留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口及邻近海域表层沉积物Sr、Nd同位素组成及意义

李宇峰 刘金存 刘金华 胡雅婷 李百蝉 周炼

李宇峰,刘金存,刘金华,等. 长江口及邻近海域表层沉积物Sr、Nd同位素组成及意义[J]. 地质科技通报,2026,45(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240401
引用本文: 李宇峰,刘金存,刘金华,等. 长江口及邻近海域表层沉积物Sr、Nd同位素组成及意义[J]. 地质科技通报,2026,45(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240401
LI Yufeng,LIU Jincun,LIU Jinhua,et al. Isotopic composition and significance of Sr and Nd isotopes in surface sediments of Yangtze River Estuary and adjacent sea areas[J]. Bulletin of Geological Science and Technology,2026,45(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240401
Citation: LI Yufeng,LIU Jincun,LIU Jinhua,et al. Isotopic composition and significance of Sr and Nd isotopes in surface sediments of Yangtze River Estuary and adjacent sea areas[J]. Bulletin of Geological Science and Technology,2026,45(2):1-13 doi: 10.19509/j.cnki.dzkq.tb20240401

长江口及邻近海域表层沉积物Sr、Nd同位素组成及意义

doi: 10.19509/j.cnki.dzkq.tb20240401
基金项目: 国家自然科学基金项目(42273014;41673013;NORC2015-03)
详细信息
    作者简介:

    李宇峰:E-mail:liyufeng996@163.com

    通讯作者:

    E-mail:zhcug@163.com

Isotopic composition and significance of Sr and Nd isotopes in surface sediments of Yangtze River Estuary and adjacent sea areas

More Information
  • 摘要:

    长江口是连接陆地和海洋的重要枢纽,因其复杂的地形、丰富的陆源物质以及与人类活动的紧密联系,受到学者们的广泛关注。以长江口及其邻近海域海底表层沉积物为研究对象,系统分析了Sr、Nd同位素以及微量元素的地球化学行为。结果表明,长江口及邻近海域沉积物主要由陆源物质构成,源自长江流域的沉积物占据主导地位,部分物质来自古黄河三角洲。海水与河水混合区域的Nd元素由于胶体凝聚现象显著富集,而复杂的水动力条件导致该区域的沉积物粒径较细,Sr元素则表现出明显的贫化。通过基于R语言的稳定同位素混合模型(SIMMR)分析,发现长江中下游对海陆交互区域表层沉积物的贡献有所增加。长江上游的物质由于大坝建设被大量截留,导致中下游河道从沉积的“汇”转变为泥沙供应的“源”,从而增加了中下游物质对河口及邻近海域沉积物的贡献。尽管如此,长江上游物质仍在长江口沉积物中占据主导地位。研究成果展现了长江口和邻近海域的沉积环境和源汇过程,为揭示地表物质循环过程、探究海洋环境演化提供重要信息。

     

  • 图 1  长江流域地质背景图(据文献[21]修改 )

    Figure 1.  Geological background map of the Yangtze River Basin

    图 2  采样点分布的示意图[7]

    SBCC. 苏北沿岸流;CDW. 长江冲淡水;TWCC. 台湾暖流;MZCC. 浙闽沿岸流

    Figure 2.  Schematic diagram of the distribution of sampling points

    图 3  长江口及邻近海域沉积物样本的树状图

    Figure 3.  Dendrogram of sediment samples from the Yangtze River estuary and adjacent sea areas, showing three clusters.

    图 4  87Sr/86Sr 与w(Sr)的关系图(a)和εNd(0) 与 w(Nd)的关系图(b)

    Figure 4.  (a) Plot of Sr isotope ratio 87Sr/86Sr against Sr mass fraction; (b) Plot of εNd(0) against Nd mass fraction.

    图 5  表层沉积物中Sr、Nd同位素及元素的空间分布

    Figure 5.  Spatial distribution of Sr, Nd isotopes and elements in surface sediments

    图 6  长江口及邻近海域表层沉积物中Sr同位素与粒径的关系(a)和Nd同位素与粒径的关系(b)

    Figure 6.  The Relationship between Sr Isotopes and Grain Size in Surface Sediments of the Yangtze River Estuary and Adjacent Seas (a); The Relationship between Nd Isotopes and Grain Size (b)

    图 7  长江口及邻近海域Sr、Nd同位素指示来源[4-511162032]

    Figure 7.  Sr and Nd isotope indication sources in the Yangtze River Estuary and adjacent sea areas

    图 8  SIMMR模型计算长江口及邻近海域表层沉积物来源的相对贡献[4-511162032]

    Figure 8.  The relative contributions of surface sediment sources in the Yangtze River estuary and adjacent sea areas were calculated by SIMMR model

    图 9  长江口及邻近海域表层沉积物的La-Th-Sc判别图[1120]

    Figure 9.  La-Th-Sc discriminant map of surface sediments in the Changjiang Estuary and adjacent sea areas

    图 10  长江口及邻近海域表层沉积物的Zr/Th与Nb/Y对比图[1120]

    Figure 10.  The comparison chart of Zr/Th and Nb/Y in the surface sediments of the Yangtze River Estuary and adjacent sea areas

    表  1  旋转因子载荷矩阵

    Table  1.   Rotation factor load matrix

    变量 因子1 因子2 因子3 因子4
    87Sr/86Sr 0.79 0.29 0.33 0.38
    143Nd/144Nd −0.53 −0.04 −0.76 −0.15
    Li 0.91 0.30 0.24 −0.01
    Be 0.88 0.39 0.10 0.10
    Na −0.91 −0.28 −0.23 0.04
    Mg 0.75 0.54 0.27 0.02
    Al 0.91 0.35 0.21 0.10
    P 0.49 0.75 0.18 0.23
    K 0.95 0.19 0.15 0.11
    Ca 0.38 0.24 0.53 −0.49
    Sc 0.84 0.50 0.21 0.06
    Ti 0.58 0.76 0.23 0.02
    V 0.83 0.52 0.11 0.16
    Cr 0.73 0.62 0.25 −0.02
    Fe 0.86 0.49 0.08 0.09
    Co −0.42 −0.15 −0.54 −0.14
    Ni 0.88 0.43 0.17 0.10
    Cu 0.82 0.41 0.29 0.22
    Zn 0.80 0.31 0.25 0.04
    Ga 0.89 0.39 0.20 0.09
    Ge 0.83 0.50 0.09 0.08
    Rb 0.93 0.26 0.21 0.10
    Sr −0.60 −0.24 −0.15 −0.66
    Y 0.55 0.71 0.38 0.14
    Zr 0.04 0.44 0.81 −0.23
    Nb 0.48 0.81 0.28 0.06
    Mo 0.81 0.45 0.12 0.17
    Sn 0.82 0.47 0.30 0.10
    Cs 0.90 0.31 0.27 0.06
    Ba 0.29 0.00 −0.16 0.79
    La 0.45 0.85 0.15 −0.09
    Ce 0.44 0.85 0.15 −0.11
    Pr 0.43 0.86 0.17 −0.07
    Nd 0.45 0.85 0.18 −0.06
    Sm 0.52 0.82 0.15 −0.01
    Eu 0.53 0.81 0.10 0.11
    Gd 0.51 0.81 0.25 0.06
    Tb 0.56 0.76 0.28 0.09
    Dy 0.57 0.73 0.32 0.11
    Ho 0.57 0.71 0.35 0.13
    Er 0.56 0.70 0.38 0.14
    Tm 0.58 0.69 0.37 0.12
    Yb 0.60 0.66 0.40 0.11
    Lu 0.58 0.65 0.43 0.11
    Hf 0.08 0.45 0.81 −0.21
    Ta −0.32 0.76 −0.06 0.10
    Tl 0.92 0.27 0.24 0.06
    Pb 0.81 0.39 −0.03 0.28
    Th 0.72 0.62 0.25 −0.04
    U 0.16 0.85 0.20 −0.01
    下载: 导出CSV
  • [1] ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. doi: 10.1038/nature06586
    [2] YANG S L, MILLIMAN J D, LI P, et al. 50000 dams later: Erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1/2): 14-20.
    [3] MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean[M]. Cambridge: Cambridge University Press, 2011.
    [4] 杨守业, 蒋少涌, 凌洪飞, 等. 长江河流沉积物Sr-Nd同位素组成与物源示踪[J]. 中国科学: 地球科学, 2007, 37(5): 682-690. doi: 10.3969/j.issn.1674-7240.2007.05.013

    YANG S Y, JIANG S Y, LING H F, et al. Sr-Nd isotopic composition and provenance tracing of sediments in the Yangtze River[J]. Scientia Sinica(Terrae), 2007, 37(5): 682-690. (in Chinese with English abstract doi: 10.3969/j.issn.1674-7240.2007.05.013
    [5] LUO C, ZHENG H B, TADA R, et al. Tracing Sr isotopic composition in space and time across the Yangtze River basin[J]. Chemical Geology, 2014, 388: 59-70. doi: 10.1016/j.chemgeo.2014.09.007
    [6] WEI G J, LIU Y, MA J L, et al. Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for provenance tracing[J]. Marine Geology, 2012, 319: 21-34. doi: 10.1016/j.margeo.2012.05.007
    [7] BI L, YANG S Y, ZHAO Y, et al. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) estuary and inner shelf of the East China Sea[J]. Quaternary International, 2017, 441: 147-161. doi: 10.1016/j.quaint.2016.12.004
    [8] HU B Q, LI J, ZHAO J T, et al. Sr-Nd isotopic geochemistry of Holocene sediments from the South Yellow Sea: Implications for provenance and monsoon variability[J]. Chemical Geology, 2018, 479: 102-112. doi: 10.1016/j.chemgeo.2017.12.033
    [9] LIU J, SAITO Y, KONG X H, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last ~ 13000 years, with special reference to the influence of the Yellow River on the.
    [10] LI T N, RAO W B, WANG S, et al. Identifying the clay-size sediment provenance of the radial sand ridges in the southwestern Yellow Sea using geochemical and Sr-Nd isotopic tracers[J]. Marine Geology, 2023, 455: 106957. doi: 10.1016/j.margeo.2022.106957
    [11] RAO W B, MAO C P, WANG Y G, et al. Using Nd-Sr isotopes and rare earth elements to study sediment provenance of the modern radial sand ridges in the southwestern Yellow Sea[J]. Applied Geochemistry, 2017, 81: 23-35. doi: 10.1016/j.apgeochem.2017.03.011
    [12] GU J W, CHEN J, SUN Q L, et al. China's Yangtze delta: Geochemical fingerprints reflecting river connection to the sea[J]. Geomorphology, 2014, 227: 166-173.
    [13] ZHUANG W, ZHOU F X. Distribution, source and pollution assessment of heavy metals in the surface sediments of the Yangtze River Estuary and its adjacent East China Sea[J]. Marine Pollution Bulletin, 2021, 164: 112002. doi: 10.1016/j.marpolbul.2021.112002
    [14] GAO J J, SHI H H, DAI Z J, et al. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea[J]. Environmental Pollution, 2018, 233: 1138-1146. doi: 10.1016/j.envpol.2017.10.023
    [15] 胡寅秋, 邬斌, 任倩. 湖北庙垭杂岩体富硅碳酸岩成因及其对稀土成矿的指示意义[J]. 地质科技通报, 2023, 42(2): 41-59. doi: 10.19509/j.cnki.dzkq.tb20220183

    HU Y Q, WU B, REN Q. Genesis of silica-rich carbonatite in the Miaoya complex, Hubei Province and its implications for REE mineralization[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 41-59. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220183
    [16] 张松涛, 谢浩, 梁永平, 等. 同位素技术在古堆泉岩溶水保护中的应用[J]. 地质科技通报, 2023, 42(4): 147-153. doi: 10.19509/j.cnki.dzkq.tb202302400

    ZHANG S T, XIE H, LIANG Y P, et al. Application of isotope technology to protecting karstic water in the Gudui spring area[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 147-153. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb202302400
    [17] XU Z K, LIM D, LI T G, et al. REEs and Sr-Nd isotope variations in a 20 ky-sediment core from the middle Okinawa Trough, East China Sea: An in-depth provenance analysis of siliciclastic components[J]. Marine Geology, 2019, 415: 105970. doi: 10.1016/j.margeo.2019.105970
    [18] TRIPATHI J K, BOCK B, RAJAMANI V. Nd and Sr isotope characteristics of Quaternary Indo-Gangetic plain sediments: Source distinctiveness in different geographic regions and its geological significance[J]. Chemical Geology, 2013, 344: 12-22. doi: 10.1016/j.chemgeo.2013.02.016
    [19] BAYON G, TOUCANNE S, SKONIECZNY C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited[J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38. doi: 10.1016/j.gca.2015.08.001
    [20] HE M Y, ZHENG H B, CLIFT P D, et al. Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia[J]. Progress in Earth and Planetary Science, 2015, 2(1): 32. doi: 10.1186/s40645-015-0061-6
    [21] DING T P, GAO J F, TIAN S H, et al. Chemical and isotopic characteristics of the water and suspended particulate materials in the Yangtze River and their geological and environmental implications[J]. Acta Geologica Sinica(English Edition), 2014, 88(1): 276-360. doi: 10.1111/1755-6724.12197
    [22] KRABBENHÖFT A, FIETZKE J, EISENHAUER A, et al. Determination of radiogenic and stable strontium isotope ratios (87Sr/86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/84Sr double spike[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(9): 1267-1271. doi: 10.1039/b906292k
    [23] XU A T, HATHORNE E, LAUKERT G, et al. Overlooked riverine contributions of dissolved neodymium and hafnium to the Amazon estuary and oceans[J]. Nature Communications, 2023, 14: 4156. doi: 10.1038/s41467-023-39922-3
    [24] SHOLKOVITZ E, SZYMCZAK R. The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems[J]. Earth and Planetary Science Letters, 2000, 179(2): 299-309.
    [25] FRESLON N, BAYON G, TOUCANNE S, et al. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica et Cosmochimica Acta, 2014, 140: 177-198. doi: 10.1016/j.gca.2014.05.016
    [26] SINGH S P, SINGH S K, GOSWAMI V, et al. Spatial distribution of dissolved neodymium and εNd in the Bay of Bengal: Role of particulate matter and mixing of water masses[J]. Geochimica et Cosmochimica Acta, 2012, 94: 38-56. doi: 10.1016/j.gca.2012.07.017
    [27] GARÇON M, CHAUVEL C, FRANCE-LANORD C, et al. Which minerals control the Nd-Hf-Sr-Pb isotopic compositions of river sediments?[J]. Chemical Geology, 2014, 364: 42-55. doi: 10.1016/j.chemgeo.2013.11.018
    [28] WU W H, XU S J, YANG J D, et al. Isotopic characteristics of river sediments on the Tibetan Plateau[J]. Chemical Geology, 2010, 269(3/4): 406-413. doi: 10.1016/j.chemgeo.2009.10.015
    [29] CHETELAT B, LIU C Q, ZHAO Z Q, et al. Geochemistry of the dissolved load of the Changjiang basin rivers: Anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4254-4277. doi: 10.1016/j.gca.2008.06.013
    [30] IIZUKA T, KOMIYA T, RINO S, et al. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth[J]. Geochimica et Cosmochimica Acta, 2010, 74(8): 2450-2472. doi: 10.1016/j.gca.2010.01.023
    [31] DENG F F, HELLMANN S, ZIMMERMANN T, et al. Using Sr-Nd-Pb isotope systems to trace sources of sediment and trace metals to the Weser River system (Germany) and assessment of input to the North Sea[J]. Science of the Total Environment, 2021, 791: 148127. doi: 10.1016/j.scitotenv.2021.148127
    [32] 茅昌平, 陈骏, 袁旭音, 等. 长江下游悬浮物Sr-Nd同位素组成的季节性变化与物源示踪[J]. 科学通报, 2011, 56(31): 2591-2598.

    MAO C P, CHEN J, YUAN X Y, et al. Seasonal variation of Sr-Nd isotopic composition of suspended solids in the lower reaches of the Yangtze River and provenance tracing[J]. Chinese Science Bulletin, 2011, 56(31): 2591-2598. (in Chinese)
    [33] DENG K, YANG S Y, BI L, et al. Small dynamic mountainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales[J]. Earth and Planetary Science Letters, 2019, 505: 96-109. doi: 10.1016/j.jpgl.2018.10.012
    [34] DAI Z J, MEI X F, DARBY S E, et al. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system[J]. Journal of Hydrology, 2018, 566: 719-734. doi: 10.1016/j.jhydrol.2018.09.019
    [35] 冯晨, 梁杏. 500 a来自然与人为因素对洞庭湖区水环境演变的影响[J]. 地质科技通报, 2024, 43(5): 235-248.

    FENG C, LIANG X. Impact of human and natural factors on the water environment evolution of Dongting Lake area over the past 500 years[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 235-248. (in Chinese with English abstract
    [36] 张洋, 陈孝康, 林旭, 等. 江汉盆地新生代早期河流演化研究: 来自地表河流和盆地钻孔碎屑锆石U-Pb年龄的约束[J]. 地质科技通报, 2023, 42(6): 106-117. doi: 10.19509/j.cnki.dzkq.tb20220154

    ZHANG Y, CHEN X K, LIN X, et al. Early Cenozoic drainage evolution in the Jianghan Basin: Constraints from detrital zircon U-Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 106-117. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220154
    [37] WANG S, RAO W B, QIAN J, et al. Sr-Nd isotope and REE compositions of surface sediments from the Three Gorges Reservoir: Implications for source identification and apportionment[J]. Journal of Hydrology, 2021, 598: 126279. doi: 10.1016/j.jhydrol.2021.126279
    [38] YANG Y P, ZHENG J H, ZHANG M J, et al. Sediment sink-source transitions in the middle and lower reaches of the Yangtze River Estuary[J]. Frontiers in Marine Science, 2023, 10: 1201533. doi: 10.3389/fmars.2023.1201533
    [39] 杨守业, 王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报, 2011, 30(1): 31-39. doi: 10.3969/j.issn.1007-2802.2011.01.005

    YANG S Y, WANG Z B. Rare earth element compositions of the sediments from the major tributaries and the main stream of the Changjiang River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 31-39. (in Chinese with English abstract doi: 10.3969/j.issn.1007-2802.2011.01.005
    [40] WU W H, ZHENG H B, XU S J, et al. Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River[J]. Journal of Geochemical Exploration, 2013, 124: 67-78. doi: 10.1016/j.gexplo.2012.08.005
    [41] STOCK B C, JACKSON A L, WARD E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6: e5096. doi: 10.7717/peerj.5096
    [42] 李百蝉, 冯兰平, 王倩, 等. 稳定锶同位素在海洋地球化学循环中的研究进展[J]. 地质科技情报, 2018, 37(4): 100-105. doi: 10.19509/j.cnki.dzkq.2018.0412

    LI B C, FENG L P, WANG Q, et al. Advances of stable strontium isotopes (δ88/86Sr) in marine geochemical cycle[J]. Geological Science and Technology Information, 2018, 37(4): 100-105. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2018.0412
    [43] BLUM J D, EREL Y. Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering[J]. Geochimica et Cosmochimica Acta, 1997, 61(15): 3193-3204. doi: 10.1016/S0016-7037(97)00148-8
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  52
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 录用日期:  2024-10-21
  • 修回日期:  2024-10-17
  • 网络出版日期:  2025-12-15

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部