留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加筋废弃钢渣混合土循环剪切性能研究

李丽华 张永帅 叶治 康浩然 白玉霞

李丽华,张永帅,叶治,等. 加筋废弃钢渣混合土循环剪切性能研究[J]. 地质科技通报,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341
引用本文: 李丽华,张永帅,叶治,等. 加筋废弃钢渣混合土循环剪切性能研究[J]. 地质科技通报,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341
LI Lihua,ZHANG Yongshuai,YE Zhi,et al. Study on the cyclic shear performance of reinforced waste steel slag mixed soil[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341
Citation: LI Lihua,ZHANG Yongshuai,YE Zhi,et al. Study on the cyclic shear performance of reinforced waste steel slag mixed soil[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341

加筋废弃钢渣混合土循环剪切性能研究

doi: 10.19509/j.cnki.dzkq.tb20240341
基金项目: 国家自然科学基金项目(52278347);湖北省基金创新群体项目(2024AFA009);湖北省重点研发计划项目(2022BCA059)
详细信息
    作者简介:

    李丽华:E-mail:researchmailbox@163.com

    通讯作者:

    E-mail:yezhi@hbut.edu.cn

Study on the cyclic shear performance of reinforced waste steel slag mixed soil

More Information
  • 摘要:

    为改善黏土工程特性和增加废弃钢渣(SS)利用率,铺设土工格栅加筋,然后对钢渣−黏土混合土、砂−黏土混合土及黏土分别进行了直剪试验、循环剪切试验和循环后直剪试验,研究了不同钢渣掺量、竖向应力、含水率、剪切幅值条件下,混合土筋−土界面强度特征、阻尼比、剪切刚度变化和混合土体位移情况。试验结果表明:钢渣可以显著提高黏土筋−土界面抗剪强度,且改良效果优于常规材料砂改良黏土;钢渣−黏土混合土具有较大阻尼比和剪切刚度,说明其具有较好的减震耗能性。其中,40%钢渣掺量下的钢渣−黏土混合土抗剪强度、阻尼比和剪切刚度较优;相较于循环前直剪,经过循环荷载作用后钢渣−黏土混合土抗剪强度有所提升。此外,与竖向应力和剪切幅值相比,含水率对钢渣−黏土混合土的抗剪强度、剪切刚度和阻尼比有较大影响。钢渣−黏土混合土在循环剪切荷载作用下,可以呈现更好的减震耗能性,试验结果可为钢渣代替砂改良黏土提供理论依据。

     

  • 图 1  大型循环剪切试验机

    Figure 1.  large-scale cyclic shear tester

    图 2  颗粒级配曲线

    Figure 2.  Particle grading curve

    图 3  不同钢渣含量混合土击实曲线(30%SS代表钢渣质量分数为30%;下同)

    Figure 3.  Compaction curves of mixed soils with different steel slag contents

    图 4  不同含水率条件下剪切应力–剪切位移关系曲线

    Figure 4.  Shear stress-shear displacement relationship curves for different moisture content conditions

    图 5  剪切刚度和阻尼比计算示意图

    K1K2τ1τ2分别为剪切刚度和剪切应力峰值;K为剪切刚度;A为剪切位移幅值;S1S2分别为阴影部分面积

    Figure 5.  Schematic diagram of shear stiffness and damping ratio calculation

    图 6  不同材料下剪切强度变化规律

    Figure 6.  Variation of shear strength with different materials

    图 7  不同材料掺入下混合土剪切位移–竖向位移关系曲线

    Figure 7.  Shear displacement-vertical displacement relationship curves for mixed soils with different material incorporation

    图 8  不同材料黏聚力与内摩擦角对比

    Figure 8.  Comparison of cohesion and angle of internal friction of different materials

    图 9  40%钢渣混合土滞回曲线

    Figure 9.  Hysteresis curve for 40% steel slag mix

    图 10  含水率对剪切应力峰值和硬化系数影响曲线

    Figure 10.  Curves of the effect of moisture content on peak shear stress and hardening factor

    图 11  混合土筋土界面循环次数−剪切应力峰值关系曲线

    Figure 11.  Number of cycles-peak shear stress relationship curve for different backfill material tendon soil interfaces

    图 12  不同剪切幅值筋土界面循环次数−剪切应力峰值关系曲线

    Figure 12.  Number of cycles-peak shear stress relationship at the tendon-soil interface for different shear amplitudes

    图 13  不同材料混合土水平位移−竖向位移变化曲线

    Figure 13.  Horizontal displacement-vertical displacement variation curves for mixed soils of different materials

    图 14  40%钢渣混合土不同含水率下水平位移−竖向位移变化曲线

    Figure 14.  Horizontal displacement-vertical displacement variation curves for different moisture contents of 40% steel slag mixed soil

    图 15  不同材料混合土的剪切刚度和阻尼比

    Figure 15.  Shear stiffness and damping ratios of soil mixtures of different materials

    图 16  40%钢渣混合土不同含水率下剪切刚度和阻尼比

    Figure 16.  Shear stiffness and damping ratios at different moisture contents of 40% steel slag mixes

    图 17  40%钢渣混合土不同剪切幅值的剪切刚度和阻尼比

    Figure 17.  Shear stiffness and damping ratio of 40% steel slag mixed soil with different shear amplitudes

    图 18  循环剪切前、后剪切应力−剪切位移关系图

    Figure 18.  Shear stress-shear displacement relationship before and after cyclic shear

    图 19  界面抗剪强度包络曲线

    Figure 19.  Interface shear strength envelope curves

    表  1  试验材料基本物理指标

    Table  1.   Basic physical property index of materials in tests

    类型 最大干密
    度/(g·cm-3)
    天然含水
    率/%
    曲率
    系数
    不均匀
    系数
    塑限/% 液限/% 塑性
    指数
    黏土 1.79 6.3 2.81 7.59 24.9 50.9 26
    1.83 6.5 0.5 2.2 - - -
    钢渣 2.4 8.1 2.3 11.3 - - -
    下载: 导出CSV

    表  2  钢渣化学成分组成

    Table  2.   Chemical composition of steel slag wB/%

    成分 MgO Al2O3 SiO2 CaO Fe2O3 TiO2 MnO 其他
    钢渣(SS) 12.9 8.7 26.5 34.0 12.9 0.6 1.2 3.1
    下载: 导出CSV

    表  3  土工格栅技术指标

    Table  3.   Technical index of geogrid

    材料 厚度/
    mm
    单位面积质量/
    (g·m−2
    网孔尺寸
    长×宽/mm
    ×mm
    极限延伸率/
    %
    极限抗拉强度/
    (kN·m−1
    横向 纵向 横向 纵向
    聚丙烯 2 250 35×25 13.2 15.6 20
    下载: 导出CSV

    表  4  试验方案

    Table  4.   Experiment scheme

    试验类型 试验
    编号
    试样 竖向应
    力/kPa
    剪切幅
    值/mm
    含水率/% 压实度/%
    直剪试验 T-1 30%SS+70%C 200/300/400 - 9/12/15 95
    T-2 40%SS+60%C 200/300/400 - 9/12/15 95
    T-3 50%SS+50%C 200/300/400 - 9/12/15 95
    T-4 60%S+40%C 200/300/400 - 16.5 95
    T-5 C 200/300/400 - 18 95
    循环剪
    切试验
    T-6 30%SS+70%C 400 5 9/12/15 95
    T-7 50%SS+50%C 400 5 9/12/15 95
    T-8 40%SS+60%C 200/300/400 3/4/5 9/12/15 95
    T-9 60%S+40%C 400 5 16.5 95
    T-10 C 400 5 18 95
    循环后直
    剪试验
    T-11 40%SS+60%C 200/300/400 - 12 95
    注: SS. 钢渣;C. 黏土;S. 砂;循环次数均为10次;剪切速率为1 mm/min
    下载: 导出CSV

    表  5  不同条件下黏聚力与内摩擦角对比

    Table  5.   Comparison of cohesion and internal friction Angle

    试样 含水率/% c/kPa φ/(°)
    30%SS+70%C 9 117.8 27.9
    12 92.6 26.9
    15 51.3 24.9
    40%SS+60%C 9 108.7 27.3
    12 87.7 32.1
    15 85.2 25.7
    50%SS+50%C 9 67.1 30.2
    12 43.3 24.1
    15 39.5 19.6
    下载: 导出CSV
  • [1] KUMAR J, MADHUSUDHAN B N. Dynamic properties of sand from dry to fully saturated states[J]. Géotechnique, 2012, 62(1): 45-54.
    [2] LI W, LANG L, WANG D, et al. Investigation on the dynamic shear modulus and damping ratio of steel slag sand mixtures[J]. Construction and Building Materials, 2018, 162: 170-180.
    [3] 李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报(工学版), 2019, 52(4): 311-316.

    LI L H, WEN B, HU Z, et al. Study on reinforced shear behavior of construction waste filler and geosynthetics[J]. Engineering Journal of Wuhan University, 2019, 52(4): 311-316. (in Chinese with English abstract
    [4] 李丽华, 肖衡林, 唐辉明, 等. 轮胎颗粒混合土动力特性参数影响规律试验研究[J]. 岩土力学, 2014, 35(2): 359-364.

    LI L H, XIAO H L, TANG H M, et al. Dynamic properties variation of tire shred-soil mixtures[J]. Rock and Soil Mechanics, 2014, 35(2): 359-364. (in Chinese with English abstract
    [5] 马鸿发, 刘清秉, 李靖. 掺砂率与干密度对膨润土收缩特性影响[J]. 地质科技通报, 2023, 42(6): 76-85.

    MA H F, LIU Q B, LI J. Effect of shrinkage characteristics of bentonite with different sand mixing rates and dry densities[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 76-85. (in Chinese with English abstract
    [6] WANG L Y, ZHANG B, XIE H M, et al. Study on shear strength characteristics of marine silt modified by steel slag[J]. Advances in Civil Engineering, 2021, 2021(1): 9647977. doi: 10.1155/2021/9647977
    [7] MAGHOOL F, ARULRAJAH A, SUKSIRIPATTANAPONG C, et al. Geotechnical properties of steel slag aggregates: Shear strength and stiffness[J]. Soils and Foundations, 2019, 59(5): 1591-1601. doi: 10.1016/j.sandf.2019.03.016
    [8] WANG L Y, YAN J T, WANG Q, et al. Study on permeability of steel slag and steel alag modifying silt soil as new geo-backfill materials[J]. Advances in Civil Engineering, 2019, 2019(1): 5370748.
    [9] LIU X W, HU M Y, KE S J, et al. A novel rammed earthen material stabilized with steel slags[J]. Construction and Building Materials, 2018, 189: 1134-1139. doi: 10.1016/j.conbuildmat.2018.09.075
    [10] WANG L Y, WANG Q, HUANG X, et al. Experimental investigation on compressive deformation and shear strength characteristics of steel slag in the geotechnical engineering[M]//Anon. Proceedings of GeoShanghai 2018 International Conference: Ground Improvement and Geosynthetics. Singapore: Springer Singapore, 2018: 194-202.
    [11] 陈爽, 贾凡, 刘斯宏, 等. 错缝堆叠土工袋层间界面的循环剪切特性试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2945-2953.

    CHEN S, JIA F, LIU S H, et al. Experiments on the cyclic shear behavior of the interface between staggered stacking soilbags[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2945-2953. (in Chinese with English abstract
    [12] 刘飞禹, 江淮, 王军. 砾石−格栅界面循环剪切软化特性试验研究[J]. 岩土力学, 2021, 42(6): 1485-1492.

    LIU F Y, JIANG H, WANG J. Experimental study on cyclic shear softening characteristics of gravel-geogrid interface[J]. Rock and Soil Mechanics, 2021, 42(6): 1485-1492. (in Chinese with English abstract
    [13] 李丽华, 臧天宝, 刘永莉, 等. 纤维底渣混合土循环剪切性能研究[J]. 岩石力学与工程学报, 2021, 40(1): 196-205.

    LI L H, ZANG T B, LIU Y L, et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 196-205. (in Chinese with English abstract
    [14] 刘飞禹, 童艳光, 汪歆, 等. 筋-土界面刚度软化对加筋土挡墙动力特性的影响[J]. 防灾减灾工程学报, 2021, 41(1): 75-84.

    LIU F Y, TONG Y G, WANG X, et al. Effect of stiffness softening of reinforcement-soil interface on dynamic characteristics of reinforced retaining wall[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 75-84. (in Chinese with English abstract
    [15] 高海军, 董丁明, 赵琪, 等. 循环荷载作用下加筋土路基动力响应研究[J]. 防灾减灾工程学报, 2022, 42(1): 208-215.

    GAO H J, DONG D M, ZHAO Q, et al. Study on dynamic response of reinforced soil subgrade under cyclic loading[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(1): 208-215. (in Chinese with English abstract
    [16] 宋飞, 石磊, 樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报, 2024, 43(1): 184-193.

    SONG F, SHI L, FAN M Z. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184-193. (in Chinese with English abstract
    [17] HOLTZ WESLEY G, GIBBS HAROLD J. Triaxial shear tests on pervious gravelly soils[J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82(1): 1-9.
    [18] DESAI C S, DRUMM E C, ZAMAN M M. Cyclic testing and modeling of interfaces[J]. Journal of Geotechnical Engineering, 1985, 111(6): 793-815. doi: 10.1061/(ASCE)0733-9410(1985)111:6(793)
    [19] NYE C J, FOX P J. Dynamic shear behavior of a needle-punched geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 973-983. doi: 10.1061/(ASCE)1090-0241(2007)133:8(973)
    [20] 刘飞禹, 王攀, 王军, 等. 筋—土界面循环剪切刚度和阻尼比的试验研究[J]. 岩土力学, 2016, 37(增刊1): 159-165.

    LIU F Y, WANG P, WANG J, et al. Experimental research on reinforcement-soil interface stiffness and damping ratio under cyclic shearing[J]. Rock and Soil Mechanics, 2016, 37(S1): 159-165. (in Chinese with English abstract
    [21] 刘飞禹, 施静, 王军, 等. 三明治形加筋土筋-土界面动力剪切特性[J]. 岩土力学, 2018, 39(6): 1991-1998.

    LIU F Y, SHI J, WANG J, et al. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1991-1998. (in Chinese with English abstract
    [22] 中华人民共和国交通部. 公路工程土工合成材料试验规程: JTGE 50−2006[S]. 北京: 人民交通出版社, 2009.

    Ministry of Transport of the People's Republic of China. Test methods of geosynthetics for highway engineering: JTGE 50−2006[S]. Beijing: China Communications Press, 2009. (in Chinese)
    [23] CHANG J Y, FENG S J. Dynamic shear behaviors of textured geomembrane/nonwoven geotextile interface under cyclic loading[J]. Geotextiles and Geomembranes, 2021, 49(2): 388-398. doi: 10.1016/j.geotexmem.2020.10.010
    [24] 陈瑞锋, 闫炜炀, 刘晓凤, 等. 不同含水率下赤泥改良土的动弹模及阻尼比研究[J]. 硅酸盐通报, 2017, 36(8): 2810-2815.

    CHEN R F, YAN W Y, LIU X F, et al. Study of dynamic modulus and damping ratio of loess solidified by red mud under different water content[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2810-2815. (in Chinese with English abstract
    [25] 吴孟桃, 刘方成, 陈巨龙, 等. 含水率对大应变下橡胶砂动剪模量和阻尼比的影响[J]. 岩土力学, 2018, 39(3): 803-814.

    WU M T, LIU F C, CHEN J L, et al. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains[J]. Rock and Soil Mechanics, 2018, 39(3): 803-814. (in Chinese with English abstract
    [26] 黄伟, 邱鹏, 赵鲁卿, 等. 钢渣−土混拌基层材料试验研究及微观机理分析[J]. 土木与环境工程学报(中英文), 2020, 42(4): 44-52. doi: 10.11835/j.issn.2096-6717.2020.037

    HUANG W, QIU P, ZHAO L Q, et al. Experimental study and micro-mechanism analysis of steel slag-soil mixed road base material[J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 44-52. (in Chinese with English abstract doi: 10.11835/j.issn.2096-6717.2020.037
    [27] 罗文俊, 王海洋, 刘焕强, 等. 不同含水率红粘土的抗剪强度试验研究[J]. 华东交通大学学报, 2020, 37(1): 119-126.

    LUO W J, WANG H Y, LIU H Q, et al. Experimental study on shear strength of red clay with different moisture content[J]. Journal of East China Jiaotong University, 2020, 37(1): 119-126. (in Chinese with English abstract
    [28] MAGHOOL F, ARULRAJAH A, MIRZABABAEI M, et al. Interface shear strength properties of geogrid-reinforced steel slags using a large-scale direct shear testing apparatus[J]. Geotextiles and Geomembranes, 2020, 48(5): 625-633. doi: 10.1016/j.geotexmem.2020.04.001
    [29] AGHILI E, HOSSEINPOUR I, JAMSHIDI CHENARI R, et al. Behavior of granular column-improved clay under cyclic shear loading[J]. Transportation Geotechnics, 2021, 31: 100654. doi: 10.1016/j.trgeo.2021.100654
    [30] 肖杰, 龙晨杰, 何建刚, 等. 大掺量激活钢渣微粉−水泥稳定碎石性能及微观特性[J]. 中国公路学报, 2021, 34(10): 204-215. doi: 10.3969/j.issn.1001-7372.2021.10.017

    XIAO J, LONG C J, HE J G, et al. Performance and micro characteristics of cement stabilized macadam with a large amount of activated steel slag powder[J]. China Journal of Highway and Transport, 2021, 34(10): 204-215. (in Chinese with English abstract doi: 10.3969/j.issn.1001-7372.2021.10.017
    [31] 王丽艳, 李劲松, 陶云翔, 等. 废弃钢渣回填土工格栅加筋挡土墙的抗震性能振动台试验[J]. 中国公路学报, 2021, 34(1): 35-46. doi: 10.3969/j.issn.1001-7372.2021.01.004

    WANG L Y, LI J S, TAO Y X, et al. Shaking table tests on seismic behavior of geogrid-reinforced retaining wall with waste steel slag backfill[J]. China Journal of Highway and Transport, 2021, 34(1): 35-46. (in Chinese with English abstract doi: 10.3969/j.issn.1001-7372.2021.01.004
    [32] SUN X S, LI Y J, WEI X L, et al. High contents of steel slag in the road concrete: Hydration mechanism, mechanical property and durability performance[J]. Construction and Building Materials, 2023, 400: 132703. doi: 10.1016/j.conbuildmat.2023.132703
    [33] 张冰冰, 刘杰, 阿肯江·托呼提, 等. 土工格室加固风积沙路基不同深度动力响应试验研究[J]. 地质科技通报, 2022, 41(6): 308-315.

    ZHANG B B, LIU J, AKJ·T H T , et al. Experimental study on the dynamic response of aeolian sand subgrade reinforced by geocells at different depths[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 308-315. (in Chinese with English abstract
    [34] 蒋婷婷, 潘华利, 艾一帆, 等. 冻融循环及含水率对冰碛土力学特性影响[J]. 地质科技通报, 2024, 43(2): 238-252.

    JIANG T T, PAN H L, AI Y F, et al. Effect of freeze-thaw cycles and water content on the mechanical properties of moraine soil[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 238-252. (in Chinese with English abstract
    [35] 王泽成, 李栋伟, 张潮潮, 等. 考虑含水率对人工冻结红黏土力学特性的影响[J]. 地质科技通报, 2022, 41(6): 287-293.

    WANG Z C, LI D W, ZHANG C C, et al. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 287-293. (in Chinese with English abstract
    [36] 李福栋. 钢渣稳定粉质黏土的小应变动力特性试验研究[D]. 沈阳: 沈阳建筑大学, 2019.

    LI F D. Experimental study on small strain dynamic characteristics of steel slag stabilized silty clay[D]. Shenyang: Shenyang Jianzhu University, 2019. (in Chinese with English abstract
    [37] 南雪丽, 杨旭, 张宇, 等. 钢渣−矿渣基胶凝材料的协同水化机理[J]. 建筑材料学报, 2024, 27(4): 366-374. doi: 10.3969/j.issn.1007-9629.2024.04.011

    NAN X L, YANG X, ZHANG Y, et al. Synergistic hydration mechanism of steel slag-slag based cementitious material[J]. Journal of Building Materials, 2024, 27(4): 366-374. (in Chinese with English abstract doi: 10.3969/j.issn.1007-9629.2024.04.011
    [38] 崔雯雯, 董晓强, 刘晓勇, 等. 赤泥基胶凝材料的水化动力学过程及其水化机制研究[J]. 岩土力学, 2025, 46(3): 867-880.

    CUI W W, DONG X Q, LIU X Y, et al. Hydration kinetics and hydration mechanism of red mud-based cementitious materials[J]. Rock and Soil Mechanics, 2025, 46(3): 867-880. (in Chinese with English abstract
    [39] 张刘阳, 陈潇, 吕国明, 等. 钢渣特性随粒级分布的规律研究[J]. 材料导报, 2025, 39(3): 133-140.

    ZHANG L Y, CHEN X, LÜ G M, et al. Study on the law of steel slag characteristics with particle size distribution[J]. Materials Reports, 2025, 39(3): 133-140. (in Chinese with English abstract
    [40] YIN C S, WANG H L, LIU X M, et al. Monotonic and cyclic mechanical characteristics of reconstituted soil with high liquid limit reinforced by steel slag[J]. Bulletin of Engineering Geology and the Environment, 2025, 84(3): 149. doi: 10.1007/s10064-025-04176-4
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  117
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 录用日期:  2024-08-26
  • 修回日期:  2024-08-16
  • 网络出版日期:  2025-07-09

目录

    /

    返回文章
    返回