-
摘要:
成矿“末端效应”作为矿田地质力学、矿床学研究的前缘内容,受到越来越多的专家学者关注,其研究内容主要包括成矿构造“末端效应”和成矿流体“末端效应”2个方面:前者以矿田地质力学构造精细解析为基础,结合构造−(蚀变)岩相学填图技术、构造地球化学填图、地球物理探测技术,研究不同构造背景下多尺度控矿构造的“末端效应”及其对矿田、矿床、矿体(群)的控制作用,进而研究控矿构造“末端”的构造类型、力学性质、成矿构造体系及其控岩控矿规律、矿床(体)的定位机理等;后者开展流体包裹体和同位素/微量元素地球化学等研究,不仅可以反映成矿流体特征,同时结合成矿流体“末端”的分带效应研究,可以精细刻画成矿流体“末端”的时空演化过程,揭示构造物理化学条件对成矿作用的制约。从成矿构造和成矿流体两者“末端”的耦合关系角度出发,将矿田构造学、矿床学、流体地球化学、地球物理勘探技术紧密结合,可以深化研究构造“末端效应”的控岩控矿机制及构造−流体耦合成矿的成生联系,为深部找矿预测提供依据。
Abstract:Objective/Significance As a front issue in the study of deposit geology and field geomechanics, the “end effect” of ore formation has attracted more and more attention from experts and scholars.
Analysis/Discussion/Progress The research content of the “end effect” of ore formation mainly include the “end effect” of ore-forming structures and that of ore-forming fluids: for the former, the “end effect” of multi-scale ore-controlling structures in different tectonic settings and their role in controlling ore fields and ore deposits (bodies), especially the structural types, mechanical properties, and rock- and ore-controlling mechanisms of the “end” of deposit-level ore-controlling structures, the trapping effect of ore-forming fluids, and the location mechanism of ore deposits (bodies), are studied basis of the structural analysis of geomechanics of ore fields and in combination with structural(alteration) lithofacies mapping technique and geophysical probing technique; as for the latter, the characteristics of ore-forming fluids can be reflected through the study of fluid inclusions and isotopes/ Trace element geochemistry and the temporal and spatial evolution process of the “end” of ore-forming fluids can be finely depicted through the study of the zoning effect of the “end” of ore-forming fluids, thus revealing the limitation of the physicochemical conditions of structures on ore-forming process.
Conclusion/Prospect From the perspective of the coupling relationship between the “ends” of ore-forming structures and ore-forming fluids, an in-depth study of the rock and ore-controlling mechanisms under the “end effect” of structures and the genetic relation of structure-fluid coupled ore formation can be made by closely combining the study of deposit geology and fluid geochemistry, structural analysis of ore fields, and geophysical prospecting technique, thus providing a basis for the prediction for deep ore prospecting.
-
图 2 矿田尺度构造型式(a~c),矿床尺度构造型式(d~f),矿体(群)尺度构造型式(g~i)[24]
Figure 2. Ore feld scale (a-c), deposit scale (d-f) and orebody group scale (g-i) ore-control/ore-forming structure association styles
图 3 川滇黔接壤区构造变形期次及其演化图[10]
Figure 3. Tectonic deformation stages and their evolution in Sichuan-Yunnan-Guizhou triangular area
图 4 云南会泽富锗铅锌矿区分级控矿模式图[29]
Figure 4. The classification control mode of the Huize Germanium-rich Pb-Zn deposit in Yunnan Provience
图 7 热液矿床隐伏矿定位预测“四步式”找矿方法简图[41]
Figure 7. Flow chart of the ‘Four steps type’ exploration method for concealed orebodies in hydrothermal-type deposits
图 8 构造地球化学勘查技术流程框架图[47]
Figure 8. Tectonic geochemical survey technical flowchart
图 9 地球物理构造“末端”探测技术路线图[2]
Figure 9. Geophysical the end of ore-forming structures exploration technology road map
图 10 会泽铅锌矿床不同中段Zn-S同位素联合图[75]
Figure 10. S-Zn joint isotope diagram
图 11 黔西北青山铅锌矿床构造岩-岩相分带模式图[92]
Figure 11. Tectonite-lithofacies zoning model of the Qingshan lead-zinc deposit
-
[1] 吕庆田,孟贵祥,严加永,等. 长江中下游成矿带铁-铜成矿系统结构的地球物理探测:综合分析[J]. 地学前缘,2020,27(2):232-253.Lü Q T,MENG G X,YAN J Y,et al. The geophysical exploration of Mesozoic iron-copper mineral system in the Middle and Lower Reaches of the Yangtze River Metallogenic Belt:A synthesis[J]. Earth Science Frontiers,2020,27(2):232-253. (in Chinese with English abstract [2] 周文月,严加永,陈昌昕. 多尺度地球物理与成矿系统探测:现状与进展[J]. 地球物理学进展,2021,36(3):1208-1225. doi: 10.6038/pg2021EE0192ZHOU W Y,YAN J Y,CHEN C X. Multiscale geophysics and mineral system detection:Status and progress[J]. Progress in Geophysics,2021,36(3):1208-1225. (in Chinese with English abstract doi: 10.6038/pg2021EE0192 [3] 范宏瑞,蓝廷广,李兴辉,等. 胶东金成矿系统的末端效应[J]. 中国科学:地球科学,2021,51(9):1504-1523. doi: 10.1360/SSTe-2020-0335FAN H R,LAN T G,LI X H,et al. Conditions and processes leading to large-scale gold deposition in the Jiaodong province,Eastern China[J]. Scientia Sinica (Terrae),2021,51(9):1504-1523. (in Chinese with English abstract doi: 10.1360/SSTe-2020-0335 [4] RIDLEY J R,DIAMOND L W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models[M]. Denver,United States:Society of Economic Geologists,2000:141-162. [5] 张德全,王富春,佘宏全,等. 柴北缘−东昆仑地区造山型金矿床的三级控矿构造系统[J]. 中国地质,2007,34(1):92-100. doi: 10.3969/j.issn.1000-3657.2007.01.014ZHANG D Q,WANG F C,SHE H Q,et al. Three-order ore-controlling structural system of orogenic gold depositsin the northern Qaidam margin-East Kunlun region[J]. Geology in China,2007,34(1):92-100. (in Chinese with English abstract doi: 10.3969/j.issn.1000-3657.2007.01.014 [6] BLANKS D E,HOLWELL D A,FIORENTINI M L,et al. Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust[J]. Nature Communications,2020,11:4342. doi: 10.1038/s41467-020-18157-6 [7] 刘晓阳. 华北克拉通东部金成矿系统深部岩浆过程:来自地幔包体和中基性脉岩矿物学及包裹体微区证据[D]. 武汉:中国地质大学(武汉),2022.LIU X Y. Deep magmatic process of the Early Cretaceous gold metallogenic system in the eastern North China Craton[D]. Wuhan:China University of Geosciences(Wuhan),2022. (in Chinese with English abstract [8] 翟裕生. 论成矿系统[J]. 地学前缘,1999,6(1):13-27. doi: 10.3321/j.issn:1005-2321.1999.01.002ZHAI Y S. On the metallogenic system[J]. Earth Science Frontiers,1999,6(1):13-27. (in Chinese with English abstract doi: 10.3321/j.issn:1005-2321.1999.01.002 [9] 翟裕生. 地球系统科学与成矿学研究[J]. 地学前缘,2004,11(1):1-10. doi: 10.3321/j.issn:1005-2321.2004.01.001ZHAI Y S. Earth system sciences and the study on metallogenesis[J]. Earth Science Frontiers,2004,11(1):1-10. (in Chinese with English abstract doi: 10.3321/j.issn:1005-2321.2004.01.001 [10] 韩润生,吴鹏,张艳,等. 西南特提斯川滇黔成矿区富锗铅锌矿床成矿理论研究新进展[J]. 地质学报,2022,96(2):554-573. doi: 10.3969/j.issn.0001-5717.2022.02.014HAN R S,WU P,ZHANG Y,et al. New research progress in metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuan-Yunnan-Guizhou Triangle (SYGT) area,southwestern Tethys[J]. Acta Geologica Sinica,2022,96(2):554-573. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2022.02.014 [11] 韩润生,赵冻. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘,2022,29(5):420-437.HAN R S,ZHAO D. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits:A preliminary study[J]. Earth Science Frontiers,2022,29(5):420-437. (in Chinese with English abstract [12] 李四光. 地质力学概论[M]. 北京:科学出版社,1973.LI S G. Introduction to geomechanics[M]. Beijing:Science Press,1973. (in Chinese) [13] 吴淦国. 矿田构造与成矿预测[J]. 地质力学学报,1998,4(2):1-4.WU G G. Ore field structure and metallogenic prognosis[J]. Journal of Geomechanics,1998,4(2):1-4. (in Chinese with English abstract [14] 吴淦国,吕承训. 矿田构造的研究历史、现状与发展[J]. 地质通报,2011,30(4):461-468. doi: 10.3969/j.issn.1671-2552.2011.04.002WU G G,Lü C X. Research history,present situation and development of ore field structure study[J]. Geological Bulletin of China,2011,30(4):461-468. (in Chinese with English abstract doi: 10.3969/j.issn.1671-2552.2011.04.002 [15] 韩润生,刘飞,张艳. 论热液成矿系统中构造体系控矿作用[J]. 地学前缘,2025,32(2):371-389.HAN R S,LIU F,ZHANG Y. Discussion on ore-controlling roles of structural system in hydrothermal metallogenic system[J]. Earth Science Frontiers,2025,32(2):371-389. (in Chinese with English abstract [16] 吴青鹏,杨占龙,郭精义,等. 背斜型构造储层裂缝预测方法探讨:以JLS地区须二段储层为例[J]. 天然气地球科学,2006,17(5):719-722. doi: 10.3969/j.issn.1672-1926.2006.05.024WU Q P,YANG Z L,GUO J Y,et al. Approach of method of antiform reservoir fracture prediction:Taking the reservoir of the 2nd Member of the Xujiahe Formation in JLS area as an example[J]. Natural Gas Geoscience,2006,17(5):719-722. (in Chinese with English abstract doi: 10.3969/j.issn.1672-1926.2006.05.024 [17] 王成金,王义强. 构造应力场控矿原理及控矿规律的实验研究[J]. 地质力学学报,1995,1(2):28-34.WANG C J,WANG Y Q. Experimental study of the prinaple and rega-larity governing tectonic stress control of ore deposits[J]. Journal of Geomechanics,1995,1(2):28-34. (in Chinese with English abstract [18] 何小林,严济池,赵文. 江西宝山矽卡岩型钨多金属矿接触带构造控矿特征及找矿意义[J]. 矿产与地质,2023,37(1):17-25.HE X L,YAN J C,ZHAO W. Ore controlling characteristics and prospecting significance of the contact zone of Baoshan skarn type tungsten polymetallic deposit in Jiangxi[J]. Mineral Resources and Geology,2023,37(1):17-25. (in Chinese with English abstract [19] 赵茂春,余先川,张翼飞,等. 斑岩型矿床容矿裂隙成因的几种概念模型及其意义[J]. 矿床地质,2020,39(1):19-41.ZHAO M C,YU X C,ZHANG Y F,et al. Conceptual model for genesis of mineralized fissures in porphyry deposits and its geological significance[J]. Mineral Deposits,2020,39(1):19-41. (in Chinese with English abstract [20] 李文昌,刘学龙. 云南普朗斑岩型铜矿田构造岩相成矿规律与控矿特征[J]. 地学前缘,2015,22(4):53-66.LI W C,LIU X L. The metallogenic regularity related to the tectonic and petrographic features of Pulang porphyry copper orefield,Yunnan,and its ore-controlling characteristics[J]. Earth Science Frontiers,2015,22(4):53-66. (in Chinese with English abstract [21] 郝金月. 西藏斯弄多银多金属矿床隐爆角砾岩特征及成因研究[D]. 成都:成都理工大学,2021.HAO J Y. Characteristics and genesis of cryptoexplosive breccias in Sinongduo Ag polymetallic deposit,Tibet[D]. Chengdu:Chengdu University of Technology,2021. (in Chinese with English abstract [22] 杨博,韩润生,吴建标,等. 川西南大梁子铅锌矿床构造分级控矿规律与控矿构造组合样式[J]. 地质科技通报,2023,42(1):144-157.YANG B,HAN R S,WU J B,et al. Structural graded ore-controlling rule and ore-controlling structural combination pattern of Daliangzi lead-zinc deposit in southwestern Sichuan[J]. Bulletin of Geological Science and Technology,2023,42(1):144-157. (in Chinese with English abstract [23] 韩润生,胡煜昭,王学琨,等. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报,2012,86(2):280-294. doi: 10.3969/j.issn.0001-5717.2012.02.007HAN R S,HU Y Z,WANG X K,et al. Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in northeastern Yunnan,China[J]. Acta Geologica Sinica,2012,86(2):280-294. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2012.02.007 [24] HAN R S,WU J B,ZHANG Y,et al. Oblique distribution patterns and the underlying mechanical model of orebody groups controlled by structures at different scales[J]. Scientific Reports,2024,14:4591. doi: 10.1038/s41598-024-55473-z [25] 杨开庆. 动力成岩成矿理论的研究内容和方向[J]. 中国地质科学院地质力学研究所文集,1986,(1):1-15.YANG K Q. Reasurch subjects and orientation on the theory of tectono-petrogenesis and tectono-metallogenesis[J]. Collection of articles from the Institute of Geological Mechanics,Chinese Academy of Geological Sciences,1986,(1):1-15. (in Chinese with English abstract [26] 刘飞,王雷,韩润生,等. 滇西北北衙斑岩型金多金属矿田构造体系及其控矿作用[J]. 地学前缘,2017,24(6):208-224.LIU F,WANG L,HAN R S,et al. Ore-field structural system and its ore-controlling processes of the Beiyaporphyry gold polymetallic deposit in northwestern Yunnan,China[J]. Earth Science Frontiers,2017,24(6):208-224. (in Chinese with English abstract [27] 韩润生,王明志,金中国,等. 黔西北铅锌多金属矿集区成矿构造体系及其控矿机制[J]. 地质学报,2020,94(3):850-868. doi: 10.3969/j.issn.0001-5717.2020.03.013HAN R S,WANG M Z,JIN Z G,et al. Ore-controlling mechanism of NE-trending ore-forming structural system at Zn-Pb polymetallic ore concentration area in northwestern Guizhou[J]. Acta Geologica Sinica,2020,94(3):850-868. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2020.03.013 [28] 孙家骢,韩润生. 矿田地质力学理论与方法[M]. 北京:科学出版社,2016.SUN J C,HAN R S. Theory and method of geomechanics in ore field[M]. Beijing:Science Press,2016. (in Chinese) [29] 韩润生,王峰,胡煜昭,等. 会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J]. 大地构造与成矿学,2014,38(4):758-771.HAN R S,WANG F,HU Y Z,et al. Metallogenic tectonic dynamics and chronology constrains on the Huize-type(HZT) germanium-rich silver-zinc-lead deposits[J]. Geotectonica et Metallogenia,2014,38(4):758-771. (in Chinese with English abstract [30] 刘淑文,薛春纪,魏宽义,等. 南秦岭前寒武纪基底构造运动形式与矿床分布规律研究[J]. 陕西师范大学学报(自然科学版),2005,33(3):109-113.LIU S W,XUE C J,WEI K Y,et al. Tectonic movement model of Precambrian basement and distribution of deposits in southern Qinling[J]. Journal of Shaanxi Normal University (Natural Science Edition),2005,33(3):109-113. (in Chinese with English abstract [31] WU J B,HAN R S,ZHANG Y,et al. The fault-fold structure ore control mechanism of hydrothermal deposits:A case study of the Maoping super-large rich-Ge lead-zinc deposit in northeastern Yunnan,China[J]. Ore Geology Reviews,2024,168:106039. doi: 10.1016/j.oregeorev.2024.106039 [32] 成功,石增龙,韩润生,等. 滇东北毛坪富锗铅锌矿床“多层位” 赋矿规律及其控制机理[J]. 矿物岩石地球化学通报,2023,42(1):167-179.CHENG G,SHI Z L,HAN R S,et al. The "multi-horizon" ore-hosting regularity and ore-controlling mechanism of the Maoping Ge-rich lead-zinc deposit in the northeastern Yunnan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2023,42(1):167-179. (in Chinese with English abstract [33] 吴建标,韩润生,周高明,等. 滇东北毛坪富锗铅锌矿床构造控矿作用及深部找矿方向[J]. 大地构造与成矿学,2023,47(5):984-1001.WU J B,HAN R S,ZHOU G M,et al. Structural ore-controlling and deep prospecting direction of the maoping lead-zinc deposit in northeastern Yunnan,China[J]. Geotectonica et Metallogenia,2023,47(5):984-1001. (in Chinese with English abstract [34] 王磊,韩润生,张艳,等. 滇东北毛坪铅锌矿床矿体空间结构及深部矿体预测[J]. 矿床地质,2022,41(2):207-224.WANG L,HAN R S,ZHANG Y,et al. Spatial structure of orebodies and prediction of deep orebodies of Maoping lead-zinc deposit,northeastern Yunnan Province[J]. Mineral Deposits,2022,41(2):207-224. (in Chinese with English abstract [35] 赵冻,韩润生,任涛,等. 滇东北乐红大型铅锌矿床流体包裹体地球化学[J]. 矿床地质,2018,37(5):1018-1036.ZHAO D,HAN R S,REN T,et al. Characteristics of fluid inclusions geochemistry of Lehong large-sized Pb-Zn ore deposit,northeastern Yunnan Province[J]. Mineral Deposits,2018,37(5):1018-1036. (in Chinese with English abstract [36] 翟裕生,邓军,彭润民,等. 成矿系统论[M]. 北京:地质出版社,2011.ZHAI Y S,DENG J,PENG R M,et al. Metallogenic systems[M]. Beijing:Geological Publishing House,2011. (in Chinese) [37] 涂光炽. 构造与地球化学[J]. 大地构造与成矿学,1984,8(1):1-5.TU G C. Tectonics and geochemistry[J]. Geotectonica et Metallogenia,1984,8(1):1-5. (in Chinese with English abstract [38] 韩润生. 构造地球化学近十年主要进展[J]. 矿物岩石地球化学通报,2013,32(2):198-203.HAN R S. Main study progress for ten years of tectono-geochemistry[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2013,32(2):198-203. (in Chinese with English abstract [39] 吕古贤. 不同构造变形带中“静水压力” 的差别[J]. 中国地质科学院院报,1993,14(1):39-47.Lü G X. On the differences of hydrostatic pressure in zones with different deformation properties[J]. Acta Geoscientica Sinica,1993,14(1):39-47. (in Chinese with English abstract [40] 吕古贤. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报,2019,25(5):962-980.Lü G X. Research on tectonic dynamo-petrogenesis and metallogenesis and tectonophysicochemistry[J]. Journal of Geomechanics,2019,25(5):962-980. (in Chinese with English abstract [41] 韩润生,吴鹏,王峰,等. 论热液矿床深部大比例尺“四步式”找矿方法:以川滇黔接壤区毛坪富锗铅锌矿为例[J]. 大地构造与成矿学,2019,43(2):246-257.HAN R S,WU P,WANG F,et al. "four steps type" ore-prospecting method for deeply concealed hydrothermal ore deposits:A case study of the maoping Zn-Pb-(Ag-Ge) deposit in southwestern China[J]. Geotectonica et Metallogenia,2019,43(2):246-257. (in Chinese with English abstract [42] 叶天竺,吕志成,庞振山,等. 勘查区找矿预测理论和方法(总论)[M]. 北京:地质出版社,2015.YE T Z,LÜ Z C,PANG Z S,et al. Theory and methods of prospecting and prediction in exploration areas (general)[M]. Beijing:Geological Publishing House,2015. (in Chinese) [43] 韩润生,王雷,方维萱,等. 初论云南易门地区凤山铜矿床刺穿构造岩−岩相分带模式[J]. 地质通报,2011,30(4):495-504.HAN R S,WANG L,FANG W X,et al. The preliminary discussion on diapir structure-lithofacies zonation model for the Fengshan copper deposit,Yimen area,Yunnan,China[J]. Geological Bulletin of China,2011,30(4):495-504. (in Chinese with English abstract [44] 方维萱,王寿成,贾润幸,等. 大比例尺构造岩相学填图理论创新、技术研发与发展方向[J]. 矿产勘查,2021,12(7):1488-1518.FANG W X,WANG S C,JIA R X,et al. Theoretical innovation,technology research and development,and frontiers on large-scale mapping of tectonic lithofacies[J]. Mineral Exploration,2021,12(7):1488-1518. (in Chinese with English abstract [45] 韩润生. 隐伏矿定位预测的矿田(床)构造地球化学方法[J]. 地质通报,2005,24(增刊1):978-984.HAN R S. Orefield/deposit tectono-geochemical method for the localization and prognosis of concealed orebodies[J]. Regional Geology of China,2005,24(S1):978-984. (in Chinese with English abstract [46] 孙岩,徐士进,刘德良,等. 断裂构造地球化学导论[M]. 北京:科学出版社. 1998.SUN Y,XU S J,LIU D L,et al. An introduction of tectonogeochemistry in fault zones[M]. Beijing:Science Press,1998. (in Chinese) [47] 韩润生,陈进,黄智龙,等. 构造成矿动力学及隐伏矿定位预测:以云南会泽超大型铅锌(银、锗)矿床为例[M]. 北京:科学出版社,2006.HAN R S,CHEN J,HUANG Z L,et al. Dynamics of tectonic ore-forming processes and localization-prognosis of concealed orebodies:As exemplified by the Huize super-large Zn-Pb-(Ag-Ge) district,Yunnan[M]. Beijing:Science Press,2006. (in Chinese) [48] 韩润生,陈进,高德荣,等. 构造地球化学在隐伏矿定位预测中的应用[J]. 地质与勘探,2003,39(6):25-28.HAN R S,CHEN J,GAO D R,et al. Application of tectono-geochemical ore-finding method in orientation prognosis of concealed ores[J]. Geology and Prospecting,2003,39(6):25-28. (in Chinese with English abstract [49] 吴鹏,韩润生,冉崇英,等. 云南易门凤山铜矿床“阶梯空当” 定位矿体及其构造地球化学异常证据[J]. 大地构造与成矿学,2014,38(4):879-884. doi: 10.3969/j.issn.1001-1552.2014.04.013WU P,HAN R S,RAN C Y,et al. "Stepladder blank" orientation prognosis of ore bodies and tectono-geochemical anomaly evidence in the Fengshan copper deposit,Yimen area,Yunnan[J]. Geotectonica et Metallogenia,2014,38(4):879-884. (in Chinese with English abstract doi: 10.3969/j.issn.1001-1552.2014.04.013 [50] 刘云祥,司华陆,乔海燕,等. 中国油气重磁勘探技术进步与展望[J]. 物探与化探,2023,47(3):563-574.LIU Y X,SI H L,QIAO H Y,et al. Progress and prospect of gravity and magnetic techniques for hydrocarbon exploration in China[J]. Geophysical and Geochemical Exploration,2023,47(3):563-574. (in Chinese with English abstract [51] 牛兴国,许志河,孙丰月,等. 胶东招平断裂南段山后金矿区深部地球物理特征及找矿效果[J]. 黄金,2022,43(6):12-16.NIU X G,XU Z H,SUN F Y,et al. Geophysical characteristics and prospecting effect deep in Shanhou Gold District,south part of Zhaoping Fault,Jiaodong Peninsula[J]. Gold,2022,43(6):12-16. (in Chinese with English abstract [52] 刘鹏飞,刘天佑,陈国雄. 南岭花岗岩重力场特征与找矿意义[J]. 工程地球物理学报,2013,10(1):1-6.LIU P F,LIU T Y,CHEN G X. Characteristics of Nanling granite gravity field and significance of prospecting[J]. Chinese Journal of Engineering Geophysics,2013,10(1):1-6. (in Chinese with English abstract [53] 娄德波,宋国玺,李楠,等. 磁法在我国矿产预测中的应用[J]. 地球物理学进展,2008,23(1):249-256.LOU D B,SONG G X,LI N,et al. The application of magnetic method in national mineral prediction[J]. Progress in Geophysics,2008,23(1):249-256. (in Chinese with English abstract [54] 杨磊,付荣钦,侯同舟,等. 高精度磁法在冀东变质岩区某铁矿区勘查中的应用[J]. 矿产勘查,2022,13(12):1804-1810.YANG L,FU R Q,HOU T Z,et al. Application of high-precision magnetic method in exploration of an iron deposit in metamorphic rock in eastern Hebei Province[J]. Mineral Exploration,2022,13(12):1804-1810. (in Chinese with English abstract [55] 韩润生,李文尧,王峰. 一种坑道重力全空间域定位探测高密度隐伏矿体的方法:CN104155699B[P]. 2017-02-22.HAN R S,LI W Y,WANG F,et al. A method for detecting high-density hidden ore bodies using gravity full space domain positioning in tunnels:CN104155699B[P]. 2017-02-22. (in Chinese) [56] 顾雪祥,李葆华,章永梅,等. 矿床学研究方法及应用[M]. 北京:地质出版社,2019.GU X X,LI B H,ZHANG Y M,et al. Research method and application of mineral deposit science[M]. Beijing:Geological Publishing House,2019. (in Chinese) [57] 李国猛. 川滇黔地区大梁子MVT型Pb-Zn(Cd)矿床成矿机制研究[D]. 武汉:中国地质大学(武汉),2023.LI G M. Metallogenic mechanism of the daliangzi MVT Pb-Zn(Cd) deposit in Sichuan-Yunnan-Guizhou metallogenic province,SW China[D]. Wuhan:China University of Geosciences(Wuhan),2023. (in Chinese with English abstract [58] 邓浩铭,唐永永,叶霖,等. 黔东南丹寨地区热液脉型铅锌矿床成矿流体性质及来源[J]. 矿物学报,2025,45(1):39-54.DENG H M,TANG Y Y,YE L,et al. Properties and origins of the ore-forming fluids of hydrothermal vein-type Pb-Zn deposits in the Danzhai area in the southeastern Guizhou,China[J]. Acta Mineralogica Sinica,2025,45(1):39-54. (in Chinese with English abstract [59] 倪培,范宏瑞,潘君屹,等. 流体包裹体研究进展与展望(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(4):802-818.NI P,FAN H R,PAN J Y,et al. Progress and prospect of fluid inclusion research in the past decade in China (2011-2020)[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(4):802-818. (in Chinese with English abstract [60] 严子清,石文杰,张鹏涛,等. 胶东大尹格庄金矿成矿流体时空演化及矿床成因:来自流体包裹体、成矿元素和H-O-S-Pb同位素证据[J]. 地质科技通报,2024,43(2):156-174.YAN Z Q,SHI W J,ZHANG P T,et al. Ore genesis and vertical variations of ore-forming fluids in the Dayingezhuang gold deposit,Jiaodong Peninsula:Constraints from fluid inclusions,ore forming elements,and H-O-S-Pb isotopes[J]. Bulletin of Geological Science and Technology,2024,43(2):156-174. (in Chinese with English abstract [61] 李晓东,张艳,韩润生,等. 流体包裹体研究进展及其在矿床学中的应用[J]. 地质论评,2022,68(6):2305-2318.LI X D,ZHANG Y,HAN R S,et al. Research progress of fluid inclusions and its application in ore deposit[J]. Geological Review,2022,68(6):2305-2318. (in Chinese with English abstract [62] 郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社,2000.ZHENG Y F,CHEN J F. Isotopic geochemistry[M]. Beijing:Science Press,2000. (in Chinese) [63] NI P,PAN J Y,WANG G G,et al. A CO2-rich porphyry ore-forming fluid system constrained from a combined cathodoluminescence imaging and fluid inclusion studies of quartz veins from the Tongcun Mo deposit,South China[J]. Ore Geology Reviews,2017,81:856-870. doi: 10.1016/j.oregeorev.2016.07.007 [64] 王静,张达玉,张飞,等. 江南钨矿带东段长岭尖钨多金属矿床成矿年代、成矿流体特征及成因分析[J/OL]. 地质论评:1-20[2024-11-25]. https://link. cnki. net/doi/10.16509/j. georeview. 2024.10. 055.WANG J,ZHANG D Y,ZHANG F,et al. Metallogenic age,ore-forming fluid characteristics and genesis analysis of Changlingjian tungsten polymetallic deposit in the east of Jiangnan tungsten belt[J/OL]. Geological Review:1-20[2024-11-25]. https://link.cnki.net/doi/10.16509/j.georeview.2024.10.055. [65] CAMPBELL A R,HACKBARTH C J,PLUMLEE G S,et al. Internal features of ore minerals seen with the infrared microscope[J]. 1984,79(6):1387-1392. [66] NI P,ZHU X,WANG R C,et al. Constraining ultrahigh-pressure (UHP) metamorphism and titanium ore formation from an infrared microthermometric study of fluid inclusions in rutile from Donghai UHP eclogites,eastern China[J]. 2008,120(9/10):1296-1304. [67] WEI W F,HU R Z,BI X W,et al. Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit,Jiangxi Province,China[J]. Mineralium Deposita,2012,47(6):589-605. doi: 10.1007/s00126-011-0377-0 [68] 韩润生,李波,倪培,等. 闪锌矿流体包裹体显微红外测温及其矿床成因意义:以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版),2016,46(1):91-104.HAN R S,LI B,NI P,et al. Infrared micro-thermometry of fluid inclusions in sphalerite and geological significance of Huize super-large Zn-Pb-(Ge-Ag)deposit,Yunnan Province[J]. Journal of Jilin University (Earth Science Edition),2016,46(1):91-104. (in Chinese with English abstract [69] 陈应华,蓝廷广,唐燕文,等. 闪锌矿中单个流体包裹体成分LA-ICP-MS分析及其指示意义:以南岭新田岭钨矿床为例[J]. 矿床地质,2023,42(5):859-876.CHEN Y H,LAN T G,TANG Y W,et al. LA-ICP-MS analysis of single fluid inclusions in sphalerite and its implications:A case study from Xintianling tungsten deposit in Nanling region,South China[J]. Mineral Deposits,2023,42(5):859-876. (in Chinese with English abstract [70] 李建威,赵新福,邓晓东,等. 新中国成立以来中国矿床学研究若干重要进展[J]. 中国科学:地球科学,2019,49(11):1720-1771.LI J W,ZHAO X F,DENG X D,et al. An overview of the advance on the study of China's ore deposits during the last seventy years[J]. Scientia Sinica (Terrae),2019,49(11):1720-1771. (in Chinese with English abstract [71] ZHU C W,WANG J,ZHANG J W,et al. Isotope geochemistry of Zn,Pb and S in the Ediacaran strata hosted Zn-Pb deposits in Southwest China[J]. Ore Geology Reviews,2020,117:103274. doi: 10.1016/j.oregeorev.2019.103274 [72] LUO Z Y,LI H,GHADERI M,et al. A review of W and Sn isotopes and insights into their emerging applications in ore deposit geology[J]. International Geology Review,2025,67(3):381-404. doi: 10.1080/00206814.2024.2392255 [73] WU J H,LI H,MATHUR R,et al. Compositional variation and Sn isotope fractionation of cassiterite during magmatic-hydrothermal processes[J]. Earth and Planetary Science Letters,2023,613:118186. doi: 10.1016/j.jpgl.2023.118186 [74] 岳素伟,林振文,邓小华,等. 陕西省煎茶岭金矿C、H、O、S、Pb同位素地球化学示踪[J]. 大地构造与成矿学,2013,37(4):653-670.YUE S W,LIN Z W,DENG X H,et al. C,H,O,S,Pb isotopic geochemistry of the Jianchaling gold deposit,Shaanxi Province[J]. Geotectonica et Metallogenia,2013,37(4):653-670. (in Chinese with English abstract [75] ZHANG Y,HAN R S,LEI W,et al. Zn-S isotopic fractionation effect during the evolution process of ore-forming fluids:A case study of the ultra-large Huize rich Ge-bearing Pb–Zn deposit[J]. Applied Geochemistry,2022,140:105240. [76] 陈伟林,肖凡. 成矿动力学数值计算模拟研究进展:理论、方法与技术[J]. 地质科技通报,2023,42(3):234-249.CHEN W L,XIAO F. Advances in numerical modeling of metallogenic dynamics:A review of theories,methods and technologies[J]. Bulletin of Geological Science and Technology,2023,42(3):234-249. (in Chinese with English abstract [77] 肖凡,陈信宇. 基于数值模拟与勘查数据协同驱动的矿产定量预测:以凡口铅锌矿为例[J/OL]. 大地构造与成矿学:1-23[2024-07-29]. https://link. cnki. net/doi/10.16539/j. ddgzyckx. 2024.01. 123.XIAO F,CHEN X Y. Numerical modeling and exploration data coupled driven mineral prospectivity mapping:A case study from Fankou Pb-Zn deposit[J/OL]. Geotectonica et Metallogenia:1-23[2024-07-29]. https://link.cnki.net/doi/10.16539/j.ddgzyckx.2024.01.123. (in Chinese with English abstract). (in Chinese with English abstract [78] 周永章,黎培兴,王树功,等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报,2017,36(2):327-331. doi: 10.3969/j.issn.1007-2802.2017.02.016ZHOU Y Z,LI P X,WANG S G,et al. Research progress on big data and intelligent modelling of mineral deposits[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(2):327-331. (in Chinese with English abstract doi: 10.3969/j.issn.1007-2802.2017.02.016 [79] 谢玉芝,汪洋. 机器学习在岩矿地球化学研究中的应用:综述与思考[J]. 地质论评,2023,69(4):1465-1474.XIE Y Z,WANG Y. A review on the machine learning approach to rock and mineral geochemistry research[J]. Geological Review,2023,69(4):1465-1474. (in Chinese with English abstract [80] 邓依,张静,钟日晨,等. 基于机器学习的主成分分析方法在金矿类型判别中的应用:以黄铁矿元素地球化学特征为例[J]. 岩石学报,2024,40(6):1801-1816. doi: 10.18654/1000-0569/2024.06.07DENG Y,ZHANG J,ZHONG R C,et al. Application of principal component analysis method based on machine learning to gold deposit type discrimination:A case study of the geochemical characteristics of pyrite[J]. Acta Petrologica Sinica,2024,40(6):1801-1816. (in Chinese with English abstract doi: 10.18654/1000-0569/2024.06.07 [81] NEUZIL C E. Hydromechanical coupling in geologic processes[J]. Hydrogeology Journal,2003,11(1):41-83. doi: 10.1007/s10040-002-0230-8 [82] RUTQVIST J,STEPHANSSON O. The role of hydromechanical coupling in fractured rock engineering[J]. Hydrogeology Journal,2003,11(1):7-40. doi: 10.1007/s10040-002-0241-5 [83] WINTSCH R P,CHRISTOFFERSEN R,KRONENBERG A K. Fluid-rock reaction weakening of fault zones[J]. Journal of Geophysical Research:Solid Earth,1995,100(B7):13021-13032. doi: 10.1029/94JB02622 [84] TOBIN H,VANNUCCHI P,MESCHEDE M. Structure,inferred mechanical properties,and implications for fluid transport in the décollement zone,Costa Rica convergent margin[J]. Geology,2001,29(10):907-910. [85] WAWRZYNIEC T,SELVERSTONE J,AXEN G J. Correlations between fluid composition and deep-seated structural style in the footwall of the Simplon low-angle normal fault,Switzerland[J]. Geology,1999,27(8):715-718. [86] LIU W H,SPINKS S C,GLENN M,et al. How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization[J]. 2021,49(11):1363-1368. [87] SAUSSE J,JACQUOT E,FRITZ B,et al. Evolution of crack permeability during fluid-rock interaction. Example of the Brézouard granite (Vosges,France)[J]. Tectonophysics,2001,336(1/2/3/4):199-214. [88] 熊义辉. 构造−流体−成矿系统自组织临界性模拟研究[D]. 武汉:中国地质大学(武汉),2019.XIONG Y H. Studying of the self-organized criticality of tectonic-fluid-mineralization[D]. Wuhan:China University of Geosciences(Wuhan),2019. (in Chinese with English abstract [89] 陈衍景,张静,张复新,等. 西秦岭地区卡林:类卡林型金矿床及其成矿时间、构造背景和模式[J]. 地质论评,2004,50(2):134-152. doi: 10.3321/j.issn:0371-5736.2004.02.004CHEN Y J,ZHANG J,ZHANG F X,et al. Carlin and carlin-like gold deposits in western Qinling Mountains and their metallogenic time,tectonic setting and model[J]. Geological Review,2004,50(2):134-152. (in Chinese with English abstract doi: 10.3321/j.issn:0371-5736.2004.02.004 [90] 於崇文,岑况,鲍征宇,等. 成矿作用动力学[M]. 北京:地质出版社,1998.YU C W,CENG K,BAO Z Y,et al. Dynamics of ore-forming processes[M]. Beijing:Geological Publishing House,1998. (in Chinese) [91] 邓军,孙忠实,杨立强,等. 吉林夹皮沟金矿带构造地球化学特征分析[J]. 高校地质学报,2000,6(3):405-411. doi: 10.3969/j.issn.1006-7493.2000.03.005DENG J,SUN Z S,YANG L Q,et al. Tectono-geochemical analysis of Jiapigou gold belt,Jilin Province[J]. Geological Journal of China Universitiesf,2000,6(3):405-411. (in Chinese with English abstract doi: 10.3969/j.issn.1006-7493.2000.03.005 [92] 宋丹辉,韩润生,王明志,等. 黔西北青山铅锌矿床主要控矿断裂构造岩−岩相分带模式[J]. 地质力学学报,2020,26(3):376-390. doi: 10.12090/j.issn.1006-6616.2020.26.03.033SONG D H,HAN R S,WANG M Z,et al. Model of tectonite-lithofacies zoning in ore-controlling faults of the Qingshan lead-zinc deposit in northwestern Guizhou[J]. Journal of Geomechanics,2020,26(3):376-390. (in Chinese with English abstract doi: 10.12090/j.issn.1006-6616.2020.26.03.033 [93] 李波. 滇东北地区会泽、松梁铅锌矿床流体地球化学与构造地球化学研究[D]. 昆明:昆明理工大学,2010.LI B. The study of fluid inclusions geochemistry and tectonic geochemistry of lead-zinc deposits:Taking Huize and songliang lead-zinc deposits for examples,in the northeast of Yunnan Province,China[D]. Kunming:Kunming University of Science and Technology,2010. (in Chinese with English abstract [94] 万新,韩润生,李波,等. 黔西北乐开铅锌矿床构造地球化学研究及深部找矿预测[J]. 中国地质,2022,49(6):1875-1892. doi: 10.12029/gc20220613WAN X,HAN R S,LI B,et al. Tectono-geochemistry and deep prospecting prediction in the Lekai lead-zinc deposit,northwestern Guizhou Province,China[J]. Geology in China,2022,49(6):1875-1892. (in Chinese with English abstract doi: 10.12029/gc20220613 [95] 董树文,马立成,刘刚,等. 论长江中下游成矿动力学[J]. 地质学报,2011,85(5):612-625.DONG S W,MA L C,LIU G,et al. On dynamics of the metallogenic belt of middle-lower reaches of Yangtze River,eastern China[J]. Acta Geologica Sinica,2011,85(5):612-625. (in Chinese with English abstract -