留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2驱替对致密砂岩孔隙结构的影响:以鄂尔多斯盆地三叠系延长组长7段为例

吴小斌 强小龙 张晓燕 李刚 解强旺 王伟

吴小斌,强小龙,张晓燕,等. CO2驱替对致密砂岩孔隙结构的影响:以鄂尔多斯盆地三叠系延长组长7段为例[J]. 地质科技通报,2026,45(2):1-9 doi: 10.19509/j.cnki.dzkq.tb20240452
引用本文: 吴小斌,强小龙,张晓燕,等. CO2驱替对致密砂岩孔隙结构的影响:以鄂尔多斯盆地三叠系延长组长7段为例[J]. 地质科技通报,2026,45(2):1-9 doi: 10.19509/j.cnki.dzkq.tb20240452
WU Xiaobin,QIANG Xiaolong,ZHANG Xiaoyan,et al. The effect of CO2 displacement on the pore structure of tight sandstones: a case study of the Chang7 member of the Yanchang formation of the Triassic in the Ordos Basin[J]. Bulletin of Geological Science and Technology,2026,45(2):1-9 doi: 10.19509/j.cnki.dzkq.tb20240452
Citation: WU Xiaobin,QIANG Xiaolong,ZHANG Xiaoyan,et al. The effect of CO2 displacement on the pore structure of tight sandstones: a case study of the Chang7 member of the Yanchang formation of the Triassic in the Ordos Basin[J]. Bulletin of Geological Science and Technology,2026,45(2):1-9 doi: 10.19509/j.cnki.dzkq.tb20240452

CO2驱替对致密砂岩孔隙结构的影响:以鄂尔多斯盆地三叠系延长组长7段为例

doi: 10.19509/j.cnki.dzkq.tb20240452
基金项目: 国家自然科学基金项目(42362023); 陕西省教育厅青年创新团队项目(24JP217; 22RCYPJB0103); 榆林市青年科技新星项目(2024-KJZG-QNXX-007); 陕西省科技厅项目(2025JC-YBQN-456; 2025JC-YBMS-452); 中国科学院洁净能源创新研究院-榆林学院联合基金项目(YLU-DNL Fund 2022012)
详细信息
    作者简介:

    吴小斌:E-mail:wxblcq@163.com

    通讯作者:

    E-mail:283465227@qq.com

The effect of CO2 displacement on the pore structure of tight sandstones: a case study of the Chang7 member of the Yanchang formation of the Triassic in the Ordos Basin

More Information
  • 摘要:

    CO2驱替是提高致密油藏采收率的重要方法。CO2注入地层与原位矿物发生反应,改变岩石的孔隙结构。但致密砂岩成岩作用复杂,需要明确不同填隙物特征的致密砂岩在CO2驱替过程中的微观结构变化机制。利用CO2驱替、铸体薄片、扫描电镜、核磁共振、X衍射等方法,研究CO2驱替前后致密砂岩矿物成分和孔隙结构的变化。结果表明,致密填隙物复杂多样,以黏土矿物和碳酸盐为主,不同填隙物分布差异明显。填隙物会影响致密砂岩的矿物结构和孔隙形态。CO2驱替后致密砂岩孔隙度增加0.55%、渗透率增加率为21.5%、相对分选系数仅减少0.01,表明CO2驱替会增加储集层的孔隙度和渗透率,但对孔隙结构非均质性影响微弱。CO2驱替过程中长石和碳酸盐被溶蚀,生成石英和黏土矿物沉淀。在黏土含量高的致密砂岩中,CO2溶蚀作用分散,新沉淀的矿物和从骨架颗粒剥落的黏土会堵塞孔隙,物性变化幅度小。在方解石含量高的致密砂岩中,碳酸会溶蚀大量方解石,形成新的储集空间和流动路径,显著改善致密砂岩物性。因此,CO2驱替对不同填隙物特征致密砂岩的孔隙结构影响不同,CO2驱替对碳酸盐含量高致密砂岩的物性增加明显好于黏土含量高致密砂岩。研究成果可为致密砂岩油藏开发评价提供了新的思路。

     

  • 图 1  CO2驱替实验示意图

    Figure 1.  Schematic diagram of the CO2 flooding apparatus

    图 2  致密砂岩微观特征

    a. 样品X1,压实作用强烈,矿物颗粒镶嵌状接触;b. 样品X5,溶蚀孔隙发育;c. 样品X3,高岭石填充孔隙;d. 样品X7,方解石镶嵌状填充孔隙

    Figure 2.  Microscopic characteristics of the tight sandstone samples

    图 3  长7段致密砂岩样品孔隙度与渗透率相关性

    Figure 3.  The Permeability versus porosity in the Chang7 tight sandstone samples

    图 4  CO2驱替前后T2谱分布曲线比较

    Figure 4.  Comparisons of T2 distribution curves before and after CO2 flooding

    图 5  致密砂岩溶蚀率与矿物含量关系

    Figure 5.  Relationship between dissolution rates and mineral contents of the tight sandstone

    图 6  CO2驱替前后T2谱孔隙结构参数变化(T2gm. T2谱的振幅加权平均值)

    Figure 6.  Changes in T2 spectrum pore structure parameters before and after CO2 flooding

    图 7  物性增量与黏土含量关系

    Figure 7.  Relationships between clay contents and physical property increments

    图 8  CO2驱替前后矿物含量变化

    Figure 8.  Changes in mineral content before and after CO2 flooding

    图 9  CO2驱替前后致密矿岩矿物变化示意图

    a. CO2驱替前黏土矿物分布;b. CO2驱替后形成的矿物填充孔隙;c. CO2驱替前方解石充填孔隙;d. CO2驱替后方解石溶蚀形成新的孔隙

    Figure 9.  Schematic diagram of mineral changes in tight sandstone before and ater CO2 flooding

    图 10  物性增量与易溶矿物含量关系

    Figure 10.  Relationships between soluble mineral content and physical property increments

    表  1  长7段致密砂岩矿物组成

    Table  1.   Mineral Composition of Chang 7 Member tight sandstone

    样品 干重/g 孔隙度/% 渗透率/
    10−3 μm2
    钠长石 钾长石 石英 黏土 方解石
    wB/%
    X1 59.64 8.32 0.24 30.6 7.3 38.6 18.2 5.3
    X2 58.93 9.62 0.32 32.2 6.3 37.2 17.1 7.2
    X3 59.12 9.45 0.23 27.1 7.6 38.3 19.6 7.4
    X4 57.36 10.33 0.32 28.2 8.1 33.2 17.7 12.8
    X5 58.88 11.52 0.31 27.1 7.8 33.4 15.2 16.5
    X6 59.13 8.20 0.31 25.4 7.2 34.6 12.6 20.2
    X7 58.31 9.15 0.25 26.1 9.6 34.5 13.7 16.1
    X8 58.67 7.82 0.18 26.3 5.7 32.6 14.1 21.3
    下载: 导出CSV

    表  2  CO2驱替后致密砂岩物性变化

    Table  2.   Petrophysical properties changes of Chang 7 member tight sandstone after CO2 flooding

    样品 干重/g 孔隙
    度/%
    渗透率/
    10−3μm
    溶蚀
    率/%
    孔隙度
    增量/%
    渗透率
    增加率/%
    X1 58.89 8.75 0.28 1.25 0.43 15.6
    X2 58.09 9.98 0.36 1.42 0.36 13.2
    X3 58.31 9.71 0.27 1.37 0.26 16.1
    X4 56.48 10.86 0.38 1.53 0.53 18.6
    X5 57.91 12.11 0.39 1.64 0.59 24.5
    X6 58.11 8.87 0.39 1.72 0.67 28.3
    X7 57.07 9.97 0.32 2.13 0.82 29.8
    X8 57.78 8.53 0.23 1.51 0.71 26.2
    下载: 导出CSV
  • [1] GHANIZADEH A, CLARKSON C R, AQUINO S, et al. Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: II. Geomechanical property estimation[J]. Fuel, 2015, 153: 682-691. doi: 10.1016/j.fuel.2015.02.113
    [2] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.

    JIA C Z, ZOU C N, LI J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350. (in Chinese with English abstract
    [3] 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. doi: 10.11698/PED.2015.01.02

    ZOU C N, ZHAI G M, ZHANG G Y, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. (in Chinese with English abstract doi: 10.11698/PED.2015.01.02
    [4] LI Y, XU W K, WU P, et al. Dissolution versus cementation and its role in determining tight sandstone quality: A case study from the Upper Paleozoic in northeastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103324. doi: 10.1016/j.jngse.2020.103324
    [5] WANG H T, LUN Z M, LV C Y, et al. Nuclear-magnetic-resonance study on mechanisms of oil mobilization in tight sandstone reservoir exposed to carbon dioxide[J]. SPE Journal, 2018, 23(3): 750-761. doi: 10.2118/179554-PA
    [6] 王伟, 宋渊娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30. doi: 10.19509/j.cnki.dzkq.2021.0402

    WANG W, SONG Y J, HUANG J, et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2021.0402
    [7] SOULAINE C, ROMAN S, KOVSCEK A, et al. Mineral dissolution and wormholing from a pore-scale perspective[J]. Journal of Fluid Mechanics, 2017, 827: 457-483. doi: 10.1017/jfm.2017.499
    [8] LIU B, WANG C, ZHANG J, et al. Displacement mechanism of oil in shale inorganic nanopores by supercritical carbon dioxide from molecular dynamics simulations[J]. Energy & Fuels, 2017, 31(1): 738-746.
    [9] SONG Z J, SONG Y L, LI Y Z, et al. A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China[J]. Fuel, 2020, 276: 118006. doi: 10.1016/j.fuel.2020.118006
    [10] 郑长远, 雷宏武, 崔银祥, 等. 西宁盆地南部天然CO2泄漏和浅部含水层响应[J]. 地质科技通报, 2023, 42(6): 223-232. doi: 10.19509/j.cnki.dzkq.tb20220529

    ZHENG C Y, LEI H W, CUI Y X, et al. Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 223-232. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220529
    [11] YANG L L, XU T F, YANG B, et al. Effects of mineral composition and heterogeneity on the reservoir quality evolution with CO2 intrusion[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(3): 605-618.
    [12] KAMPMAN N, BUSCH A, BERTIER P, et al. Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks[J]. Nature Communications, 2016, 7: 12268. doi: 10.1038/ncomms12268
    [13] 陈儒贤, 侯加根. 高尚堡油田高3102断块沙三2+3亚段中低渗透储层可动流体赋存特征及其影响因素[J]. 地质科技通报, 2023, 42(6): 174-186. doi: 10.19509/j.cnki.dzkq.tb20220184

    CHEN R X, HOU J G. Occurrence characteristics and influencing factors of movable fluid in the medium- and low-permeability reservoirs of the Es32+3 submember of the Gao3102 fault block in the Gaoshangpu oilfield[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 174-186. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220184
    [14] WANG Q, WANG L, GLOVER P W J, et al. Effect of a pore throat microstructure on miscible CO2 soaking alternating gas flooding of tight sandstone reservoirs[J]. Energy & Fuels, 2020, 34(8): 9450-9462.
    [15] LIN R, YU Z H, ZHAO J Z, et al. Experimental evaluation of tight sandstones reservoir flow characteristics under CO2–Brine–Rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China[J]. Fuel, 2022, 309: 122167. doi: 10.1016/j.fuel.2021.122167
    [16] AL-BAYATI D, SAEEDI A, MYERS M, et al. Insights into immiscible supercritical CO2 EOR: An XCT scanner assisted flow behaviour in layered sandstone porous media[J]. Journal of CO2 Utilization, 2019, 32: 187-195. doi: 10.1016/j.jcou.2019.04.002
    [17] 张芥瑜, 张凤奇, 刘阳, 等. 鄂尔多斯盆地WL地区延长组储层成岩作用与孔隙结构差异成因[J]. 地质科技通报, 2023, 42(6): 162-173.

    ZHANG J Y, ZHANG F Q, LIU Y, et al. Causes of reservoir diagenesis and pore structure differences of the Yanchang Formation in the WL area of the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 162-173. (in Chinese with English abstract
    [18] REN J J, YIN Z Y, LI Q P, et al. Pore-scale investigation of CH4 hydrate kinetics in clayey-silty sediments by low-field NMR[J]. Energy & Fuels, 2022, 36(24): 14874-14887.
    [19] WANG W, LI X Y, WEI Z K, et al. Effect of CO2-brine-rock interactions on the pore structure of the tight sandstone during CO2 flooding: A case study of Chang 7 Member of the Triassic Yanchang Formation in the Ordos Basin, China[J]. ACS Omega, 2023, 8(4): 3998-4009. doi: 10.1021/acsomega.2c06805
    [20] ZHAO D F, YIN D D. Effect of fluid/rock interactions on physical character of tight sandstone reservoirs during CO2 flooding[J]. Geofluids, 2021, 2021(1): 5552169.
    [21] WEI B, ZHANG X, WU R N, et al. Pore-scale monitoring of CO2 and N2 flooding processes in a tight formation under reservoir conditions using nuclear magnetic resonance (NMR): A case study[J]. Fuel, 2019, 246: 34-41. doi: 10.1016/j.fuel.2019.02.103
    [22] WEI B, ZHANG X, LIU J, et al. Adsorptive behaviors of supercritical CO2 in tight porous media and triggered chemical reactions with rock minerals during CO2-EOR and-sequestration[J]. Chemical Engineering Journal, 2020, 381: 122577. doi: 10.1016/j.cej.2019.122577
    [23] 王伟, 陈朝兵, 许爽, 等. 鄂尔多斯盆地延长组致密砂岩不同尺度孔喉分形特征及其控制因素[J]. 石油实验地质, 2022, 44(1): 33-40.

    WANG W, CHEN Z B, XU S, et al. Fractal characteristics and its controlling factors of pore-throat with different scales in tight sandstones of the Yanchang Formation in the Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 33-40. (in Chinese with English abstract
    [24] 王伟, 朱玉双, 余彩丽, 等. 鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因[J]. 天然气地球科学, 2019, 30(10): 1439-1450. doi: 10.11764/j.issn.1672-1926.2019.06.006

    WANG W, ZHU Y S, YU C L, et al. Pore size distribution of tight sandstone reservoir and their differential origin in Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(10): 1439-1450. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2019.06.006
    [25] 王伟, 许兆林, 李维振, 等. 基于高斯过程回归和高压压汞测定致密砂岩渗透率: 以鄂尔多斯盆地长7段致密砂岩为例[J]. 地质科技通报, 2022, 41(4): 30-37. doi: 10.19509/j.cnki.dzkq.2022.0117

    WANG W, XU Z L, LI W Z, et al. Determination of permeability in tight sandstone reservoirs using Gaussian process regression and high-pressure porosimetry: A case study of the Member-7 of Yanchang Formation in the Jiyuan area of the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 30-37. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2022.0117
    [26] WAN T, WANG W M, JIANG J Q, et al. Pore-scale analysis of gas huff-n-puff enhanced oil recovery and waterflooding process[J]. Fuel, 2018, 215: 561-571. doi: 10.1016/j.fuel.2017.11.033
    [27] YUAN G H, CAO Y C, JIA Z Z, et al. Selective dissolution of feldspars in the presence of carbonates: The way to generate secondary pores in buried sandstones by organic CO2[J]. Marine and Petroleum Geology, 2015, 60: 105-119. doi: 10.1016/j.marpetgeo.2014.11.001
    [28] XIAO D S, JIANG S, THUL D, et al. Impacts of clay on pore structure, storage and percolation of tight sandstones from the Songliao Basin, China: Implications for genetic classification of tight sandstone reservoirs[J]. Fuel, 2018, 211: 390-404. doi: 10.1016/j.fuel.2017.09.084
    [29] SUN Y P, WEI L N, DAI C L, et al. The carbonic acid-rock reaction in feldspar/dolomite-rich tightsand and its impact on CO2-water relative permeability during geological carbon storage[J]. Chemical Geology, 2021, 584: 120527. doi: 10.1016/j.chemgeo.2021.120527
    [30] TUTOLO B M, LUHMANN A J, KONG X Z, et al. CO2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties[J]. Geochimica et Cosmochimica Acta, 2015, 160: 132-154. doi: 10.1016/j.gca.2015.04.002
    [31] KETZER J M, IGLESIAS R, EINLOFT S, et al. Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil[J]. Applied Geochemistry, 2009, 24(5): 760-767. doi: 10.1016/j.apgeochem.2009.01.001
    [32] XU T F, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone–shale system[J]. Chemical Geology, 2005, 217(3/4): 295-318.
    [33] XU T F, APPS J A, PRUESS K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936. doi: 10.1016/j.apgeochem.2003.11.003
    [34] KUMAR Y, GHODERAO M, SARKHEL R, et al. Exploring CO2 sequestration potential as gas hydrates in clay dominated subsea system with and without surfactant[J]. Fuel, 2024, 363: 130990. doi: 10.1016/j.fuel.2024.130990
    [35] WANG W, YAN Z Y, CHEN D Y, et al. The mechanism of mineral dissolution and its impact on pore evolution of CO2 flooding in tight sandstone: A case study from the Chang 7 Member of the Triassic Yanchang Formation in the Ordos Basin, China[J]. Geoenergy Science and Engineering, 2024, 235: 212715. doi: 10.1016/j.geoen.2024.212715
    [36] CHENG Q, TANG J R, LIU Y L, et al. Pore alteration of Yanchang shale after CO2-brine-rock interaction: Influence on the integrity of caprock in CO2 geological sequestration[J]. Fuel, 2024, 363: 130952. doi: 10.1016/j.fuel.2024.130952
    [37] SHARMA S, AGRAWAL V, MCGRATH S, et al. Geochemical controls on CO2 interactions with deep subsurface shales: Implications for geologic carbon sequestration[J]. Environmental Science: Processes & Impacts, 2021, 23(9): 1278-1300.
    [38] ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal of CO2 Utilization, 2018, 28: 408-418. doi: 10.1016/j.jcou.2018.11.002
    [39] WANG W, LIANG Z Z, ZUO J, et al. The pore structure changes and CO2 migration dynamic characteristics in tight sandstone during supercritical CO2 geosequestration: A case study in the Chang 7 layer, Ordos Basin, China[J]. Fuel, 2025, 379: 133019. doi: 10.1016/j.fuel.2024.133019
    [40] PEARSON A R, HARTLAND A, FRISIA S, et al. Formation of calcite in the presence of dissolved organic matter: Partitioning, fabrics and fluorescence[J]. Chemical Geology, 2020, 539: 119492. doi: 10.1016/j.chemgeo.2020.119492
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  34
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-12-18

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部