留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于滑坡易发性优化SBAS-InSAR解译结果的方法

唐璐瑶 曾斌 袁晶晶 艾东 许汇源

唐璐瑶,曾斌,袁晶晶,等. 一种基于滑坡易发性优化SBAS-InSAR解译结果的方法[J]. 地质科技通报,2025,44(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240412
引用本文: 唐璐瑶,曾斌,袁晶晶,等. 一种基于滑坡易发性优化SBAS-InSAR解译结果的方法[J]. 地质科技通报,2025,44(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240412
TANG Luyao,ZENG Bin,YUAN Jingjing,et al. A method for optimizing SBAS-InSAR interpretation results based on landslide susceptibility[J]. Bulletin of Geological Science and Technology,2025,44(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240412
Citation: TANG Luyao,ZENG Bin,YUAN Jingjing,et al. A method for optimizing SBAS-InSAR interpretation results based on landslide susceptibility[J]. Bulletin of Geological Science and Technology,2025,44(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240412

一种基于滑坡易发性优化SBAS-InSAR解译结果的方法

doi: 10.19509/j.cnki.dzkq.tb20240412
基金项目: 湖北省地质局第七地质大队科技项目(DQKJ2022-1)
详细信息
    作者简介:

    唐璐瑶:E-mail:1063954230@qq.com

    通讯作者:

    E-mail:zengbin_19@126.com

A method for optimizing SBAS-InSAR interpretation results based on landslide susceptibility

More Information
  • 摘要:

    SBAS-InSAR解译结果具有多解性,直接利用解译的形变点识别滑坡隐患区具有较大的不确定性。为此,以清江北岸(长阳段)为研究区,提出了一种利用滑坡易发性等综合优化SBAS-InSAR解译结果的方法。首先将SBAS-InSAR解译的形变点进行聚类和异常值分析(Anselin Local Moran's I工具),保留低值聚类形变点;然后,选取高程、坡度、坡向、工程地质岩组、距断层距离、距水泵距离、距道路距离、地形湿度指数8个指标,采用信息量法评价并得到滑坡易发性分区图,利用受试者工作特征曲线(ROC)验证得到ROC曲线下面积(AUC)值为0.844,表明易发性评价结果可靠;最后,通过设置阈值(地表形变速率v≤−10 mm/a)和易发性结果对低值聚类形变点进行筛选,得到优化后的SBAS-InSAR结果图。选取部分区域进行野外验证,结果显示:优化后的形变点数量减少,其分布特征与研究区历史滑坡的发育规律更一致。此外,以渔坪村一组滑坡与偏山滑坡作为典型实例,比较SBAS-InSAR与GNSS在同一时刻监测到的地表形变量。其中渔坪村一组滑坡显示的SBAS-InSAR与GNSS在同一时刻监测到的地表形变量差值范围为0~7.87 mm,平均差值约为2.23 mm,均方根误差(RMSE)为3.67。研究证明,对SBAS-InSAR解译结果的优化方法具有较好的实用性及可靠性,可为InSAR技术应用于地质灾害领域提供有益参考。

     

  • 图 1  研究区位置

    Figure 1.  Location of the study area

    图 2  技术路线图

    Figure 2.  Technical flowchart of the paper

    图 3  SBAS-InSAR技术流程图

    Figure 3.  Technical flowchart of SBAS-InSAR

    图 4  SBAS-InSAR技术处理过程图

    a. 时空基线图;b. 干涉像对图;c. 干涉图;d.解缠图

    Figure 4.  Technical processing flowchart for SBAS-InSAR

    图 5  评价因子选取及重分类

    Figure 5.  Selection and reclassification of evaluation factors

    图 6  研究区SBAS-InSAR技术解译形变速率图

    Figure 6.  SBAS-InSAR-derived deformation velocity map of the study area

    图 7  研究区滑坡易发性评价分区图

    Figure 7.  Landslide susceptibility zoning map of the study area

    图 8  ROC曲线

    Figure 8.  ROC curve

    图 9  聚类和异常值分析结果图(LL,LH,HL,HH,No Signifiant分别为形变点类型,其含义见第2.3节)

    Figure 9.  Results of clustering and outlier analysis

    图 10  研究区沉降速率区间统计(315,0.54%分别代表形变点数目和沉降速率区间形变点数量占总形变点数量的比例)

    Figure 10.  Statistical distribution of surface subsidence rate interval in the study area

    图 11  研究区SBAS-InSAR解译结果优化图

    Figure 11.  Optimization of SBAS-InSAR interpretation results in the study area

    图 12  部分区域优化前后形变速率对比及野外调查现象(No.1~No.6为变形区域编号)

    Figure 12.  Comparison of deformation rates before and after optimization and field survey phenomena in some regions

    图 13  优化前后集镇形变速率对比

    a. 渔峡口镇形变速率(优化前);b. 渔峡口镇形变速率(优化后);c. 资丘镇形变速率(优化前);d. 资丘镇形变速率(优化后)

    Figure 13.  Comparison of deformation points in towns before and after optimization

    图 14  渔坪村一组滑坡SBAS-InSAR解译点累计形变量和GNSS监测累计形变量对比

    Figure 14.  Comparison of cumulative deformation between SBAS-InSAR interpreted points and GNSS monitoring of Yupingcun landslide

    图 15  渔坪村一组滑坡形变分析

    a. 已修复的裂缝;b. GNSS;c. 公路裂缝;d. 渔坪村一组滑坡形变速率(优化前);e. 渔坪村一组滑坡形变速率(优化后);f,g. 居民房屋墙体裂缝

    Figure 15.  Yupingcun landslide deformation analysis

    图 16  偏山滑坡SBAS-InSAR解译点累计形变量和GNSS监测累计形变量对比

    Figure 16.  6 Comparison of cumulative deformation between SBAS-InSAR interpreted points and GNSS monitoring of Pianshan landslide

    图 17  偏山滑坡形变分析

    a,b,e. 裂缝;c. 偏山滑坡形变速率(优化前;d. 偏山滑坡形变速率(优化后);f. 土体溜滑

    Figure 17.  Pianshan landslide deformation analysis

  • [1] 王立伟. 基于D-InSAR数据分析的高山峡谷区域滑坡位移识别[D]. 北京: 北京科技大学, 2015.

    WANG L W. Identification of landslide displacement in alpine valley region based on D-InSAR data analysis[D]. Beijing: University of Science and Technology Beijing, 2015. (in Chinese with English abstract
    [2] ZHANG C L, LI Z H, DING M T, et al. Dynamic deformation monitoring and scenario simulation of the Xiaomojiu landslide in the Jinsha River Basin, China[J]. Landslides, 2023, 20(11): 2343-2358. doi: 10.1007/s10346-023-02103-w
    [3] AHMAD RATHER A, BUKHARI S K. Understanding Joshimath landslide using PS interferometry and PSDS InSAR[J]. Journal of Earth System Science, 2024, 133(2): 93. doi: 10.1007/s12040-024-02312-4
    [4] ASLAN G, FOUMELIS M, RAUCOULES D, et al. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps[J]. Remote Sensing, 2020, 12(8): 1305. doi: 10.3390/rs12081305
    [5] ROY P, MARTHA T R, KHANNA K, et al. Time and path prediction of landslides using InSAR and flow model[J]. Remote Sensing of Environment, 2022, 271: 112899. doi: 10.1016/j.rse.2022.112899
    [6] SCHLÖGL M, GUTJAHR K, FUCHS S. The challenge to use multi-temporal InSAR for landslide early warning[J]. Natural Hazards, 2022, 112(3): 2913-2919. doi: 10.1007/s11069-022-05289-9
    [7] ZHANG J M, ZHU W, CHENG Y Q, et al. Landslide detection in the Linzhi–Ya'an section along the Sichuan–Tibet Railway based on InSAR and hot spot analysis methods[J]. Remote Sensing, 2021, 13(18): 3566. doi: 10.3390/rs13183566
    [8] SOLARI L, DEL SOLDATO M, MONTALTI R, et al. A sentinel-1 based hot-spot analysis: Landslide mapping in north-western Italy[J]. International Journal of Remote Sensing, 2019, 40(20): 7898-7921. doi: 10.1080/01431161.2019.1607612
    [9] 徐帅, 王尚晓, 牛瑞卿. 基于InSAR技术的三峡库区巫山−奉节段潜在滑坡识别[J]. 安全与环境工程, 2020, 27(1): 32-38.

    XU S, WANG S X, NIU R Q. Identification of the potential landslide in Wushan−Fengjie in the Three Gorges Reservoir area based on InSAR technology[J]. Safety and Environmental Engineering, 2020, 27(1): 32-38. (in Chinese with English abstract
    [10] POKHAREL B, ALVIOLI M, LIM S. Assessment of earthquake-induced landslide inventories and susceptibility maps using slope unit-based logistic regression and geospatial statistics[J]. Scientific Reports, 2021, 11: 21333. doi: 10.1038/s41598-021-00780-y
    [11] BRALET A, TROUVÉ E, CHANUSSOT J, et al. ISSLIDE: A new insar dataset for slow sliding area detection with machine learning[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1-5.
    [12] LI Z H, SHI A C, LI X R, et al. Deep learning-based landslide recognition incorporating deformation characteristics[J]. Remote Sensing, 2024, 16(6): 992. doi: 10.3390/rs16060992
    [13] YANG S, WANG Y Z, WANG P Z, et al. Automatic identification of landslides based on deep learning[J]. Applied Sciences, 2022, 12(16): 8153. doi: 10.3390/app12168153
    [14] CIGNETTI M, GODONE D, NOTTI D, et al. State of activity classification of deep-seated gravitational slope deformation at regional scale based on Sentinel-1 data[J]. Landslides, 2023, 20(12): 2529-2544. doi: 10.1007/s10346-023-02114-7
    [15] GUO H J, YI B J, YAO Q X, et al. Identification of landslides in mountainous area with the combination of SBAS-InSAR and Yolo model[J]. Sensors, 2022, 22(16): 6235. doi: 10.3390/s22166235
    [16] 董佳慧, 牛瑞卿, 亓梦茹, 等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2): 187-196.

    DONG J H, NIU R Q, QI M R, et al. Identification of geological hazards based on the combination of InSAR technology and disaster background indicators[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 187-196. (in Chinese with English abstract
    [17] LIU Z J, QIU H J, ZHU Y R, et al. Efficient identification and monitoring of landslides by time-series InSAR combining single- and multi-look phases[J]. Remote Sensing, 2022, 14(4): 1026. doi: 10.3390/rs14041026
    [18] 张端淼, 徐勇, 吴昱. 清江隔河岩库区滑坡灾害时空分布特征和主要控制因素分析[J]. 资源环境与工程, 2015, 29(4): 449-453.

    ZHANG D M, XU Y, WU Y. Analysis of spatial-temporal distribution characteristics and main control factors of landslide in Geheyan reservoir area on Qingjiang[J]. Resources Environment & Engineering, 2015, 29(4): 449-453. (in Chinese with English abstract
    [19] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. doi: 10.11947/j.AGCS.2017.20170350

    ZHU J J, LI Z W, HU J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. (in Chinese with English abstract doi: 10.11947/j.AGCS.2017.20170350
    [20] 张伟, 陈宏, 纪成亮, 等. 基于升降轨InSAR数据的高山峡谷区滑坡易发性评价[J/OL]. 地质科技通报, 2023: 1-10.(2023-11-23).

    ZHANG W, CHEN H, JI C L, et al. Landslide susceptibility assessment in the alpine and canyon areas based on ascending and descending InSAR data[J/OL]. Bulletin of Geological Science and Technology, 2023: 1-10. (2023-11-23). (in Chinese with English abstract
    [21] 杨沛璋, 崔圣华, 裴向军, 等. 基于SBAS-InSAR和光学遥感影像的大型倾倒变形体变形演化[J]. 地质科技通报, 2023, 42(6): 63-75.

    YANG P Z, CUI S H, PEI X J, et al. Deformation and evolution of large dumping bodies based on SBAS-InSAR and optical remote sensing images[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 63-75. (in Chinese with English abstract
    [22] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. doi: 10.1109/TGRS.2002.803792
    [23] RAJU A, MEHDI K. SBAS-InSAR analysis of regional ground deformation accompanying coal fires in Jharia Coalfield, India[J]. Geocarto International, 2023, 38(1): 2167004.
    [24] ZHANG H, YIN C, WANG S P, et al. Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks[J]. Natural Hazards, 2023, 116(2): 1931-1971.
    [25] 谭建民, 常宏, 韩会卿, 等. 清江流域滑坡发育地质环境特征的统计分析[J]. 华南地质与矿产, 2018, 34(4): 315-322.

    TAN J M, CHANG H, HAN H Q, et al. Statistical analysis of the geological environment characteristics of landslide development in Qingjiang River Basin[J]. Geology and Mineral Resources of South China, 2018, 34(4): 315-322. (in Chinese with English abstract
    [26] GOROKHOVICH Y, VUSTIANIUK A. Implications of slope aspect for landslide risk assessment: A case study of Hurricane Maria in Puerto Rico in 2017[J]. Geomorphology, 2021, 391: 107874. doi: 10.1016/j.geomorph.2021.107874
    [27] METEN M, PRAKASHBHANDARY N, YATABE R. Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the blue Nile gorge of central Ethiopia[J]. Geoenvironmental Disasters, 2015, 2(1): 9. doi: 10.1186/s40677-015-0016-7
    [28] CANOGLU M C, AKSOY H, ERCANOGLU M. Integrated approach for determining spatio-temporal variations in the hydrodynamic factors as a contributing parameter in landslide susceptibility assessments[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3159-3174. doi: 10.1007/s10064-018-1337-z
    [29] EHTESHAMI-MOINABADI M. Properties of fault zones and their influences on rainfall-induced landslides, examples from Alborz and Zagros ranges[J]. Environmental Earth Sciences, 2022, 81(5): 168. doi: 10.1007/s12665-022-10283-2
    [30] 邵慰慰, 杨志华, 吴瑞安, 等. 考虑滑坡活动性的金沙江上游白玉−巴塘段滑坡易发性评价[J/OL]. 地质通报, 2024: 1-14.(2024-02-26). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZQYD20240220003&dbname=CJFD&dbcode=CJFQ.

    SHAO W W, YANG Z H, WU R A, et al. Landslide susceptibility evaluation in the Baiyu−Batang section of upper Jinsha River considering landslide activity[J/OL]. Geological Bulletin of China, 2024: 1-14. (2024-02-26). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZQYD20240220003&dbname=CJFD&dbcode=CJFQ.(in Chinese with English abstract
    [31] CARRARA A. Multivariate models for landslide hazard evaluation[J]. Journal of the International Association for Mathematical Geology, 1983, 15(3): 403-426. doi: 10.1007/BF01031290
    [32] ANSELIN L. Local indicators of spatial association−LISA[J]. Geographical Analysis, 1995, 27(2): 93-115. doi: 10.1111/j.1538-4632.1995.tb00338.x
    [33] 慕凯. 基于点云DEM的元谋冲沟地形湿度指数研究[D]. 四川 南充: 西华师范大学, 2018.

    MU K. Research on topographic wetness index of Yuanmou gully based on point cloud DEM[D]. Nanchong Sichuan: China West Normal University, 2018. (in Chinese with English abstract
    [34] JALLAYU P T, SHARMA A, SINGH K. Vulnerability of highways to landslide using landslide susceptibility zonation in GIS: Mandi district, India[J]. Innovative Infrastructure Solutions, 2024, 9(9): 354. doi: 10.1007/s41062-024-01653-9
    [35] HE Y, WANG W, ZHANG L, et al. An identification method of potential landslide zones using InSAR data and landslide susceptibility[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2185120. doi: 10.1080/19475705.2023.2185120
    [36] 李媛茜, 张毅, 苏晓军, 等. 白龙江流域潜在滑坡InSAR识别与发育特征研究[J]. 遥感学报, 2021, 25(2): 677-690. doi: 10.11834/jrs.20210094

    LI Y X, ZHANG Y, SU X J, et al. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique[J]. National Remote Sensing Bulletin, 2021, 25(2): 677-690. (in Chinese with English abstract doi: 10.11834/jrs.20210094
    [37] HERRERA G, GUTIÉRREZ F, GARCÍA-DAVALILLO J C, et al. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees)[J]. Remote Sensing of Environment, 2013, 128: 31-43. doi: 10.1016/j.rse.2012.09.020
    [38] 常宏, 韩会卿, 章昱, 等. 鄂西清江流域滑坡崩塌致灾背景及成灾模式[J]. 现代地质, 2014, 28(2): 429-437. doi: 10.3969/j.issn.1000-8527.2014.02.022

    CHANG H, HAN H Q, ZHANG Y, et al. Formation background and regular pattern of avalanches and landslides of Qingjiang River Basin in western Hubei Province[J]. Geoscience, 2014, 28(2): 429-437. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8527.2014.02.022
    [39] 曾斌, 刘诗雅, 董琦, 等. 联合PS-InSAR和SBAS-InSAR的鄂西山区滑坡隐患识别: 以长阳县清江流域为例[J]. 安全与环境工程, 2024, 31(2): 202-212.

    ZENG B, LIU S Y, DONG Q, et al. Identification of landslide hazards in western Hubei mountainous area by combining PS-InSAR and SBAS-InSAR: Taking Qingjiang River Basin of Changyang County as an example[J]. Safety and Environmental Engineering, 2024, 31(2): 202-212. (in Chinese with English abstract
    [40] 付波霖, 解淑毓, 李涛, 等. 基于SBAS/PS-InSAR技术的滑坡遥感监测对比研究[J]. 大地测量与地球动力学, 2021, 41(4): 392-397.

    FU B L, XIE S Y, LI T, et al. Comparative study of landslide remote sensing monitoring based on SBAS/PS-InSAR technology[J]. Journal of Geodesy and Geodynamics, 2021, 41(4): 392-397. (in Chinese with English abstract
  • 加载中
图(17)
计量
  • 文章访问数:  169
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 录用日期:  2024-11-28
  • 修回日期:  2024-11-27
  • 网络出版日期:  2025-07-09

目录

    /

    返回文章
    返回