留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

元素扫描测井在煤系烃源岩识别与评价中的应用

王斌 夏宗立 张科 李玲 王中瑞 赵飞 张有鹏 赖锦

王斌,夏宗立,张科,等. 元素扫描测井在煤系烃源岩识别与评价中的应用[J]. 地质科技通报,2025,${article_volume}(0):1-12 doi: 10.19509/j.cnki.dzkq.tb20240386
引用本文: 王斌,夏宗立,张科,等. 元素扫描测井在煤系烃源岩识别与评价中的应用[J]. 地质科技通报,2025,${article_volume}(0):1-12 doi: 10.19509/j.cnki.dzkq.tb20240386
WANG Bin,XIA Zongli,ZHANG Ke,et al. Application of LithoScanner logs in recognition and evaluation of coaly source rocks[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-12 doi: 10.19509/j.cnki.dzkq.tb20240386
Citation: WANG Bin,XIA Zongli,ZHANG Ke,et al. Application of LithoScanner logs in recognition and evaluation of coaly source rocks[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-12 doi: 10.19509/j.cnki.dzkq.tb20240386

元素扫描测井在煤系烃源岩识别与评价中的应用

doi: 10.19509/j.cnki.dzkq.tb20240386
基金项目: 中国石油天然气集团有限公司科技项目“超深层碎屑岩油气分布规律与区带目标优选”(2023ZZ14YJ02);中国石油天然气股份有限公司科技专项“塔里木盆地深层碎屑岩重点地区综合地质研究、目标优选、技术攻关与现场试验”(2022KT0201);国家自然科学基金项目(42072150);中国石油大学(北京)科研启动基金项目(2462021YXZZ003);中国石油-中国石油大学(北京)战略合作协议项目(ZLZX2020-01)
详细信息
    作者简介:

    王斌:E-mail:wangb3-tlm@petrolchina.com.cn

    通讯作者:

    E-mail:laijin@cup.edu.cn

Application of LithoScanner logs in recognition and evaluation of coaly source rocks

More Information
  • 摘要:

    库车坳陷三叠系、侏罗系发育湖泊相和沼泽相间互沉积的5套烃源岩层系,按岩性可划分出煤、炭质泥岩和暗色泥岩,其烃源岩具有总有机碳(TOC)丰度较高、厚度大、分布范围广等特征。由于烃源岩纵向分布层系多,不同岩性分布及纵向非均质性强,导致常用的ΔlgR法等在TOC测井定量表征中应用效果较差。为了更好地了解库车坳陷油气资源潜力以及评估油气储量,首先通过岩心等识别了烃源岩岩性特征,进一步通过地球化学分析资料实现烃源岩地质特征评价。将ΔlgRR为测井电阻率)法运用于TOC测井定量评价,然后将元素扫描测井应用于烃源岩岩性的测井识别工作中,并进一步利用元素扫描测井实现TOC测井定量评价。整体上,三叠系、侏罗系有机质类型以Ⅱ1型、Ⅱ2型和Ⅲ型为主,有机质演化为成熟阶段,其烃源岩品质为中等−好烃源岩。通过元素扫描测井识别不同岩性烃源岩并进一步定量评价TOC的方法,其精度相比ΔlgR法提升显著。研究成果对库车坳陷油气资源潜力评估有一定指导意义,同时还有利于拓展元素扫描测井资料应用范围。

     

  • 图 1  库车坳陷三叠系−侏罗系烃源岩岩性特征图

    A. 暗色泥岩,J2kz(克孜勒努尔组,下同),DB2井,4045.17 m;B. 碳质泥岩,T3t(塔里奇克组,下同),TD202井,5110.22 m;C. 煤,T3t,TD202井,5111.85 m

    Figure 1.  Core photos showing the various lithology of Triassic-Jurassic source rocks in Kuqa Depression

    图 2  库车坳陷三叠−侏罗系烃源岩TmaxIH关系图

    Figure 2.  Relationship between Tmax and IH of Triassic-Jurassic source rocks in Kuqa Depression

    图 3  库车坳陷三叠系−侏罗系烃源岩品质评价

    A:湖相泥岩;B:煤系泥岩;C:煤岩;D:碳质泥岩

    Figure 3.  Source rock property evaluation of Triassic-Jurassic source rocks in Kuqa Depression

    图 4  库车坳陷DB501井侏罗系阳霞组暗色泥岩常规−成像−元素扫描测井响应特征

    Figure 4.  Conventional-image log and lithoscanner log responses of dark mudrocks of Jurassic Yangxia Formation of Well DB501 in Kuqa Depression

    图 5  库车坳陷DB501井侏罗系克孜勒努尔组碳质泥岩常规−成像−lithoscanner测井响应

    Figure 5.  Conventional-image log and lithoscanner log responses of canbonferious mudrocks of Jurassic Kezilenuer Formation of Well DB501 in Kuqa Depression

    图 6  库车坳陷DB501井侏罗系克孜勒努尔组煤常规-成像-LithoScanner测井响应

    Figure 6.  Conventional-image log and LithoScanner log responses of coal of Jurassic Kezilenuer Formation of Well DB501 in Kuqa Depression

    图 7  基于ΔlgR法与岩性扫描测井的库车坳陷烃源TOC测井定量评价方法(DB501井)

    Figure 7.  TOC content evaluation of source rocks in Kuqa Depression using ΔlgR method and LithoScanner logs (Well DB501)

    图 8  基于ΔlgR法计算的TOC与岩心实测TOC交会图

    Figure 8.  Crossplot of core TOC versus TOCcalculated by ΔlgR method

    图 9  基于LithoScanner测井计算的TOC与岩心实测TOC交会图

    Figure 9.  Crossplot of core TOC content versus TOC content calculated by LithoScanner log

    表  1  库车坳陷三叠系−侏罗系烃源岩实测镜质体反射率(Ro)

    Table  1.   Reflectance of vitrinite measured from Triassic-Jurassic source rocks in Kuqa Depression

    地区 井号 层位 Ro平均值/% 层位 Ro平均值/%
    吐格地区 TX1 J1y 0.82 J2kz /
    MN1 J1y 0.58 J2kz 0.59
    TG4 J1y 0.76 J2kz /
    TG6 J1y 1.17 J2kz 0.88
    TD2 J1y 1.09 J2kz /
    迪北地区 YS4 J1y 0.71 J2kz 0.68
    YN2 J1y 0.95 J2kz 0.85
    YN4 J1y 0.96 J2kz 0.81
    YN5 J1y 0.96 J2kz /
    DB5 J1y 1.17 J2kz 0.98
    DB6 J1y 1.18 J2kz 0.88
    阳霞地区 YT1 J1y 1.05 J2kz 1.07
    YX1 J1y 0.92 J2kz 0.89
    注:J1y.下侏罗统阳霞组;J2kz.中侏罗统克孜勒努尔组
    下载: 导出CSV

    表  2  库车坳陷三叠系−侏罗系煤系烃源岩测井响应特征

    Table  2.   Logging response characteristics of hydrocarbon source rocks of Triassic-Jurassic coal system in Kucha Depression

    岩性 暗色泥岩 碳炭质泥岩
    GR/API >120 >120 <60
    CNC/% >20 >30 >40
    DT/(μs·ft−1) >70 >80 >110
    RT/(Ω⋅m) >5 >10 >50
    DEN/(g·cm−3) <2.6 <2.5 <2.0
    下载: 导出CSV
  • [1] 邹才能, 陶士振, 薛叔浩. “相控论” 的内涵及其勘探意义[J]. 石油勘探与开发, 2005, 32(6): 7-12. doi: 10.3321/j.issn:1000-0747.2005.06.002

    ZOU C N, TAO S Z, XUE S H. Connotation of “facies control theory” and its significance for exploration[J]. Petroleum Exploration and Development, 2005, 32(6): 7-12. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0747.2005.06.002
    [2] 霍秋立, 曾花森, 付丽, 等. ΔlgR测井源岩评价方法的改进及其在松辽盆地的应用[J]. 吉林大学学报(地球科学版), 2011, 41(2): 586-591.

    HUO Q L, ZENG H S, FU L, et al. The advance of ΔlgR method and its application in Songliao basin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(2): 586-591. (in Chinese with English abstract
    [3] 胡慧婷, 卢双舫, 刘超, 等. 测井资料计算源岩有机碳含量模型对比及分析[J]. 沉积学报, 2011, 29(6): 1199-1205.

    HU H T, LU S F, LIU C, et al. Models for calculating organic carbon content from logging information: Comparison and analysis[J]. Acta Sedimentologica Sinica, 2011, 29(6): 1199-1205. (in Chinese with English abstract
    [4] 赖锦, 白天宇, 苏洋, 等. 烃源岩测井识别与评价方法研究进展[J]. 地质论评, 2024, 70(2): 721-741.

    LAI J, BAI T Y, SU Y, et al. Researches progress in well log recognition and evaluation of source rocks[J]. Geological Review, 2024, 70(2): 721-741. (in Chinese with English abstract
    [5] 高阳. 利用测井信息评价盐湖相烃源岩[J]. 沉积学报, 2013, 31(4): 730-737.

    GAO Y. Salt lake source rock evaluation by logging data[J]. Acta Sedimentologica Sinica, 2013, 31(4): 730-737. (in Chinese with English abstract
    [6] MAHMOUD A A A, ELKATATNY S, MAHMOUD M, et al. Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network[J]. International Journal of Coal Geology, 2017, 179: 72-80. doi: 10.1016/j.coal.2017.05.012
    [7] 殷杰, 王权. 利用测井和地震信息识别和预测优质烃源岩: 以渤海湾盆地饶阳凹陷沙一段为例[J]. 天然气地球科学, 2017, 28(11): 1761-1770.

    YIN J, WANG Q. Using seismic and log information to identify and predict high-quality source rocks: A case study of the first member of Shahejie Formation in Raoyang Sag, Bohai Bay Basin[J]. Natural Gas Geoscience, 2017, 28(11): 1761-1770. (in Chinese with English abstract
    [8] LAI J, SU Y, XIAO L, et al. Application of geophysical well logs in solving geologic issues: Past, present and future prospect[J]. Geoscience Frontiers, 2024, 15(3): 101779. doi: 10.1016/j.gsf.2024.101779
    [9] 陈海峰, 王凤启, 王民, 等. 基于变系数ΔlogR技术的烃源岩TOC精细评价[J]. 中国石油大学学报(自然科学版), 2017, 41(4): 54-64. doi: 10.3969/j.issn.1673-5005.2017.04.007

    CHEN H F, WANG F Q, WANG M, et al. TOC evaluation using variable-coefficient ΔlogR model[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(4): 54-64. (in Chinese with English abstract doi: 10.3969/j.issn.1673-5005.2017.04.007
    [10] AZIZ H, EHSAN M, ALI A, et al. Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: A case study from the sembar formation, southern Indus Basin, Pakistan[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103433. doi: 10.1016/j.jngse.2020.103433
    [11] 袁超, 周灿灿, 胡松, 等. 地层有机碳含量测井评价方法综述[J]. 地球物理学进展, 2014, 29(6): 2831-2837. doi: 10.6038/pg20140652

    YUAN C, ZHOU C C, HU S, et al. Summary on well logging evaluation method of total organic carbon content in formation[J]. Progress in Geophysics, 2014, 29(6): 2831-2837. (in Chinese with English abstract doi: 10.6038/pg20140652
    [12] LAI J, WANG G W, FAN Q X, et al. Geophysical well-log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects[J]. Surveys in Geophysics, 2022, 43(3): 913-957. doi: 10.1007/s10712-022-09705-4
    [13] 赖锦, 苏洋, 肖承文, 等. 地球物理测井在地质领域应用经典案例解析[J]. 地质科技通报, 2024, 43(5): 279-288.

    LAI J, SU Y, XIAO C W, et al. Analysis of typical applications of geophysical well logs in geological fields[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 279-288. (in Chinese with English abstract
    [14] PASSEY Q R, CREANEY S, KULLA J B, et al. A practical model for organic richness from porosity and resistivity Logs1[J]. AAPG Bulletin, 1990, 74(12): 1777-1794.
    [15] 王贵文, 朱振宇. 烃源岩测井识别与评价方法研究[J]. 石油勘探与开发, 2002, 29(4): 50-52. doi: 10.3321/j.issn:1000-0747.2002.04.015

    WANG G W, ZHU Z Y. Logging identification and evaluation Cambrian-Ordovician source rocks in syneclise of Tarim Basin[J]. Petroleum Exploration and Development, 2002, 29(4): 50-52. (in Chinese with English abstract doi: 10.3321/j.issn:1000-0747.2002.04.015
    [16] ZHAO P Q, MAO Z Q, HUANG Z H, et al. A new method for estimating total organic carbon content from well logs[J]. AAPG Bulletin, 2016, 100(8): 1311-1327.
    [17] AMOSU A, SUN Y F. Identification of thermally mature total organic carbon-rich layers in shale formations using an effective machine-learning approach[J]. Interpretation, 2021, 9(3): T735-T745.
    [18] 杨涛涛, 邵大力, 曹光伟, 等. 烃源岩测井定量评价方法探讨[J]. 地球物理学进展, 2018, 33(1): 285-291. doi: 10.6038/pg2018AA0358

    YANG T T, SHAO D L, CAO G W, et al. Logging quantitative evaluation method for hydrocarbon source rock[J]. Progress in Geophysics, 2018, 33(1): 285-291. (in Chinese with English abstract doi: 10.6038/pg2018AA0358
    [19] LAI J, ZHAO F, XIA Z L, et al. Well log prediction of total organic carbon: A comprehensive review[J]. Earth-Science Reviews, 2024, 258: 104913. doi: 10.1016/j.earscirev.2024.104913
    [20] 袁龙, 王谦, 虞兵, 等. 致密气藏烃源岩地化参数测井综合评价方法研究[J]. 地球物理学进展, 2020, 35(1): 239-249. doi: 10.6038/pg2020CC0562

    YUAN L, WANG Q, YU B, et al. Well logging evaluation method research of source rock geochemical parameters in the tight gas[J]. Progress in Geophysics, 2020, 35(1): 239-249. (in Chinese with English abstract doi: 10.6038/pg2020CC0562
    [21] 黄小鹏, 杨占龙, 张兆辉, 等. 烃源岩地化参数的测井反演: 以雅布赖盆地小湖次凹侏罗系新河组下段为例[J]. 煤炭学报, 2020, 45(增刊1): 415-426.

    HUANG X P, YANG Z L, ZHANG Z H, et al. Logging inversion geochemical parameters of hydrocarbon source rocks: A case study of Jurassic Lower Xinhe Formation in Xiaohu Sub-sag, Yabulai Basin[J]. Journal of China Coal Society, 2020, 45(S1): 415-426. (in Chinese with English abstract
    [22] 杜文凤, 王攀, 梁明星, 等. 煤系烃源岩有机碳含量测井响应特征与定量预测模型[J]. 煤炭学报, 2016, 41(4): 954-963.

    DU W F, WANG P, LIANG M X, et al. Well logs response characteristics and quantitative prediction model of organic carbon content of hydrocarbon source rocks in coal-bearing strata measures[J]. Journal of China Coal Society, 2016, 41(4): 954-963. (in Chinese with English abstract
    [23] 凡闪, 卢玉红, 李玲, 等. 塔里木盆地库车坳陷吐格尔明及周缘地区三叠系−侏罗系烃源岩地球化学特征、分布规律与油气地质意义[J]. 天然气地球科学, 2022, 33(12): 2074-2086. doi: 10.11764/j.issn.1672-1926.2022.08.012

    FAN S, LU Y H, LI L, et al. Geochemical characteristics, distribution and petroleum geological significance of Triassic-Jurassic source rocks in the Tugeerming and surrounding areas of Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(12): 2074-2086. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2022.08.012
    [24] 丁修建, 高天泽, 李淑凤, 等. 煤系烃源岩特征与发育机制研究现状[J]. 科学技术与工程, 2023, 23(13): 5373-5389.

    DING X J, GAO T Z, LI S F, et al. Research status of characteristics and development mechanism of coal-measure source rocks[J]. Science Technology and Engineering, 2023, 23(13): 5373-5389. (in Chinese with English abstract
    [25] 宋占东, 查明, 张小莉, 等. 烃源岩有机碳测井定量评价及在高邮凹陷永安地区的应用[J]. 西安石油大学学报(自然科学版), 2009, 24(2): 18-20. doi: 10.3969/j.issn.1673-064X.2009.02.005

    SONG Z D, ZHA M, ZHANG X L, et al. A method for the quantitative evaluation of the organic carbon content of the hydrocarbon source rock from well logging information and its application in Yong'an oilfield in Gaoyou Sag[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2009, 24(2): 18-20. (in Chinese with English abstract doi: 10.3969/j.issn.1673-064X.2009.02.005
    [26] 杜江民, 张小莉, 郑茜, 等. 致密油烃源岩有机碳含量测井定量预测模型适用性分析: 以柴达木盆地上干柴沟组下段烃源岩为例[J]. 西北大学学报(自然科学版), 2016, 46(2): 239-245.

    DU J M, ZHANG X L, ZHENG X, et al. The applicability of well logs prediction models of organic carbon content in source rocks of the tight oil: A case of the source rocks of lower section of N1 Formation in Qaidm Basin[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(2): 239-245. (in Chinese with English abstract
    [27] 秦建强, 付德亮, 钱亚芳, 等. 烃源岩有机质丰度预测的地球物理研究进展[J]. 石油物探, 2018, 57(6): 803-812. doi: 10.3969/j.issn.1000-1441.2018.06.002

    QIN J Q, FU D L, QIAN Y F, et al. Progress of geophysical methods for the evaluation of TOC of source rock[J]. Geophysical Prospecting for Petroleum, 2018, 57(6): 803-812. (in Chinese with English abstract doi: 10.3969/j.issn.1000-1441.2018.06.002
    [28] 赖锦, 肖露, 白天宇, 等. 成像测井解释评价方法及其地质应用[J]. 地质科技通报, 2024, 43(3): 323-340.

    LAI J, XIAO L, BAI T Y, et al. Interpretation and evaluation methods of image logs and their geological applications[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 323-340. (in Chinese with English abstract
    [29] 李正勇, 郑姝, 彭瀚霖, 等. 安岳气田下寒武统海相烃源岩总有机碳含量测井预测[J]. 测井技术, 2020, 44(4): 398-403.

    LI Z Y, ZHENG S, PENG H L, et al. Log prediction of total organic carbon content in the lower Cambrian marine source rocks of Anyue gas field[J]. Well Logging Technology, 2020, 44(4): 398-403. (in Chinese with English abstract
    [30] KHOSHNOODKIA M, MOHSENI H, RAHMANI O, et al. TOC determination of Gadvan Formation in South Pars gas field, using artificial intelligent systems and geochemical data[J]. Journal of Petroleum Science and Engineering, 2011, 78(1): 119-130. doi: 10.1016/j.petrol.2011.05.010
    [31] WANG H J, WU W, CHEN T, et al. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs[J]. Journal of Petroleum Science and Engineering, 2019, 176: 664-678. doi: 10.1016/j.petrol.2019.01.096
    [32] WOOD D A. Total organic carbon predictions from lower Barnett shale well-log data applying an optimized data matching algorithm at various sampling densities[J]. Pure and Applied Geophysics, 2020, 177(11): 5451-5468. doi: 10.1007/s00024-020-02566-1
    [33] SCHMOKER J W. Determination of organic-matter content of Appalachian Devonian shales from gamma-ray Logs1[J]. 1981, 65(7): 1285-1298.
    [34] SCHMOKER J W, HESTER T C. Organic carbon in bakken formation, United States portion of williston Basin1[J]. 1983, 67(12): 2165-2174.
    [35] 师展, 赵靖舟, 孙雄伟, 等. 鄂尔多斯盆地东南部上古生界煤系烃源岩特征及生烃潜力评价[J]. 天然气地球科学, 2023, 34(9): 1612-1626.

    SHI Z, ZHAO J Z, SUN X W, et al. Characteristics and hydrocarbon generation potential of Upper Paleozoic coal measure source rocks in the southeastern Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(9): 1612-1626. (in Chinese with English abstract
    [36] 王清辉, 冯进. 烃源岩TOC测井评价方法及应用: 以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251-258.

    WANG Q H, FENG J. The TOClogging evaluation methods and application of source rock: A case study of Wenchang Formation in Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2018, 29(2): 251-258. (in Chinese with English abstract
    [37] 周妍, 王长胜, 林伟川, 等. 页岩油烃源岩地化参数测井评价方法及应用[J]. 测井技术, 2022, 46(3): 334-339.

    ZHOU Y, WANG C S, LIN W C, et al. Evaluation method and application for geochemical parameters of shale oil source rock[J]. Well Logging Technology, 2022, 46(3): 334-339. (in Chinese with English abstract
    [38] 蒋云箭, 刘惠民, 柴春艳, 等. 济阳坳陷页岩油测井评价[J]. 油气地质与采收率, 2023, 30(1): 21-34.

    JIANG Y J, LIU H M, CHAI C Y, et al. Logging evaluation of shale oil in Jiyang depression[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 21-34. (in Chinese with English abstract
    [39] SHALABY M R, JUMAT N, LAI D, et al. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt[J]. Journal of Petroleum Science and Engineering, 2019, 176: 369-380. doi: 10.1016/j.petrol.2019.01.055
    [40] 卢妍欣, 包书景, 周志, 等. 高热演化页岩总有机碳地球物理预测方法研究进展[J]. 地球物理学进展, 2023, 38(1): 229-241. doi: 10.6038/pg2023GG0212

    LU Y X, BAO S J, ZHOU Z, et al. Research progress of geophysical prediction methods for total organic carbon in high-thermal evolution shale[J]. Progress in Geophysics, 2023, 38(1): 229-241. (in Chinese with English abstract doi: 10.6038/pg2023GG0212
    [41] 朱建伟, 赵刚, 刘博, 等. 油页岩测井识别技术及应用[J]. 吉林大学学报(地球科学版), 2012, 42(2): 289-295.

    ZHU J W, ZHAO G, LIU B, et al. Identification technology and application of well-logging about oil shale[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2): 289-295. (in Chinese with English abstract
    [42] 刘瑞, 郭少斌, 王继远. 烃源岩TOC计算模型: 以鄂尔多斯盆地太原组—山西组为例[J]. 天然气地球科学, 2020, 31(11): 1628-1636.

    LIU R, GUO S B, WANG J Y. TOC calculation model of source rocks: Case study from Taiyuan-Shanxi formations in Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(11): 1628-1636. (in Chinese with English abstract
    [43] 胡慧婷, 苏瑞, 刘超, 等. 广义ΔlgR技术预测陆相深层烃源岩有机碳含量方法及其应用[J]. 天然气地球科学, 2016, 27(1): 149-155. doi: 10.11764/j.issn.1672-1926.2016.01.0149

    HU H T, SU R, LIU C, et al. The method and application of using generalized-ΔlgR technology to predict the organic carbon content of continental deep source rocks[J]. Natural Gas Geoscience, 2016, 27(1): 149-155. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2016.01.0149
    [44] 王宵宇, 谢然红, 毛治国, 等. 基于集成学习的烃源岩总有机碳含量测井评价方法研究[J]. 地球物理学进展, 2022, 37(2): 684-694.

    WANG X Y, XIE R H, MAO Z G, et al. Research on logging evaluation method of total organic carbon content of source rock based on ensemble learning[J]. Progress in Geophysics, 2022, 37(2): 684-694. (in Chinese with English abstract
    [45] 苏洋, 赖锦, 赵飞, 等. 岩性扫描测井解释评价方法及其地质应用[J]. 地质论评, 2024, 70(5): 1884-1898.

    SU Y, LAI J, ZHAO F, et al. Interpretation and evaluation methods of litho-scanner logging data and its geological application[J]. Geological Review, 2024, 70(5): 1884-1898. (in Chinese with English abstract
    [46] 柳建华, 刘瑞林, 吴兴能, 等. 化学元素测井资料在地层界面处的响应特征研究[J]. 石油天然气学报, 2007, 29(1): 84-87.

    LIU J H, LIU R L, WU X N, et al. On the data of response characters of elemental capture spectroscopy (ECS) logging at stratum boundary[J]. Journal of Oil and Gas Technology, 2007, 29(1): 84-87. (in Chinese with English abstract
    [47] 魏翔宇, 赵延朋, 王璞珺, 等. 松辽盆地徐家围子断陷营城组火山地层期次划分及分布规律[J]. 中国石油大学学报(自然科学版), 2023, 47(4): 12-23. doi: 10.3969/j.issn.1673-5005.2023.04.002

    WEI X Y, ZHAO Y P, WANG P J, et al. Division of volcanic eruption stages and distribution patterns of volcanic rocks in Yingcheng Formation of Xujiaweizi Fault Depression, Songliao Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(4): 12-23. (in Chinese with English abstract doi: 10.3969/j.issn.1673-5005.2023.04.002
    [48] 王胜建, 任收麦, 周志, 等. 鄂西地区震旦系陡山沱组二段页岩气储层测井评价初探[J]. 中国地质, 2020, 47(1): 133-143. doi: 10.12029/gc20200111

    WANG S J, REN S M, ZHOU Z, et al. Discussion on petrophysical evaluation of shale gas reservoir in the Second Member of Sinian Doushantuo Formation in western Hubei Province, South China[J]. Geology in China, 2020, 47(1): 133-143. (in Chinese with English abstract doi: 10.12029/gc20200111
    [49] 庞小娇, 王贵文, 匡立春, 等. 沉积环境控制下的页岩岩相组合类型及测井表征: 以松辽盆地古龙凹陷青山口组为例[J]. 古地理学报, 2023, 25(5): 1156-1175. doi: 10.7605/gdlxb.2023.05.090

    PANG X J, WANG G W, KUANG L C, et al. Logging evaluation of lithofacies and their assemblage under control of sedimentary environment: A case study of the Qingshankou Formation in Gulong Sag, Songliao Basin[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(5): 1156-1175. (in Chinese with English abstract doi: 10.7605/gdlxb.2023.05.090
    [50] 赖锦, 王贵文, 范卓颖, 等. 非常规油气储层脆性指数测井评价方法研究进展[J]. 石油科学通报, 2016, 1(3): 330-341.

    LAI J, WANG G W, FAN Z Y, et al. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(3): 330-341. (in Chinese with English abstract
    [51] MEWS K S, ALHUBAIL M M, BARATI R G. A review of brittleness index correlations for unconventional tight and ultra-tight reservoirs[J]. Geosciences, 2019, 9(7): 319. doi: 10.3390/geosciences9070319
    [52] LAI J, WANG G W, CHEN J, et al. Origin and distribution of carbonate cement in tight sandstones: The Upper Triassic Yanchang formation Chang 8 oil layer in west Ordos Basin, China[J]. Geofluids, 2017, 2017(1): 8681753.
    [53] DE S, SENGUPTA D. An advanced well log and an effective methodology to evaluate water saturation of the organic-rich Cambay shale[J]. Natural Resources Research, 2021, 30(2): 1719-1733. doi: 10.1007/s11053-020-09763-8
    [54] CHARSKY A, HERRON S. Accurate, direct total organic carbon (TOC) log from a new advanced geochemical spectroscopy tool: comparison with conventional approaches for TOC estimation[J]. Search and Discovery, 2013, 4116, 2(1): 1-17.
    [55] 贺聪, 苏奥, 张明震, 等. 鄂尔多斯盆地延长组烃源岩有机碳含量测井预测方法优选及应用[J]. 天然气地球科学, 2016, 27(4): 754-764. doi: 10.11764/j.issn.1672-1926.2016.04.0754

    HE C, SU A, ZHANG M Z, et al. Optimal selection and application of prediction means for organic carbon content of source rocks based on logging data in Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(4): 754-764. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2016.04.0754
    [56] 赖锦, 凡雪纯, 黎雨航, 等. 苏北盆地古近系阜宁组页岩七性关系与三品质测井评价[J]. 地质论评, 2022, 68(2): 751-768.

    LAI J, FAN X C, LI Y H, et al. Well logging evaluation of seven kinds of relationships and three types of properties of Paleogene Funing Formation oil shales in Subei Basin[J]. Geological Review, 2022, 68(2): 751-768. (in Chinese with English abstract
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  289
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 录用日期:  2024-11-21
  • 修回日期:  2024-10-09
  • 网络出版日期:  2025-02-26

目录

    /

    返回文章
    返回