements provide important references for deep Earth exploration in China.
Progress This paper analyzes the technical approaches and achievements of representative deep Earth exploration programs in the United States, Europe, and Australia since the 21st century, summarizing the latest progress of these programs.
Conclusions and Prospects Six frontiers and key potential directions of deep Earth exploration are summarized, including seismic tomography for deep Earth structure detection, magnetotellurics for mineral resource exploration, GNSS monitoring for Earth's motion and state changes, coupled surface-to-deep Earth processes, advanced data processing, analysis and modeling capabilities, and open data sharing. These are expected to provide informational support and references for the “SinoProbe-II” deep exploration program, the “Earth CT” international cooperative research program, and the National Science and Technology Major Projects focused on deep Earth and mineral resources exploration in China.
-
图 2 地壳强度占岩石圈总强度的百分比[11-12](A)和欧洲下方层析地震成像表现出上地幔的异质性[12] (B)
A. 深蓝色代表以地幔岩石圈为主,红色和黄色代表以地壳岩石圈为主(“奶油布丁”模型)。绿色和浅蓝色区域表示岩石圈分层,地壳和上地幔岩石圈都有较强流变性的地层(“果冻三明治”模型)。B. 蓝色和红色分别对应于地震P波速度高于和低于标准参考速度模型的区域。剖面图显示了欧洲汇聚区内下行板块的典型模式,其上覆盖着地震速度较低的岩石圈,与高热流区和地热能勘探潜力高的区域相对应。平面图显示欧洲总体地形以高地(包括阿尔卑斯山、亚平宁山脉、喀尔巴阡山脉、比利牛斯山脉和安纳托利亚高原)为特征,不仅在汇聚区,还是在板块内部(如伊比利亚和斯堪的纳维亚半岛南部)也是如此。
Figure 2. Percentage to total lithospheric strength due to the crust (A) and tomographic cross-sections for the upper mantle below Europe, illustrating heterogeneity in the upper mantle (B)
图 3 澳大利亚AuScope计划“向下观测望远镜”概念框架[13]
Figure 3. Conceptual framework of AuScope's downward looking telescope (DLT)
图 4 显示裸露的太古宙地壳、推断的克拉通边界和其他具有厚岩石圈块体分布的世界地图[30](标注了正文中涉及到的部分克拉通和厚岩石圈边缘大型矿床位置及其类型)
Figure 4. Schematic world map showing distribution of exposed Archean crust, inferred craton boundaries and other blocks with thick lithosphere.
表 1 中美地球深部探测工作对比[4]
Table 1. Comparison of deep earth exploration in China and the United States
国家 地震探测 大地电磁
观测网络科学钻探 地球化学
探测探测
精度实验
数据量科研管理
模式资金
投入社会效益 美国 探测剖面和观测网络
已基本覆盖全美大陆尚未覆盖整
个美国大陆起步较早,钻孔数量较多,钻
取岩心较长,钻探深度较浅尚未建立
观测网较高 较多 拥有专门实验观测与
数据管理机构较多 设立相关专项,
科普力度较大、
延伸范围较广中国 探测剖面长度较短,尚未
布设全国规模的观测网络已覆盖全国大陆 起步较晚,钻孔数量较少,钻
取岩心较短,钻探深度较深已建立地球
化学基准网较低 较少 尚未设立专门的
实验观测机构较少 尚未设立相关
专项,社会效益
相对较弱 -
[1] 董树文,李廷栋,高锐,等. 地球深部探测国际发展与我国现状综述[J]. 地质学报,2010,84(6):743-770.DONG S W,LI T D,GAO R,et al. International progress in probing the earth's lithosphere and deep interior:A review[J]. Acta Geologica Sinica,2010,84(6):743-770. (in Chinese with English abstract [2] 董树文,李廷栋,陈宣华,等. 我国深部探测技术与实验研究进展综述[J]. 地球物理学报,2012,55(12):3884-3901.DONG S W,LI T D,CHEN X H,et al. Review on the progress of deep exploration technology and experimental research in China[J]. Chinese Journal of Geophysics,2012,55(12):3884-3901. (in Chinese with English abstract [3] 王光文,卢占武,李文辉,等. 深地震反射剖面探测技术发展现状[J]. 地球与行星物理论评(中英文),2023,54(2):120-139.WANG G W,LU Z W,LI W H,et al. Development status of deep seismic reflection profile detection technology[J]. Reviews of Geophysics and Planetary Physics,2023,54(2):120-139. (in Chinese with English abstract [4] 贾凌霄,马冰,田黔宁,等. 中美地球深部探测工作进展与对比[J]. 地质通报,2020,39(4):582-597. doi: 10.12097/j.issn.1671-2552.2020.04.016JIA L X,MA B,TIAN Q N,et al. Progress and comparative study of deep earth exploration in China and the United States[J]. Geological Bulletin of China,2020,39(4):582-597. (in Chinese with English abstract doi: 10.12097/j.issn.1671-2552.2020.04.016 [5] 谢和平,张茹,邓建辉,等. 基于“深地–地表” 联动的深地科学与地灾防控技术体系初探[J]. 工程科学与技术,2021,53(4):1-12.XIE H P,ZHANG R,DENG J H,et al. A preliminary study on the technical system of deep earth science and geo disaster prevention-control based on the "deep earth–surface" linkage strategy[J]. Advanced Engineering Sciences,2021,53(4):1-12. (in Chinese with English abstract [6] COUNCIL N R. Review of EarthScope integrated science[M]. Washington,D C :National Academy Press,2001. [7] EarthScope. Earthscope-program-2003-2018 [EB/OL]. (2019-12-30) [2024-10-12]. https://www.earthscope-program-2003-2018.org/research/maps.html. [8] EarthScope Consortium. EarthScope Program (2003-2018) [EB/OL]. (2019-01-01) [2024-08-14]. https://ds.iris.edu/ds/nodes/dmc/earthscope/. [9] CLOETINGH S,STERNAI P,KOPTEV A,et al. Coupled surface to deep earth processes:Perspectives from TOPO-EUROPE with an emphasis on climate- and energy-related societal challenges[J]. Global and Planetary Change,2023,226:104140. doi: 10.1016/j.gloplacha.2023.104140 [10] GROUP T W,CLOETINGH S. TOPO-EUROPE:From the deep earth to the surface of continental Europe and its margins[M]//Anon. Encyclopedia of Solid Earth Geophysics. Cham:Springer International Publishing,2020:1-9. [11] TESAURO M,KABAN M,P L CLOETINGH S. How rigid is Europe's lithosphere?[J]. Geophysical Research Letters,2009,36(16):L16303. doi: 10.1029/2009GL039229. [12] CLOETINGH S. Gold medal lecture given at the academia europaea building bridges conference 2022:Bottom-up probing earth system:A Journey in Deep Time and Space[J]. European Review,2023,31(4):328-355. doi: 10.1017/S106279872300008X [13] AuScope. Building Australia's downward looking Telescope [EB/OL]. (2021-06-22) [2024-08-14]. https://www.auscope.org.au/posts/building-australias-downward-looking-telescope. [14] HEAP A,ANASTASI K,CZARNOTA K. Second phase of the exploring for the future program (2020-2024)[Z]. Canberra:Geoscience Australia,2024. [15] CZARNOTA K,SCHODDE R,Upton D. Precompetitive geoscience for minerals discovery[Z]. Canberra:Geoscience Australia,2023. [16] 侯贺晟,王成善,张交东,等. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质,2018,45(4):641-657.HOU H S,WANG C S,ZHANG J D,et al. Deep continental scientific drilling engineering in Songliao Basin:Progress in earth science research[J]. Geology in China,2018,45(4):641-657. (in Chinese with English abstract [17] 中华人民共和国自然资源部. 关于发布深地国家科技重大专项2024年度公开项目申报指南的通知 [EB/OL]. (2024-08-30) [2024-10-12]. https://service.most.gov.cn/kjjh_tztg_all/20240801/5550.html.Ministry of Natural Resources,People's Republic of China. Notice on issuing guidelines for 2024 public project application for deep-earth national science and technology major projects[EB/OL]. (2023-12-22) [2024-4-11]. https://service.most.gov.cn/kjjh_tztg_all/20240801/5550.html.(in Chinese) [18] PORTER R,REID M. Mapping the thermal lithosphere and melting across the continental US[J]. Geophysical Research Letters,2021,48(7):e2020GL092197. doi: 10.1029/2020GL092197 [19] 徐义贤,郑建平,杨晓志,等. 岩石圈中部不连续面的成因及其动力学意义[J]. 科学通报,2019,64(22):2305-2315. doi: 10.1360/N972019-00161XU Y X,ZHENG J P,YANG X Z,et al. The origins and geodynamic implications of mid-lithospheric discontinuities[J]. Chinese Science Bulletin,2019,64(22):2305-2315. (in Chinese with English abstract doi: 10.1360/N972019-00161 [20] 张文文,张永谦,黄跃鹏,等. 地震背景噪声成像技术研究进展与展望[J]. 地球物理学进展,2022,37(1):125-141.ZHANG W W,ZHANG Y Q,HUANG Y P,et al. Research progress and prospect of seismic ambient noise tomography[J]. Progress in Geophysics,2022,37(1):125-141. (in Chinese with English abstract [21] PETRESCU L,BORLEANU F,KÄSTLE E,et al. Seismic structure of the Eastern European crust and upper mantle from probabilistic ambient noise tomography[J]. Gondwana Research,2024,125:390-405. doi: 10.1016/j.gr.2023.08.022 [22] HEJRANI B,HASSAN R,GORBATOV A,et al. Ambient noise tomography of Australia:Application to AusArray deployment[Z]. Canberra:Geoscience Australia,2020. [23] EarthScope. Top 10 EarthScope discoveries [EB/OL]. (2019-01-01) [2024-08-14]. https://www.earthscope-program-2003-2018.org/top_10_discoveries.html. [24] TKALVCIĆ H,PHẠM T S,WANG S. The Earth's coda correlation wavefield:Rise of the new paradigm and recent advances[J]. Earth Science Reviews,2020,208:103285. doi: 10.1016/j.earscirev.2020.103285 [25] WASZEK L,IRVING J,PHẠM T S,et al. Seismic insights into earth's core[J]. Nature Communications,2023,14(1):6029. doi: 10.1038/s41467-023-41725-5 [26] COMEAU M J,BECKEN M,KUVSHINOV A V. Imaging the whole-lithosphere architecture of a mineral system:Geophysical signatures of the sources and pathways of ore-forming fluids[J]. Geochemistry,Geophysics,Geosystems,2022,23(8):e2022GC010379. [27] DUAN J. Lithospheric resistivity structures and mineral prospectivity from AusLAMP data in northern Australia[M]//Anon. 3rd Australasian Exploration Geoscience Conference (AEGC),2022. [28] KIRKBY A,CZARNOTA K,HUSTON D L,et al. Lithospheric conductors reveal source regions of convergent margin mineral systems[J]. Scientific Reports,2022,12(1):8190. doi: 10.1038/s41598-022-11921-2 [29] MANASSERO M C,ÖZAYDIN S,AFONSO J C,et al. Lithospheric structure and melting processes in southeast Australia:New constraints from joint probabilistic inversions of 3D magnetotelluric and seismic data[J]. Journal of Geophysical/ Research (Solid Earth),2024,129(3):e2023JB028257. [30] GROVES D I,SANTOSH M. Craton and thick lithosphere margins:The sites of giant mineral deposits and mineral provinces[J]. Gondwana Research,2021,100:195-222. doi: 10.1016/j.gr.2020.06.008 [31] 朱日祥,孙卫东. 大地幔楔与克拉通破坏型金矿[J]. 中国科学(地球科学),2021,51(9):1444-1456. doi: 10.1360/SSTe-2020-0305ZHU R X,SUN W D. The big mantle wedge and decratonic gold deposits[J]. Scientia Sinica (Terrae),2021,51(9):1444-1456. (in Chinese with English abstract doi: 10.1360/SSTe-2020-0305 [32] HOGGARD M J,CZARNOTA K,RICHARDS F D,et al. Global distribution of sediment-hosted metals controlled by craton edge stability[J]. Nature Geoscience,2020,13:504-510. doi: 10.1038/s41561-020-0593-2 [33] PUEL S,BECKER T W,VILLA U,et al. Volcanic arc rigidity variations illuminated by coseismic deformation of the 2011 Tohoku-Oki M9[J]. Science Advances,2024,10(23):eadl4264. doi: 10.1126/sciadv.adl4264 [34] NASA. NASA's work on NISAR's antenna reflector nears completion [EB/OL]. (2024-07-29) [2024-08-14]. https://nisar.jpl.nasa.gov/news/119/nasas-work-on-nisars-antenna-reflector-nears-completion/. [35] 田黔宁,张炜,王海华,等. 能源转型背景下不可忽视的新能源:天然氢[J]. 中国地质调查,2022,9(1):1-15.TIAN Q N,ZHANG W,WANG H H,et al. Non-negligible new energy in the energy transition context:Natural hydrogen[J]. Geological Survey of China,2022,9(1):1-15. (in Chinese with English abstract [36] 郑建平,夏冰,平先权,等. 岩石探针和地震探测手段约束华北深部地壳结构组成及演化[J]. 科学通报,2021,66(23):3018-3031. doi: 10.1360/TB-2020-1204ZHENG J P,XIA B,PING X Q,et al. Rock probes and seismic methods to constrain the structure,composition and evolution of the deep crust beneath North China Block[J]. Chinese Science Bulletin,2021,66(23):3018-3031. (in Chinese with English abstract doi: 10.1360/TB-2020-1204 [37] 王超,渠淼,喻慧阳. 地球物质科学的基本原理:固体地球科学中的热力学研究历史与展望[J]. 地质科技通报,2024,43(4):191-204.WANG C,QU M,YU H Y. Principle of Earth materials:A historical perspective of thermodynamics of the Earth[J]. Bulletin of Geological Science and Technology,2024,43(4):191-204. (in Chinese with English abstract [38] BAUER P,DUEBEN P D,HOEFLER T,et al. The digital revolution of earth-system science[J]. Nature Computational Science,2021,1(2):104-113. doi: 10.1038/s43588-021-00023-0 [39] 王方,熊杰,田慧潇,等. 基于深度学习的大地电磁二维反演方法[J]. 地质科技通报,2024,43(2):344-354.WANG F,XIONG J,TIAN H X,et al. Two-dimensional magnetotelluric inversion method based on deep learning[J]. Bulletin of Geological Science and Technology,2024,43(2):344-354. (in Chinese with English abstract [40] LI X,CHENG G D,WANG L X,et al. Boosting geoscience data sharing in China[J]. Nature Geoscience,2021,14:541-542. doi: 10.1038/s41561-021-00808-y [41] WILKINSON M D,DUMONTIER M,I JSBRAND JAN ALBERSBERG I,et al. The FAIR guiding principles for scientific data management and stewardship[J]. Scientific Data,2016,3(1):160018. doi: 10.1038/sdata.2016.18 [42] LIN D W,CRABTREE J,DILLO I,et al. The TRUST principles for digital repositories[J]. Scientific Data,2020,7(1):144. doi: 10.1038/s41597-020-0486-7 -