留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江南造山带中段七宝山钴铅锌矿床Co赋存状态及地质意义

况二龙 陈志康 周江涛 李国猛 姜宝亮 罗喜成 李艳军

况二龙,陈志康,周江涛,等. 江南造山带中段七宝山钴铅锌矿床Co赋存状态及地质意义[J]. 地质科技通报,2025,44(6):61-76 doi: 10.19509/j.cnki.dzkq.tb20240410
引用本文: 况二龙,陈志康,周江涛,等. 江南造山带中段七宝山钴铅锌矿床Co赋存状态及地质意义[J]. 地质科技通报,2025,44(6):61-76 doi: 10.19509/j.cnki.dzkq.tb20240410
KUANG Erlong,CHEN Zhikang,ZHOU Jiangtao,et al. Occurrence of cobalt and its geological significance in the Qibaoshan Co-Pb-Zn deposit, central segment of the Jiangnan orogenic belt[J]. Bulletin of Geological Science and Technology,2025,44(6):61-76 doi: 10.19509/j.cnki.dzkq.tb20240410
Citation: KUANG Erlong,CHEN Zhikang,ZHOU Jiangtao,et al. Occurrence of cobalt and its geological significance in the Qibaoshan Co-Pb-Zn deposit, central segment of the Jiangnan orogenic belt[J]. Bulletin of Geological Science and Technology,2025,44(6):61-76 doi: 10.19509/j.cnki.dzkq.tb20240410

江南造山带中段七宝山钴铅锌矿床Co赋存状态及地质意义

doi: 10.19509/j.cnki.dzkq.tb20240410
基金项目: 江西省地质局青年科技科学技术带头人培养计划(2023JXDZKJRC03);江西省地质局科技研究项目(2024JXDZKJKY02)
详细信息
    作者简介:

    况二龙:E-mail:526167758@qq.com

    通讯作者:

    E-mail: liyj@cug.edu.cn

  • 中图分类号: P618.2

Occurrence of cobalt and its geological significance in the Qibaoshan Co-Pb-Zn deposit, central segment of the Jiangnan orogenic belt

More Information
  • 摘要:

    钴(Co)是一种重要的战略性矿产,其赋存状态是当前国际矿床学研究的热点之一。七宝山钴铅锌矿床位于江南造山带中段,矿体受高岽山背斜核部次级褶皱控制、呈NE向透镜状或似层状展布。但目前该矿床钴的赋存状态研究薄弱。对不同中段矿石开展扫描电镜−能谱(SEM-EDS)和电子探针(EPMA)矿物成分分析,结果表明Co主要赋存在斜方砷钴矿、辉砷钴矿、方钴矿和硫镍(铜)钴矿等独立钴矿物中,少量以类质同象形式进入细粒黄铁矿和斜方砷镍矿晶格。斜方砷镍矿幔部常被斜方砷钴矿交代,边部被辉砷钴矿和辉砷镍矿交代;辉砷钴矿和硫镍(铜)钴矿也常沿黄铜矿边部交代。研究确定早期成矿流体砷活性较高,形成斜方砷镍矿、斜方砷钴矿和方钴矿;随着成矿流体砷活性降低,硫活性增加,晚期形成辉砷钴矿和硫镍(铜)钴矿。该矿床的钴镍矿物交代结构及组合与典型“五元素脉”型矿床具有一定的相似性。因此,七宝山矿床应为具有“五元素脉”特征的热液脉型钴矿床。

     

  • 图 1  赣西地区区域地质图[31]

    Figure 1.  Regional geological map of western Jiangxi

    图 2  七宝山钴铅锌矿区地质图(a)及7号勘探线剖面图(b)

    Figure 2.  Geological map of the Qibaoshan Co-Pb-Zn deposit (a) and cross-section of Line 7 (b)

    图 3  七宝山钴铅锌矿床矿石特征

    a. 早期石英-粗粒黄铁矿阶段,石英与粗粒黄铁矿共生;b. Co-Ni砷化物阶段原生钴矿物后期被氧化成钴华;c. 铜矿石,黄铜矿常与辉砷钴矿共生;d. 方铅矿和闪锌矿与细粒黄铁矿共生;e. 晚期石英脉含星点状方铅矿;f. 碳酸盐阶段白云石与菱铁矿共生

    Figure 3.  Characteristics of ores in the Qibaoshan Co-Pb-Zn deposit

    图 4  七宝山钴铅锌矿石镜下照片

    a. 毒砂与粗粒黄铁矿(PyⅠ)共生, 闪锌矿交代早阶段的毒砂;b. PyⅠ被细粒黄铁矿(PyⅡ)交代;c. 斜方砷钴矿呈星状结构;d. 树枝状斜方砷镍矿;e. 辉砷钴矿交代斜方砷钴矿;f. 辉砷钴矿沿黄铜矿边部交代;g. 黄铜矿、辉砷钴矿和砷黝铜矿共生;h. 黄铜矿交代硫镍(铜)钴矿;i. 闪锌矿、方铅矿和黄铜矿共生,方铅矿交代黄铜矿;PyⅠ. 粗粒黄铁矿;Apy. 毒砂;PyⅡ. 细粒黄铁矿;Ram. 斜方砷镍矿;Saf. 斜方砷钴矿;Cbt. 辉砷钴矿;Sig. 硫镍(铜)钴矿;Ccp. 黄铜矿;Td. 砷黝铜矿;Sp. 闪锌矿;Gn. 方铅矿;下同

    Figure 4.  Microscopic photographs of ores in the Qibaoshan Co-Pb-Zn deposit

    图 5  七宝山钴铅锌矿床成矿期次图

    Figure 5.  Mineralization stages of the Qibaoshan Co-Pb-Zn deposit

    图 6  七宝山钴铅锌矿床硫砷化物BSE和能谱图

    a.方铅矿交代PyⅠ;b. 斑铜矿沿黄铜矿边部交代、方铅矿再交代黄铜矿和斑铜矿;c. 斜方砷钴矿和辉砷钴矿交代PyⅠ;d. 斜方砷镍矿幔部被斜方砷钴矿和辉砷镍矿交代;e, f. 斜方砷钴矿镜下和BSE照片,显示辉砷钴矿交代斜方砷钴矿;g. 斜方砷钴矿能谱图;h. 硫镍(铜)钴矿交代黄铜矿;i. 斜方砷钴矿、方钴矿和辉砷钴矿环带交代结构;j. 辉砷钴矿能谱图;Skt. 方钴矿;Ger. 辉砷镍矿;Bn. 斑铜矿;cps. 每秒计数;Energy. 能量;下同

    Figure 6.  BSE images and energy spectra of sulfides and arsenides in the Qibaoshan Co-Pb-Zn deposit

    图 7  七宝山钴铅锌矿床硫化物相对质量分数箱线图

    Figure 7.  Box plot of osulfide relative mass fraction in the Qibaoshan Co-Pb-Zn deposit

    图 8  七宝山钴铅锌矿床(含)钴矿物质量分数箱式图

    Figure 8.  Box plot of cobalt mineral mass fraction in the Qibaoshan Co-Pb-Zn deposit

    图 9  七宝山钴铅锌矿床辉砷钴矿CoAsS-FeAsS-NiAsS三元图解

    Figure 9.  CoAsS-FeAsS-NiAsS ternary diagram of cobaltite in the Qibaoshan Co-Pb-Zn deposit

    图 10  七宝山钴铅锌矿床不同类型硫砷化物矿物钴与镍和铁、硫与砷含量关系图

    Figure 10.  Relationships between the content of cobalt and nickel and iron, sulfur and arsenic in different types of sulfides and arsenides minerals in the Qibaoshan Co-Pb-Zn deposit

    图 11  “五元素脉”型和七宝山钴铅锌矿床矿石典型结构图[74]

    a, b.“五元素脉”型矿床典型结构;c, d. 七宝山钴铅锌矿床中斜方砷镍矿、斜方砷钴矿和辉砷钴矿结构特征

    Figure 11.  Typical structures of the "five element vein" and Qibaoshan Co-Pb-Zn deposit

  • [1] 陈骏. 关键金属超常富集成矿和高效利用[J]. 科技导报, 2019, 37(24): 1.

    CHEN J. Metallogenesis and effective utilization of strategic-critical metals[J]. Science & Technology Review, 2019, 37(24): 1. (in Chinese with English abstract
    [2] 侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651-3652. doi: 10.1360/TB-2020-1417

    HOU Z Q, CHEN J, ZHAI M G. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651-3652. (in Chinese with English abstract doi: 10.1360/TB-2020-1417
    [3] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984: 113-137.

    LIU Y J, CAO L M, LI Z L, et al. Geochemistry of element [M]. Beijing: Science Press, 1984: 113-137. (in Chinese)
    [4] 蒋少涌, 王微. 战略性关键金属是如何发生超常富集成矿的?[J]. 地球科学, 2022, 47(10): 3869-3871.

    JIANG S Y, WANG W. How does the strategic key metal produce super-rich integrated ore?[J]. Earth Science, 2022, 47(10): 3869-3871. (in Chinese)
    [5] 周家喜, 吕志成, 陈书富, 等. 滇中地区新发现高品位氧化物型钴矿点[J]. 岩石学报, 2024, 40(2): 623-628. doi: 10.18654/1000-0569/2024.02.16

    ZHOU J X, LYU Z C, CHEN S F, et al. Newly discovered high-grade oxidized cobalt ore spot in the central Yunnan Province[J]. Acta Petrologica Sinica, 2024, 40(2): 623-628. (in Chinese with English abstract doi: 10.18654/1000-0569/2024.02.16
    [6] 苏本勋, 崔梦萌, 袁庆晗, 等. 高温岩浆过程中的钴镍解耦机制及其成矿指示[J]. 岩石学报, 2023, 39(10): 2867-2878. doi: 10.18654/1000-0569/2023.10.01

    SU B X, CUI M M, YUAN Q H, et al. Decoupling of cobalt and nickel in high-temperature magmatic processes and its metallogenic indication[J]. Acta Petrologica Sinica, 2023, 39(10): 2867-2878. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.10.01
    [7] 张洪瑞, 侯增谦, 杨志明, 等. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义[J]. 矿床地质, 2020, 39(3): 501-510.

    ZHANG H R, HOU Z Q, YANG Z M, et al. A new division of genetic types of cobalt deposits: Implications for Tethyan cobalt-rich belt[J]. Mineral Deposits, 2020, 39(3): 501-510. (in Chinese with English abstract
    [8] 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500. doi: 10.1360/N972019-00134

    ZHAO J X, LI G M, QIN K Z, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64(24): 2484-2500. (in Chinese with English abstract doi: 10.1360/N972019-00134
    [9] 付浩, 王加昇, 李金龙, 等. 全球钴矿资源时空分布及成因类型[J]. 地质科技通报, 2024, 43(1): 1-22.

    FU H, WANG J S, LI J L, et al. Spatiotemporal distribution and genesis types of global cobalt resources[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 1-22. (in Chinese with English abstract
    [10] WANG Z L, XU D R, CHI G X, et al. Mineralogical and isotopic constraints on the genesis of the Jingchong Co-Cu polymetallic ore deposit in northeastern Hunan Province, South China[J]. Ore Geology Reviews, 2017, 88: 638-654.
    [11] WANG Z L, WANG Y F, PENG E K, et al. Micro-textural and chemical fingerprints of hydrothermal cobalt enrichment in the Jingchong Co-Cu polymetallic deposit, South China[J]. Ore Geology Reviews, 2022, 142: 104721. doi: 10.1016/j.oregeorev.2022.104721
    [12] ZOU S H, ZOU F H, NING J T, et al. A stand-alone Co mineral deposit in northeastern Hunan Province, South China: Its timing, origin of ore fluids and metal Co, and geodynamic setting[J]. Ore Geology Reviews, 2018, 92: 42-60. doi: 10.1016/j.oregeorev.2017.11.008
    [13] PENG E K, KOLB J, WALTER B F, et al. New insights on the formation of the Jingchong Cu-Co-Pb-Zn deposit, South China: Evidence from sphalerite mineralogy and muscovite 40Ar-39Ar dating[J]. Ore Geology Reviews, 2023, 162: 105667. doi: 10.1016/j.oregeorev.2023.105667
    [14] 陕亮, 黄啸坤, 王川, 等. 湘东北地区井冲钴铜矿床中辉砷钴矿的发现、成因及开发利用价值[J]. 中国地质, 2022, 49(5): 1705-1707.

    SHAN L, HUANG X K, WANG C, et al. Discovery of cobaltite in the Jingchong Co-Cu deposit, northeastern Hunan Province, South China: Implications for ore genesis and exploration[J]. Geology in China, 2022, 49(5): 1705-1707. (in Chinese with English abstract
    [15] 陕亮, 王川, 康博, 等. 江南造山带中段井冲钴铜矿床成矿时代、流体性质与成矿模式[J]. 大地构造与成矿学, 2024, 48(6): 1299-1314.

    SHAN L, WANG C, KANG B, et al. Mineralization age, fluid properties, and metallogenic model of the Jingchong Co-Cu deposit in the central Jiangnan orogen, South China[J]. Geotectonica et Metallogenia, 2024, 48(6): 1299-1314. (in Chinese with English abstract
    [16] REZAZADEH S, HOSSEINZADEH M R, RAITH J G, et al. Mineral chemistry and phase relations of Co-Ni arsenides and sulfarsenides from the Baycheh-Bagh deposit, Zanjan province, Iran[J]. Ore Geology Reviews, 2020, 127: 103836. doi: 10.1016/j.oregeorev.2020.103836
    [17] BURISCH M, GERDES A, WALTER B F, et al. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany[J]. Ore Geology Reviews, 2017, 81: 42-61. doi: 10.1016/j.oregeorev.2016.10.033
    [18] TOURNEUR E, CHAUVET A, KOUZMANOV K, et al. Co-Ni-arsenide mineralisation in the Bou Azzer district (Anti-Atlas, Morocco): Genetic model and tectonic implications[J]. Ore Geology Reviews, 2021, 134: 104128. doi: 10.1016/j.oregeorev.2021.104128
    [19] WANG H, ZOU S H, WANG Z L, et al. Textural and compositional evolution of quartz and cobalt-bearing minerals from the Wubaoshan deposit, Jiangxi Province, South China: Implications for cobalt mineralization[J]. Ore Geology Reviews, 2024, 170: 106150. doi: 10.1016/j.oregeorev.2024.106150
    [20] 王智琳, 李世相, 许德如, 等. 湘东北横洞钴矿床钴的富集机制: 来自黄铁矿的微区结构、成分和硫同位素证据[J]. 岩石学报, 2023, 39(9): 2723-2740. doi: 10.18654/1000-0569/2023.09.11

    WANG Z L, LI S X, XU D R, et al. Cobalt enrichment mechanism in the Hengdong cobalt deposit, Northeast Hunan Province: Evidence from texture, chemical composition and sulfur isotopic composition of pyrite[J]. Acta Petrologica Sinica, 2023, 39(9): 2723-2740. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.09.11
    [21] WILLIAMS-JONES A E, VASYUKOVA O V. Constraints on the genesis of cobalt deposits: Part I. Theoretical considerations[J]. Economic Geology, 2022, 117(3): 513-528. doi: 10.5382/econgeo.4888
    [22] VASYUKOVA O V, WILLIAMS-JONES A E. Constraints on the genesis of Cobalt Deposits: Part II. Applications to natural systems[J]. Economic Geology, 2022, 117(3): 529-544.
    [23] 李立兴, 李厚民, 丁建华, 等. 东天山维权银铜矿床中钴矿化发现及成因意义[J]. 矿床地质, 2018, 37(4): 778-796.

    LI L X, LI H M, DING J H, et al. The discovery of cobaltite mineralization in Weiquan Ag-Cu deposit, eastern Tianshan Mountains, and its significance[J]. Mineral Deposits, 2018, 37(4): 778-796. (in Chinese with English abstract
    [24] 张晓平, 吴志华, 陈佳木, 等. 砷在金属矿山中的赋存形态及迁移机制[J]. 地质科技通报, 2022, 41(4): 138-148.

    ZHANG X P, WU Z H, CHEN J M, et al. Occurrence state and migration mechanism of arsenic in metal mines[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 138-148. (in Chinese with English abstract
    [25] 姜宝亮, 况二龙, 赖长金. 江西省上高县七宝山铅锌钴铁矿床成矿物质来源研究[J]. 世界有色金属, 2024(12): 117-119.

    JIANG B L, KUANG E L, LAI C J. A study on the mineral sources of the qibaoshan lead zinc cobalt iron deposit in Shanggao County, Jiangxi Province[J]. World Nonferrous Metals, 2024(12): 117-119. (in Chinese with English abstract
    [26] 王学平, 周建廷, 范爱春. 江西省上高县七宝山铅锌铁钴矿床成矿模式[J]. 东华理工大学学报(自然科学版), 2011, 34(3): 248-256.

    WANG X P, ZHOU J T, FAN A C. The metallogenic model of the Qibaoshan lead and zinc iron cobalt deposit in Shanggao County, Jiangxi Province[J]. Journal of East China Institute of Technology (Natural Science), 2011, 34(3): 248-256. (in Chinese with English abstract
    [27] 孙建东, 李海立, 张雪辉, 等. 赣西七宝山钴铅锌矿床碧玉岩的发现及对矿床成因的制约[J]. 地质通报, 2023, 42(10): 1718-1727.

    SUN J D, LI H L, ZHANG X H, et al. The discovery of jasper rocks in the Qibaoshan cobalt-lead-zinc deposit in western Jiangxi Province and its restriction on the genesis of the deposit[J]. Geological Bulletin of China, 2023, 42(10): 1718-1727. (in Chinese with English abstract
    [28] 杨明桂, 梅勇文. 钦-杭古板块结合带与成矿带的主要特征[J]. 华南地质与矿产, 1997, 13(3): 52-59.

    YANG M G, MEI Y W. Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture[J]. Geology and Mineral Resources of South China, 1997, 13(3): 52-59. (in Chinese with English abstract
    [29] 毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5): 636-658.

    MAO J W, CHEN M H, YUAN S D, et al. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits[J]. Acta Geologica Sinica, 2011, 85(5): 636-658. (in Chinese with English abstract
    [30] YAO J L, SHU L S, CAWOOD P A, et al. Delineating and characterizing the boundary of the Cathaysia Block and the Jiangnan orogenic belt in South China[J]. Precambrian Research, 2016, 275: 265-277. doi: 10.1016/j.precamres.2016.01.023
    [31] 江西省地质矿产勘查开发局. 中国区域地质志·江西志 [M]. 北京: 地质出版社, 2017.

    Jiangxi Provincial Bureau of Geology and Mineral Exploration and Development. China Regional Geology (Jiangxi)[M]. Beijing: Geological publishing house, 2017. (in Chinese)
    [32] 赵东安, 王国灿, 王先广, 等. 赣西北蒙山地区三叠纪挤压-伸展构造体制转换及其对硅灰石矿的控矿意义[J]. 地球科学, 2023, 48(11): 4053-4071.

    ZHAO D A, WANG G C, WANG X G, et al. Triassic compressional-extensional transition in Mengshan area, NW Jiangxi Province, and its ore-controlling significance for wollastonite deposit[J]. Earth Science, 2023, 48(11): 4053-4071. (in Chinese with English abstract
    [33] 段政, 廖圣兵, 褚平利, 等. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 2019, 46(3): 493-516.

    DUAN Z, LIAO S B, CHU P L, et al. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. Geology in China, 2019, 46(3): 493-516. (in Chinese with English abstract
    [34] ZHONG Y F, MA C Q, ZHANG C, et al. Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite Pluton and Taoyuan mafic-felsic Complex at the southeastern margin of the Yangtze Block[J]. Journal of Asian Earth Sciences, 2013, 74: 11-24. doi: 10.1016/j.jseaes.2013.05.025
    [35] ZHONG Y F, MA C Q, LIU L, et al. Ordovician appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime[J]. Lithos, 2014, 198: 202-216.
    [36] 张垚垚, 刘凯, 何庆成, 等. 江西武功山早古生代花岗岩的岩石学、锆石U-Pb和Lu-Hf同位素地球化学特征及其地质意义[J]. 地质论评, 2023, 69(3): 1004-1020.

    ZHANG Y Y, LIU K, HE Q C, et al. Petrological, zircon U-Pb, Lu-Hf isotopic geochemical characteristics of the Early Paleozoic granites in Wugong Mountain area, Jiangxi Province, and their geological significance[J]. Geological Review, 2023, 69(3): 1004-1020. (in Chinese with English abstract
    [37] 孙建东, 李海立, 陆凡, 等. 赣西蒙山岩体地球化学、锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 地质与勘探, 2022, 58(1): 96-106.

    SUN J D, LI H L, LU F, et al. Geochemistry, zircon U-Pb ages, and Hf isotopes of the Mengshan rock mass in western Jiangxi Province and their geologic implications[J]. Geology and Exploration, 2022, 58(1): 96-106. (in Chinese with English abstract
    [38] OUYANG Y P, ZENG R L, MENG D L, et al. Geochronology and geochemistry characteristics of Dongcao muscovite Muscovite granite in the Yifeng area, Jiangxi Province, China: Implications for petrogenesis and mineralization[J]. Minerals, 2023, 13(4): 503. doi: 10.3390/min13040503
    [39] 龚敏, 吴俊华, 季浩, 等. 赣西大港花岗岩型锂矿床锂赋存状态及成岩成矿年代学[J]. 地球科学, 2023, 48(12): 4370-4386.

    GONG M, WU J H, JI H, et al. Occurrence of lithium and geochronology of magmatism and mineralization in Dagang granite-associated lithium deposit, West Jiangxi Province[J]. Earth Science, 2023, 48(12): 4370-4386. (in Chinese with English abstract
    [40] 彭付丰. 江西高安村前铜多金属矿矿床特征及其成因分析[J]. 资源信息与工程, 2016, 31(5): 31-32.

    PENG F F. Characteristics and genesis analysis of Cunqian copper polymetallic deposit in Gaoan, Jiangxi Province[J]. Resource Information and Engineering, 2016, 31(5): 31-32. (in Chinese)
    [41] 肖艳. 江西省志木山铜多金属矿床地质特征与找矿方向探讨[D]. 南昌: 东华理工大学, 2015.

    XIAO Y. Zhimushan copper polymetallic deposit geological characteristics and prospecting direction in Jiangxi province[D]. Nanchang: East China Institute of Technology, 2015. (in Chinese with English abstract
    [42] 赖长金, 罗喜成, 钟烜, 等. 江西上高七宝山铅锌钴矿找矿潜力及找矿方向分析[J]. 世界有色金属, 2017(19): 111-113.

    LAI C J, LUO X C, ZHONG X, et al. Ore-prospecting potential and prospecting direction of lead-zinc-cobalt deposit in Qibaoshan of Shanggao Country[J]. World Nonferrous Metals, 2017(19): 111-113. (in Chinese with English abstract
    [43] 王智琳, 伍杨, 许德如, 等. 湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术, 2020, 28(6): 779-785.

    WANG Z L, WU Y, XU D R, et al. Occurrence state and ore-forming regularity of critical metal cobalt in the Changsha-Pingjiang fault zone, northeastern Hunan Province[J]. Gold Science and Technology, 2020, 28(6): 779-785. (in Chinese with English abstract
    [44] GAN J, WANG Z L, PENG E K, et al. Cobalt mineralization in the Northeastern Hunan Province of South China: New evidence from the Jintang hydrothermal Co polymetallic ore district[J]. Ore Geology Reviews, 2023, 163: 105799. doi: 10.1016/j.oregeorev.2023.105799
    [45] 海连富, 张晓军, 孙永亮, 等. 宁夏卫宁北山地区伴生钴矿床地质特征、控矿因素及找矿方向[J]. 地质科技通报, 2024, 43(5): 55-69.

    HAI L F, ZHANG X J, SUN Y L, et al. Geological characteristics, controlling factors and prospecting directions of associated cobalt deposits in the Weiningbeishan area, Ningxia[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 55-69. (in Chinese with English abstract
    [46] 张连昌, 张爱奎, 刘永乐, 等. 沉积岩-变沉积岩型钴矿研究进展与问题[J]. 岩石学报, 2023, 39(4): 981-997. doi: 10.18654/1000-0569/2023.04.03

    ZHANG L C, ZHANG A K, LIU Y L, et al. Research progress and problems of sedimentary rock-metasedimentary rock type cobalt deposits[J]. Acta Petrologica Sinica, 2023, 39(4): 981-997. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.04.03
    [47] 邱正杰, 范宏瑞, 杨奎锋, 等. 中条山古元古代沉积岩容矿型铜钴矿床钴来源及富集过程[J]. 岩石学报, 2023, 39(4): 1019-1029. doi: 10.18654/1000-0569/2023.04.05

    QIU Z J, FAN H R, YANG K F, et al. Cobalt sources and enrichment processes of the Paleoproterozoic sedimentary rock-hosted Cu-Co deposits in the Zhongtiao Mountains[J]. Acta Petrologica Sinica, 2023, 39(4): 1019-1029. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.04.05
    [48] QIU Z J, FAN H R, GOLDFARB R, et al. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J]. Geochimica et Cosmochimica Acta, 2021, 305: 1-18. doi: 10.1016/j.gca.2021.05.001
    [49] PALME H, O’NEILL H S C. Cosmochemical estimates of mantle composition[M]//Holland H D, Turekian K K Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 2014, 3: 1-39.
    [50] RUDNICK R L, GAO S. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 2014, 4: 1-51.
    [51] SAINTILAN N J, CREASER R A, BOOKSTROM A A. Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization[J]. Ore Geology Reviews, 2017, 86: 509-525. doi: 10.1016/j.oregeorev.2017.02.032
    [52] 孙宏伟, 王杰, 任军平, 等. 中非加丹加-赞比亚多金属成矿带成矿演化及找矿潜力分析[J]. 地质科技情报, 2019, 38(1): 121-131.

    SUN H W, WANG J, REN J P, et al. Metallogenic evolution and prospecting potential of Katanga-Zambia polymetallic metallogenic belt in Central Africa[J]. Geological Science and Technology Information, 2019, 38(1): 121-131. (in Chinese with English abstract
    [53] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
    [54] 单鹏飞, 曹明坚, 赵玉锁, 等. 黑龙江金厂斑岩型富钴矿床钴赋存状态和富集规律研究[J]. 岩石学报, 2023, 39(4): 1157-1171. doi: 10.18654/1000-0569/2023.04.14

    SHAN P F, CAO M J, ZHAO Y S, et al. Occurrence and enrichment of cobalt in Jinchang cobalt-rich porphyry deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 2023, 39(4): 1157-1171. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.04.14
    [55] LI Z, LANG X H, ZHANG Q Z, et al. Petrogenesis and geodynamic implications of the intrusions related to the Pusangguo skarn Cu-dominated polymetallic deposit in Tibet: Constraints from geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes[J]. Geological Journal, 2020, 55(12): 7659-7686. doi: 10.1002/gj.3902
    [56] JIANG J Y, ZHU Y F. Geology and geochemistry of the Jianchaling hydrothermal nickel deposit: T-Ph- f-O2f-S2 conditions and nickel precipitation mechanism[J]. Ore Geology Reviews, 2017, 91: 216-235.
    [57] 代军治, 陈荔湘, 石小峰, 等. 陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J]. 地质学报, 2014, 88(10): 1861-1873.

    DAI J Z, CHEN L X, SHI X F, et al. Geochronology of acid intrusive rocks of the Jianchaling nickel deposit in Lueyang, Shaanxi and its metallogenic implications[J]. Acta Geologica Sinica, 2014, 88(10): 1861-1873.
    [58] 李德东, 王玉往, 石煜, 等. 内蒙古嘎仙镍钴矿区岩浆作用与成矿[J]. 矿床地质, 2018, 37(5): 893-916.

    LI D D, WANG Y W, SHI Y, et al. Magmatism and ore-forming process of Gaxian nickel cobalt deposit, Inner Mongolia[J]. Mineral Deposits, 2018, 37(5): 893-916. (in Chinese with English abstract
    [59] 王玉往, 陈伟民, 李德东, 等. 内蒙古嘎仙钴镍硫化物矿床的地质特征及成因探讨[J]. 矿产勘查, 2016, 7(1): 72-81.

    WANG Y W, CHEN W M, LI D D, et al. Geological characteristics and genesis of the Gaxian Co-Ni sulfide deposit, Inner Mongolia[J]. Mineral Exploration, 2016, 7(1): 72-81. (in Chinese with English abstract
    [60] 曹明坚, 单鹏飞, 秦克章. 富钴斑岩型金铜矿床地质特征及存在问题: 以黑龙江金厂矿床为例[J]. 科学通报, 2022, 67(31): 3708-3723. doi: 10.1360/TB-2021-1169

    CAO M J, SHAN P F, QIN K Z. Cobalt-rich characteristics and existing problems of porphyry gold-copper deposit: A case study of Jinchang deposit in Heilongjiang Province[J]. Chinese Science Bulletin, 2022, 67(31): 3708-3723. (in Chinese with English abstract doi: 10.1360/TB-2021-1169
    [61] 梁贤, 汪方跃, 周涛发, 等. 长江中下游成矿带朱冲富钴矽卡岩型铁矿床的钴成矿机制: 来自原位硫同位素和锆石U-Pb年龄的约束[J]. 岩石学报, 2023, 39(10): 3015-3030. doi: 10.18654/1000-0569/2023.10.10

    LIANG X, WANG F Y, ZHOU T F, et al. Metallogenic mechanism of cobalt in the Zhuchong cobalt-rich skarn iron deposit in the Middle-Lower Yangtze River Valley Metallogenic Belt: Constrained by in situ sulfur isotopes and zircon U-Pb dating[J]. Acta Petrologica Sinica, 2023, 39(10): 3015-3030. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.10.10
    [62] 张振坤. 赣西七宝山钴铅锌多金属矿床特征与同位素及物质来源分析[D]. 成都: 成都理工大学, 2021.

    ZHANG Z K. The ore characteristics, isotope and analysis of material sources in Qibaoshan Co-Pt-Zn polymetallic deposit, western Jiangxi[D]. Chengdu: Chengdu University of Technology, 2021. (in Chinese with English abstract
    [63] STAUDE S, WERNER W, MORDHORST T, et al. Multi-stage Ag-Bi-Co-Ni-U and Cu-Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: Geological setting, ore mineralogy, and fluid evolution[J]. Mineralium Deposita, 2012, 47(3): 251-276. doi: 10.1007/s00126-011-0365-4
    [64] 李红梅, 李艳军. 三江中北段夏塞Ag-Pb-Zn矿床红锑镍矿的发现及地质意义[J]. 大地构造与成矿学, 2020, 44(3): 422-430.

    LI H M, LI Y J. Identification and geological significance of breithauptite in the Xiasai Ag-Pb-Zn deposit, central-northern Sanjiang metallogenetic belt[J]. Geotectonica et Metallogenia, 2020, 44(3): 422-430. (in Chinese with English abstract
    [65] 杨奇荻, 黄啸坤, 李堃, 等. 广西金秀龙华镍钴矿床矿石结构及其对矿床成因的启示[J]. 华南地质, 2023, 39(4): 601-616.

    YANG Q D, HUANG X K, LI K, et al. Ore texture from Longhua nickel-cobalt deposit in Jinxiu, Guangxi: Implication for the genesis of the deposit[J]. South China Geology, 2023, 39(4): 601-616. (in Chinese with English abstract
    [66] BOYLE R W, JONASSON I R. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting[J]. Journal of Geochemical Exploration, 1973, 2(3): 251-296. doi: 10.1016/0375-6742(73)90003-4
    [67] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
    [68] PAIKARAY S. Environmental hazards of arsenic associated with black shales: A review on geochemistry, enrichment and leaching mechanism[J]. Reviews in Environmental Science and Bio/Technology, 2012, 11(3): 289-303. doi: 10.1007/s11157-012-9281-z
    [69] 许德如, 王力, 王智琳, 等. 江西萍乐凹陷构造-沉积演化的基本特征及对找煤预测的启示[J]. 大地构造与成矿学, 2011, 35(4): 513-524.

    XU D R, WANG L, WANG Z L, et al. Tectonic-sedimentary characteristics of the Ping(Pingxiang)-Le(Leping) depression in Jiangxi Province and its implications on coal mineral resource prospecting[J]. Geotectonica et Metallogenia, 2011, 35(4): 513-524. (in Chinese with English abstract
    [70] SEWARD T M, WILLIAMS-JONES A E, MIGDISOV A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 2014: 29-57.
    [71] WANG S, CAO M J, LI G M, et al. Tracing the genesis of the Zhibula skarn deposit, Tibet, using Co, Te, Au and Ag occurrence[J]. Ore Geology Reviews, 2023, 160: 105601. doi: 10.1016/j.oregeorev.2023.105601
    [72] MARKL G, BURISCH M, NEUMANN U. Natural fracking and the genesis of five-element veins[J]. Mineralium Deposita, 2016, 51(6): 703-712. doi: 10.1007/s00126-016-0662-z
    [73] GUILCHER M, SCHMAUCKS A, KRAUSE J, et al. Vertical zoning in hydrothermal U-Ag-Bi-Co-Ni-As systems: A case study from the Annaberg-Buchholz District, Erzgebirge (Germany)[J]. Economic Geology, 2021, 116(8): 1893-1915. doi: 10.5382/econgeo.4867
    [74] SCHARRER M, KREISSL S, MARKL G. The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic[J]. Ore Geology Reviews, 2019, 113: 103025. doi: 10.1016/j.oregeorev.2019.103025
    [75] KREISSL S, GERDES A, WALTER B F, et al. Reconstruction of a>200 Ma multi-stage "five element" Bi-Co-Ni-Fe-As-S system in the Penninic Alps, Switzerland[J]. Ore Geology Reviews, 2018, 95: 746-788. doi: 10.1016/j.oregeorev.2018.02.008
  • 加载中
图(11)
计量
  • 文章访问数:  116
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 录用日期:  2024-11-06
  • 修回日期:  2024-10-27
  • 网络出版日期:  2025-10-28

目录

    /

    返回文章
    返回