留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带光滑约束的大地电磁深度强化学习反演

曾晨瑞 熊杰 曹振 张倩玮 袁梦姣

曾晨瑞,熊杰,曹振,等. 带光滑约束的大地电磁深度强化学习反演[J]. 地质科技通报,2025,45(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240349
引用本文: 曾晨瑞,熊杰,曹振,等. 带光滑约束的大地电磁深度强化学习反演[J]. 地质科技通报,2025,45(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240349
ZENG Chenrui,XIONG Jie,CAO Zhen,et al. Using deep reinforcement learning with smooth constraint to invert magnetotelluric data[J]. Bulletin of Geological Science and Technology,2025,45(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240349
Citation: ZENG Chenrui,XIONG Jie,CAO Zhen,et al. Using deep reinforcement learning with smooth constraint to invert magnetotelluric data[J]. Bulletin of Geological Science and Technology,2025,45(0):1-13 doi: 10.19509/j.cnki.dzkq.tb20240349

带光滑约束的大地电磁深度强化学习反演

doi: 10.19509/j.cnki.dzkq.tb20240349
基金项目: 国家自然科学基金项目(62273060)
详细信息
    作者简介:

    曾晨瑞:E-mail:2022710599@yangtzeu.edu.cn

    通讯作者:

    E-mail:Xiongjie@yangtzeu.edu.cn

  • 中图分类号: TP18;P631.325

Using deep reinforcement learning with smooth constraint to invert magnetotelluric data

More Information
  • 摘要:

    反演是处理大地电磁测深数据的关键步骤之一,得到了学者的广泛研究。其中基于数据驱动的反演方法主要包括带监督反演和半监督反演,对无监督反演的研究较少。DQN(deep Q-network)是一种经典的深度强化学习算法,作为无监督反演方法最近被用于解决一维大地电磁反演问题。该方法具有不需要训练数据集、对初始模型依赖较小、多次反演能够得到反演结果的概率分布等优点,但存在反演结果不集中的问题。提出了带光滑约束的大地电磁强化学习反演方法(Smooth DQN,简称SDQN)。本方法基于强化学习框架,将反演问题看成马尔可夫决策问题,并分别定义环境、奖励、智能体等术语;然后将正则化反演的模型约束项引入到奖励中来,从而引导智能体不断调整预测模型的电阻率参数以得到更符合模型约束的结果。理论模型反演结果表明,相较于DQN反演和Occam反演方法,在相同反演次数情况下SDQN方法反演不同噪声水平的观测数据时结果更稳定。西藏扎西康矿集区的大地电磁实测数据反演结果与Occam反演结果基本吻合并与已有的地质解释资料一致。SDQN方法具有反演结果更集中、对观测数据的抗噪能力更强的优点,是解决大地电磁反演问题的新工具。

     

  • 图 1  马尔可夫决策过程

    st, st+1, st+2, st+3分别为t, t+1, t+2, t+3时的状态;at, at+1, at+2, at+3分别为状态st, st+1, st+2, st+3下的动作;Rt, Rt+1, Rt+2分别为执行动作at, at+1, at+2,时获得的奖励

    Figure 1.  Markov decision-making process

    图 2  DQN网络结构

    Inputs. 输入,数字为输入形状;Feature maps. 特征图,数字为特征图的形状;Hidden units. 隐藏单元,数字为隐藏单元个数;Convolution. 卷积操作,数字为卷积核;Faltten. 展平操作;Fully connected. 全连接操作

    Figure 2.  The structure of the DQN network

    图 3  算法流程图

    Figure 3.  Algorithm flowchart

    图 4  模型构造对应关系示意图

    Figure 4.  Schematic diagram of the correspondence between model construction

    图 5  迭代曲线

    Figure 5.  training curves

    图 6  不同初始模型下DQN,SDQN反演结果

    Figure 6.  Inversion results of DQN and SDQN under different initial models

    图 7  SDQN、DQN、Occam在噪声为2%(a),5%(b),10%(c)下的反演结果

    Figure 7.  The inversion results of SDQN, DQN, and Occam at 2%, 5%, and 10% noise

    图 8  SDQN、DQN 不同噪声下箱型图

    Figure 8.  Box diagram of SDQN and DQN under different noises

    图 9  5%噪声下SDQN、DQN 数据拟合图(MAPE为平均绝对百分比误差)

    Figure 9.  Fitting diagram of SDQN and DQN data under 5% noise

    图 10  反演次数每过50次下的反演结果

    Figure 10.  The inversion results for every 50 inversions

    图 11  测点分布图

    Figure 11.  Site distribution map

    图 12  实测反演结果

    Figure 12.  Measured inversion results

    表  1  SDQN算法超参数设置

    Table  1.   Hyperparameters in the network.

    超参数 数值
    小批量大小 32
    经验池大小 2,500,000
    约束网络更新频率 500
    折扣因子 0.95
    预测网络更新频率 5
    学习率 0.0013
    探索因子 0.1
    下载: 导出CSV

    表  2  5层理论模型

    Table  2.   Five-layer synthetic model.

    层号 电阻率/(Ω·m) 厚度/m
    1 200 1820
    2 20 1900
    3 100 4535
    4 10 2150
    5 100
    下载: 导出CSV

    表  3  10层预测模型3种初始模型参数设置

    Table  3.   Three initial model parameter settings for the predictive model

    层号 1 2 3 4 5 6 7 8 9 10
    电阻率/(Ω·m) 10 10 10 10 10 10 10 10 10 10
    电阻率/(Ω·m) 100 100 100 100 100 100 100 100 100 100
    电阻率/(Ω·m) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
    厚度/m 500 600 720 865 1035 1245 1495 1795 2150
    下载: 导出CSV

    表  4  初始模型在100 Ω·m下反演结果的误差和方差

    Table  4.   Error and variance of the initial model inversion results at 100 Ω·m

    反演次数最终结果的均方误差所有结果的均方误差的方差
    DQNSDQNDQNSDQN
    10099.9714.232532.45296.60
    20013.35515.0943019.32427.82
    30025.33212.08452134.51201.47
    下载: 导出CSV

    表  5  8层理论模型电阻率和厚度

    Table  5.   Eight-layer synthetic model.

    层号 1 2 3 4 5 6 7 8
    电阻率/(Ω·m) 2500 1000 100 10 100 25 10 2.5
    厚度/m 600 1400 2200 3400 7000 9000 11000
    下载: 导出CSV

    表  6  20层预测模型三种初始模型参数设置

    Table  6.   Three initial model parameter settings for the predictive model

    层号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
    电阻率/(Ω·m) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
    厚度/m 600 672 752 842 944 1057 1184 1326 1485 1663 1863 2087 2337 2618 2932 3284 3678 4119 4613
    下载: 导出CSV

    表  7  5%噪声水平下DQN和SDQN方法的反演时间

    Table  7.   Inversion time of DQN and SDQN methods at 5% noise level

    迭代次数 反演时间/s
    DQN SDQN
    50 3287.29 3562.45
    100 4164.09 4520.86
    150 4918.86 5144.10
    200 5628.15 5745.47
    250 6304.54 6299.31
    300 6944.33 6841.33
    下载: 导出CSV
  • [1] 秦策, 刘幸飞, 王绪本, 等. 基于自适应有限元正演的大地电磁法三维反演算法研究[J]. 地球物理学报, 2022, 65(6): 2311-2325. doi: 10.6038/cjg2022P0141

    QIN C, LIU X F, WANG X B, et al. Three-dimensional inversion of magnetotelluric based on adaptive finite element method[J]. Chinese Journal of Geophysics, 2022, 65(6): 2311-2325. (in Chinese with English abstract doi: 10.6038/cjg2022P0141
    [2] 董珮瑶, 杜利, 赵磊, 等. 机器学习模型在地热开发水温预测中的应用[J]. 地质科技通报, 2025, 44(3): 388-398. doi: 10.19509/j.cnki.dzkq.tb20240063

    DONG P Y, DU L, ZHAO L, et al. Application of machine learning models for groundwater temperature prediction in geothermal development[J]. Bulletin of Geological Science and Technology, 2025, 44(3): 388-398. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20240063
    [3] 喻国, 肖骑彬, 李满. 大地电磁二维各向异性反演及其在青藏高原北部的应用[J]. 地球物理学报, 2021, 64(6): 2108-2126.

    YU G, XIAO Q B, LI M. Two-dimensional magnetotelluric inversion with anisotropy and its application in the northern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2021, 64(6): 2108-2126. (in Chinese with English abstract
    [4] 唐荣江, 王绪本, 甘露. 一种利用特征值性质的MT阻尼最小二乘反演[J]. 石油物探, 2017, 56(6): 898-904. doi: 10.3969/j.issn.1000-1441.2017.06.016

    TANG R J, WANG X B, GAN L. A damped least square inversion for MT utilizing eigenvalue property[J]. Geophysical Prospecting for Petroleum, 2017, 56(6): 898-904. (in Chinese with English abstract doi: 10.3969/j.issn.1000-1441.2017.06.016
    [5] 吴小平, 徐果明. 大地电磁数据的Occam反演改进[J]. 地球物理学报, 1998, 41(4): 547-554.

    WU X P, XU G M. Improvement of Occam's inversion for MT data[J]. Acta Geophysica Sinica, 1998, 41(4): 547-554. (in Chinese with English abstract
    [6] 姜奋勇, 叶益信, 陈海文, 等. 基于非结构网格的带地形MT二维Occam反演及应用[J]. 物探与化探, 2022, 46(2): 482-489. doi: 10.11720/wtyht.2022.1397

    JIANG F Y, YE Y X, CHEN H W, et al. Application of 2D inversion of magnetotelluric data bearing terrain information based on an unstructured mesh[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 482-489. (in Chinese with English abstract doi: 10.11720/wtyht.2022.1397
    [7] 徐凤姣, 谢兴兵, 郭全仕. 不同极化模式的二维大地电磁非线性共轭梯度反演及应用研究[J]. 石油物探, 2022, 61(1): 174-182.

    XU F J, XIE X B, GUO Q S. Study and application on the nonlinear conjugate gradient inversion method for 2D Magnetotelluric with different polarization modes[J]. Geophysical Prospecting for Petroleum, 2022, 61(1): 174-182. (in Chinese with English abstract
    [8] 管贻亮, 李予国, 胡祖志, 等. 大地电磁非线性共轭梯度一维反演[J]. 石油物探, 2014, 53(6): 752-759.

    GUAN Y L, LI Y G, HU Z Z, et al. Nonlinear conjugate gradients algorithm for 1D magnetotelluric inversion[J]. Geophysical Prospecting for Petroleum, 2014, 53(6): 752-759. (in Chinese with English abstract
    [9] 彭勃, 强思远, 施小清. 基于贝叶斯实验设计优化跨孔高密度电阻率法监测四维水文地质过程[J]. 地质科技通报, 2025, 44(5): 293-301. doi: 10.19509/j.cnki.dzkq.tb20230600

    PENG B, QIANG S Y, SHI X Q. Optimizing 4D hydrogeological process monitoring using cross-hole electrical resistivity tomography(CHERT) via Bayesian experimental design[J]. Bulletin of Geological Science and Technology, 2025, 44(5): 293-301. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230600
    [10] SEILLÉ H, VISSER G. Bayesian inversion of magnetotelluric data considering dimensionality discrepancies[J]. Geophysical Journal International, 2020, 223(3): 1565-1583. doi: 10.1093/gji/ggaa391
    [11] LIU X, ZHENG F W. Axis anisotropic Occam's 3D inversion of tensor CSAMT in data space[J]. Applied Geophysics, 2025, 22(2): 252-263. doi: 10.1007/s11770-024-1076-9
    [12] NÁDASI E, GRIBENKO A V, ZHDANOV M S. Large-scale inversion of magnetotelluric data using regularized Gauss-Newton method in the data space[J]. Pure and Applied Geophysics, 2022, 179(10): 3785-3806. doi: 10.1007/s00024-022-03147-0
    [13] 梁生贤, 吾守艾力·肉孜, 廖国忠, 等. 大地电磁线性反演算法比较[J]. 地球物理学进展, 2014, 29(6): 2702-2707.

    LIANG S X, WUSHOUAILI R Z, LIAO G Z, et al. Comparison and aanalysis of two-dimensional linear algorithm inversion for magnetotelluric[J]. Progress in Geophysics, 2014, 29(6): 2702-2707. (in Chinese with English abstract
    [14] 周俊杰, 胡英才, 刘祜, 等. 考虑先验信息的大地电磁模拟退火反演[J]. 地质论评, 2023, 69(增刊1): 465-467. doi: 10.16509/j.georeview.2023.s1.201

    ZHOU J J, HU Y C, LIU H, et al. Inversion of magnetotelluric simulated annealing considering prior information[J]. Geological Review, 2023, 69(S1): 465-467. (in Chinese) doi: 10.16509/j.georeview.2023.s1.201
    [15] 潘新朋, 刘志顺, 高大维, 等. 岩石物理驱动的储层物性参数非线性地震反演方法[J]. 地球物理学报, 2024, 67(3): 1237-1254.

    PAN X P, LIU Z S, GAO D W, et al. Rock-physics-driven nonlinear seismic inversion for petrophysical parameters of reservoir[J]. Chinese Journal of Geophysics, 2024, 67(3): 1237-1254. (in Chinese with English abstract
    [16] 熊杰, 孟小红, 刘彩云, 等. 基于差分进化的大地电磁反演[J]. 物探与化探, 2012, 36(3): 448-451.

    XIONG J, MENG X H, LIU C Y, et al. Magnetotelluric inversion based on differential evolution[J]. Geophysical and Geochemical Exploration, 2012, 36(3): 448-451. (in Chinese with English abstract
    [17] 丁鑫, 郭乙霏, 方宏远, 等. 基于蚁群算法的层状结构介电特性反演方法[J]. 人民黄河, 2019, 41(6): 107-110. doi: 10.3969/j.issn.1000-1379.2019.06.024

    DING X, GUO Y F, FANG H Y, et al. The inversion method of dielectric properties in layered structure based on ant colony algorithm[J]. Yellow River, 2019, 41(6): 107-110. (in Chinese with English abstract doi: 10.3969/j.issn.1000-1379.2019.06.024
    [18] 李丽丽, 李长伟, 程勃, 等. 基于改进粒子群算法的大地电磁反演[J]. 科学技术与工程, 2023, 23(26): 11098-11107. doi: 10.3969/j.issn.1671-1815.2023.26.006

    LI L L, LI C W, CHENG B, et al. Magnetotelluric inversion based on improved particle swarm optimization algorithm[J]. Science Technology and Engineering, 2023, 23(26): 11098-11107. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2023.26.006
    [19] LI R H, GAO L, YU N, et al. Memetic strategy of particle swarm optimization for one-dimensional magnetotelluric inversions[J]. Mathematics, 2021, 9(5): 519. doi: 10.3390/math9050519
    [20] 刘高村, 王绪本, 袁崇鑫, 等. Transformer网络在大地电磁反演成像中的应用[J]. 物探化探计算技术, 2023, 45(4): 484-496. doi: 10.3969/j.issn.1001-1749.2023.04.09

    LIU G C, WANG X B, YUAN C X, et al. Application of transformer network in magnetotelluric inversion imaging[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(4): 484-496. (in Chinese with English abstract doi: 10.3969/j.issn.1001-1749.2023.04.09
    [21] XU K J, LIANG S Y, LU Y, et al. Magnetotelluric data inversion based on deep learning with the self-attention mechanism[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5917910.
    [22] GAO C, LI Y B, WANG X Q. AUTL: An attention U-Net transfer learning inversion framework for magnetotelluric data[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3004505.
    [23] JEVINANI M R, DEHKORDI B H, FERGUSON I J, et al. Correction to: Deep learning-based 1-D magnetotelluric inversion: Performance comparison of architectures[J]. Earth Science Informatics, 2024, 17(2): 1679-1680. doi: 10.1007/s12145-024-01254-1
    [24] LIAO X L, ZHANG Z H, YAN Q X, et al. Inversion of 1-D magnetotelluric data using CNN-LSTM hybrid network[J]. Arabian Journal of Geosciences, 2022, 15(17): 1430. doi: 10.1007/s12517-022-10687-1
    [25] CONWAY D, HEINSON G, REES N, et al. Time-lapse inversion of one-dimensional magnetotelluric data[J]. Earth, Planets and Space, 2018, 70(1): 27.
    [26] 李思平, 刘彩云, 熊杰, 等. 基于改进残差网络的大地电磁反演研究[J]. 物探与化探, 2023, 47(6): 1508-1518. doi: 10.11720/wtyht.2023.0186

    LI S P, LIU C Y, XIONG J, et al. Magnetotelluric inversion based on an improved residual network[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1508-1518. (in Chinese with English abstract doi: 10.11720/wtyht.2023.0186
    [27] 王方, 熊杰, 田慧潇, 等. 基于深度学习的大地电磁二维反演方法[J]. 地质科技通报, 2024, 43(2): 344-354. doi: 10.19509/j.cnki.dzkq.tb20220471

    WANG F, XIONG J, TIAN H X, et al. Two-dimensional magnetotelluric inversion method based on deep learning[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 344-354. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220471
    [28] 廖晓龙, 张志厚, 姚禹, 等. 基于卷积神经网络的大地电磁反演[J]. 中南大学学报(自然科学版), 2020, 51(9): 2546-2557.

    LIAO X L, ZHANG Z H, YAO Y, et al. Magnetotelluric inversion based on convolutional neural network[J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2546-2557. (in Chinese with English abstract
    [29] 韩盈, 安志国, 底青云, 等. 基于循环神经网络的大地电磁信号噪声压制研究[J]. 地球物理学报, 2023, 66(10): 4317-4331. doi: 10.6038/cjg2023R0123

    HAN Y, AN Z G, DI Q Y, et al. Research on noise suppression of magnetotelluric signal based on recurrent neural network[J]. Chinese Journal of Geophysics, 2023, 66(10): 4317-4331. (in Chinese with English abstract doi: 10.6038/cjg2023R0123
    [30] LI G, GU X J, CHEN C J, et al. Low-frequency magnetotelluric data denoising using improved denoising convolutional neural network and gated recurrent unit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5909216.
    [31] 王永昌, 刘彩云, 熊杰, 等. 基于生成对抗网络的半监督地震波阻抗反演[J]. 现代地质, 2024, 38(6): 1585-1593.

    WANG Y C, LIU C Y, XIONG J, et al. Semi-supervised seismic wave impedance inversion based on generative adversarial networks[J]. Geoscience, 2024, 38(6): 1585-1593. (in Chinese with English abstract
    [32] YANG B, XU K J, LIU Z. Fuzzy constrained inversion of magnetotelluric data using guided fuzzy C-means clustering[J]. Surveys in Geophysics, 2021, 42(2): 399-425. doi: 10.1007/s10712-020-09628-y
    [33] WANG H, LIU Y H, YIN C C, et al. Stochastic inversion of magnetotelluric data using deep reinforcement learning[J]. Geophysics, 2022, 87(1): 49-61. doi: 10.1190/geo2020-0425.1
    [34] ZHU X Y, DONG H F. Shear wave velocity estimation based on deep-Q network[J]. Applied Sciences, 2022, 12(17): 8919. doi: 10.3390/app12178919
    [35] DELL'AVERSANA P. Reinforcement learning in optimization problems. Applications to geophysical data inversion[J]. AIMS Geosciences, 2022, 8(3): 488-502. doi: 10.3934/geosci.2022027
    [36] JANG B, KIM M, HARERIMANA G, et al. Q-learning algorithms: A comprehensive classification and applications[J]. IEEE Access, 2019, 7: 133653-133667. doi: 10.1109/ACCESS.2019.2941229
    [37] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2094-2100.
    [38] KAMINSKY A. ZondMT1D[CP/OL]. [2025-11-20]. http://zond-geo.com/english/zond-software/electromagnetic-sounding/zondmt1d/.
    [39] 梁生贤. 扎西康矿集区大地电磁测深数据(2018-2022)[DB/OL]. [2025-11-20]. https://data.tpdc.ac.cn/zh-hans/data/b55ce907-6829-46de-9548-c58f539e69c4/.

    LIANG S X. Magnetotelluric data of Zhaxikang ore district (2018-2022)[DB/OL]. [2025-11-20]. https://data.tpdc.ac.cn/zh-hans/data/b55ce907-6829-46de-9548-c58f539e69c4/. (in Chinese with English abstract
    [40] 焦彦杰, 黄旭日, 李光明, 等. 藏南扎西康矿集区深部结构与成矿: 来自地球物理的证据[J]. 地球科学, 2019, 44(6): 2117-2128.

    JIAO Y J, HUANG X R, LI G M, et al. Deep structure and mineralization of zhaxikang ore-concentration area, south Tibet: Evidence from geophysics[J]. Earth Science, 2019, 44(6): 2117-2128. (in Chinese with English abstract
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-12-02

目录

    /

    返回文章
    返回