留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加筋废弃钢渣混合土循环剪切性能研究

李丽华 张永帅 叶治 康浩然 白玉霞

李丽华,张永帅,叶治,等. 加筋废弃钢渣混合土循环剪切性能研究[J]. 地质科技通报,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341
引用本文: 李丽华,张永帅,叶治,等. 加筋废弃钢渣混合土循环剪切性能研究[J]. 地质科技通报,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341
LI Lihua,ZHANG Yongshuai,YE Zhi,et al. Study on the cyclic shear performance of reinforced waste steel slag mixed soil[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341
Citation: LI Lihua,ZHANG Yongshuai,YE Zhi,et al. Study on the cyclic shear performance of reinforced waste steel slag mixed soil[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-14 doi: 10.19509/j.cnki.dzkq.tb20240341

加筋废弃钢渣混合土循环剪切性能研究

doi: 10.19509/j.cnki.dzkq.tb20240341
基金项目: 国家自然科学基金(No.52278347),湖北省基金创新群体项目(2024AFA009),湖北省重点研发计划项目(No.2022BCA059)
详细信息
    作者简介:

    李丽华:E-mail:researchmailbox@163.com

    通讯作者:

    E-mail:yezhi@hbut.edu.cn

Study on the cyclic shear performance of reinforced waste steel slag mixed soil

More Information
  • 摘要:

    为改善黏土工程特性和增加废弃钢渣(SS)利用率,铺设土工格栅加筋,然后对钢渣−黏土混合土、砂−黏土混合土及黏土分别进行直剪试验、循环剪切试验和循环后直剪试验,研究不同钢渣掺量、竖向应力、含水率、剪切幅值条件下,混合土筋−土界面强度特征、阻尼比、剪切刚度变化和混合土体位移情况。试验结果表明:钢渣可以显著提高黏土筋−土界面抗剪强度,且改良效果优于常规材料砂改良黏土;钢渣−黏土混合土具有较大阻尼比和剪切刚度,说明其具有较好的减震耗能性。其中,40%钢渣掺量下的钢渣−黏土混合土抗剪强度、阻尼比和剪切刚度较优;相较于循环前直剪,经过循环荷载作用后钢渣−黏土混合土抗剪强度有所提升。此外,与竖向应力和剪切幅值相比,含水率对钢渣−黏土混合土的抗剪强度参数、剪切刚度和阻尼比有较大影响。钢渣−黏土混合土在循环剪切荷载作用下,可以呈现更好的减震耗能性,试验结果可为钢渣代替砂改良黏土提供理论依据。

     

  • 图 1  大型循环剪切试验机

    Figure 1.  large-scale cyclic shear tester

    图 2  颗粒级配曲线

    Figure 2.  Particle grading curve

    图 3  不同钢渣含量混合土击实曲线

    Figure 3.  Compaction curves of mixed soils with different steel slag contents

    图 4  不同含水率条件下剪切应力–剪切位移关系曲线

    Figure 4.  Shear stress-shear displacement relationship curves for different moisture content conditions

    图 5  剪切刚度和阻尼比计算示意图

    Figure 5.  Schematic diagram of shear stiffness and damping ratio calculation

    图 6  不同材料下剪切强度变化规律

    Figure 6.  Variation of shear strength with different materials

    图 7  不同材料掺入下混合土剪切位移–竖向位移关系曲线

    Figure 7.  Shear displacement-vertical displacement relationship curves for mixed soils with different material incorporation

    图 8  不同材料黏聚力与内摩擦角对比

    Figure 8.  Comparison of cohesion and angle of internal friction of different materials

    图 9  40%钢渣混合土滞回曲线

    Figure 9.  Hysteresis curve for 40% steel slag mix

    图 10  含水率对剪切应力峰值和硬化系数影响曲线

    Figure 10.  Curves of the effect of moisture content on peak shear stress and hardening factor

    图 11  混合土筋土界面循环次数−剪切应力峰值关系曲线

    Figure 11.  Number of cycles-peak shear stress relationship curve for different backfill material tendon soil interfaces

    图 12  不同剪切幅值筋土界面循环次数−剪切应力峰值关系曲线

    Figure 12.  Number of cycles-peak shear stress relationship at the tendon-soil interface for different shear amplitudes

    图 13  不同材料混合土水平位移−竖向位移变化曲线

    Figure 13.  Horizontal displacement-vertical displacement variation curves for mixed soils of different materials

    图 14  40%钢渣混合土不同含水率下水平位移−竖向位移变化曲线

    Figure 14.  Horizontal displacement-vertical displacement variation curves for different moisture contents of 40% steel slag mixed soil

    图 15  不同材料混合土的剪切刚度和阻尼比

    Figure 15.  Shear stiffness and damping ratios of soil mixtures of different materials

    图 16  40%钢渣混合土不同含水率下剪切刚度和阻尼比

    Figure 16.  Shear stiffness and damping ratios at different moisture contents of 40% steel slag mixes

    图 17  40%钢渣混合土不同剪切幅值的剪切刚度和阻尼比

    Figure 17.  Shear stiffness and damping ratio of 40% steel slag mixed soil with different shear amplitudes

    图 18  循环剪切前、后剪切应力−剪切位移关系图

    Figure 18.  Shear stress-shear displacement relationship before and after cyclic shear

    图 19  界面抗剪强度包络曲线

    Figure 19.  Interface shear strength envelope curves

    表  1  试验材料基本物理指标

    Table  1.   Basic physical property index of materials in tests

    类型 最大干密
    度/(g·cm-3)
    天然含水
    率/%
    曲率
    系数
    不均匀
    系数
    塑限/% 液限/% 塑性
    指数
    黏土 1.79 6.3 2.81 7.59 24.9 50.9 26
    1.83 6.5 0.5 2.2 - - -
    钢渣 2.4 8.1 2.3 11.3 - - -
    下载: 导出CSV

    表  2  钢渣化学成分组成

    Table  2.   Chemical composition of steel slag wB/%

    成分 MgO Al2O3 SiO2 CaO Fe2O3 TiO2 MnO 其他
    钢渣(SS) 12.9 8.7 26.5 34.0 12.9 0.6 1.2 3.1
    下载: 导出CSV

    表  3  土工格栅技术指标

    Table  3.   Technical index of geogrid

    材料 厚度/
    mm
    单位面积质量/
    (g·m−2
    网孔尺寸
    长×宽/mm
    极限延伸率/
    %
    极限抗拉强度/
    (kN·m−1
    横向 纵向 横向 纵向
    聚丙烯 2 250 35×25 13.2 15.6 20
    下载: 导出CSV

    表  4  试验方案

    Table  4.   Experiment scheme

    试验类型 试验
    编号
    试样 竖向应
    力/kPa
    剪切幅
    值/mm
    含水率/% 压实度/%
    直剪试验T-130%SS+70%C200/300/400-9/12/1595
    T-240%SS+60%C200/300/400-9/12/1595
    T-350%SS+50%C200/300/400-9/12/1595
    T-460%S+40%C200/300/400-16.595
    T-5C200/300/400-1895
    循环剪
    切试验
    T-630%SS+70%C40059/12/1595
    T-750%SS+50%C40059/12/1595
    T-840%SS+60%C200/300/4003/4/59/12/1595
    T-960%S+40%C400516.595
    T-10C40051895
    循环后直
    剪试验
    T-1140%SS+60%C200/300/400-1295
    注: 钢渣(SS); 黏土(C); 砂(S);循环次数均为10次;剪切速率为1 mm/min
    下载: 导出CSV

    表  5  不同条件下黏聚力与内摩擦角对比

    Table  5.   Comparison of cohesion and internal friction Angle

    试样 含水率 c/(kPa) ϕ/(°)
    30%SS+70%C9%117.827.9
    12%92.626.9
    15%51.324.9
    40%SS+60%C9%108.727.3
    12%87.732.1
    15%85.225.7
    50%SS+50%C9%67.130.2
    12%43.324.1
    15%39.519.6
    下载: 导出CSV
  • [1] KUMAR J,MADHUSUDHAN B N. Dynamic properties of sand from dry to fully saturated states[J]. Géotechnique,2012,62(1):45-54.
    [2] Wei Li et al. Investigation on the dynamic shear modulus and damping ratio of steel slag sand [2] LI W,LANG L,WANG D,et al. Investigation on the dynamic shear modulus and damping ratio of steel slag sand mixtures[J]. Construction and Building Materials,2018,162:170-180.
    [3] 李丽华,文贝,胡智,等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报(工学版),2019,52(4):311-316.

    LI L H,WEN B,HU Z,et al. Study on reinforced shear behavior of construction waste filler and geosynthetics[J]. Engineering Journal of Wuhan University,2019,52(4):311-316. (in Chinese with English abstract
    [4] 李丽华,肖衡林,唐辉明,等. 轮胎颗粒混合土动力特性参数影响规律试验研究[J]. 岩土力学,2014,35(2):359-364.

    LI L H,XIAO H L,TANG H M,et al. Dynamic properties variation of tire shred-soil mixtures[J]. Rock and Soil Mechanics,2014,35(2):359-364. (in Chinese with English abstract
    [5] 马鸿发,刘清秉,李靖. 掺砂率与干密度对膨润土收缩特性影响[J]. 地质科技通报,2023,42(6):76-85.

    MA H F,LIU Q B,LI J. Effect of shrinkage characteristics of bentonite with different sand mixing rates and dry densities[J]. Bulletin of Geological Science and Technology,2023,42(6):76-85. (in Chinese with English abstract
    [6] WANG L Y,ZHANG B,XIE H M,et al. Study on shear strength characteristics of marine silt modified by steel slag[J]. Advances in Civil Engineering,2021,2021(1):9647977. doi: 10.1155/2021/9647977
    [7] MAGHOOL F,ARULRAJAH A,SUKSIRIPATTANAPONG C,et al. Geotechnical properties of steel slag aggregates:Shear strength and stiffness[J]. Soils and Foundations,2019,59(5):1591-1601. doi: 10.1016/j.sandf.2019.03.016
    [8] WANG L Y,YAN J T,WANG Q,et al. Study on permeability of steel slag and steel alag modifying silt soil as new geo-backfill materials[J]. advances in civil engineering,2019,2019(1):5370748.
    [9] LIU X W,HU M Y,KE S J,et al. A novel rammed earthen material stabilized with steel slags[J]. Construction and Building Materials,2018,189:1134-1139. doi: 10.1016/j.conbuildmat.2018.09.075
    [10] WANG L Y,WANG Q,HUANG X,et al. Experimental investigation on compressive deformation and shear strength characteristics of steel slag in the geotechnical engineering[M]//Anon. Proceedings of GeoShanghai 2018 international conference:Ground improvement and geosynthetics. Singapore:Springer Singapore,2018:194-202.
    [11] 陈爽,贾凡,刘斯宏,等. 错缝堆叠土工袋层间界面的循环剪切特性试验研究[J]. 岩石力学与工程学报,2021,40(增刊1):2945-2953.

    CHEN S,JIA F,LIU S H,et al. Experiments on the cyclic shear behavior of the interface between staggered stacking soilbags[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2945-2953. (in Chinese with English abstract
    [12] 刘飞禹,江淮,王军. 砾石−格栅界面循环剪切软化特性试验研究[J]. 岩土力学,2021,42(6):1485-1492.

    LIU F Y,JIANG H,WANG J. Experimental study on cyclic shear softening characteristics of gravel-geogrid interface[J]. Rock and Soil Mechanics,2021,42(6):1485-1492. (in Chinese with English abstract
    [13] 李丽华,臧天宝,刘永莉,等. 纤维底渣混合土循环剪切性能研究[J]. 岩石力学与工程学报,2021,40(1):196-205.

    LI L H,ZANG T B,LIU Y L,et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):196-205. (in Chinese with English abstract
    [14] 刘飞禹,童艳光,汪歆,等. 筋-土界面刚度软化对加筋土挡墙动力特性的影响[J]. 防灾减灾工程学报,2021,41(1):75-84.

    LIU F Y,TONG Y G,WANG X,et al. Effect of stiffness softening of reinforcement-soil interface on dynamic characteristics of reinforced retaining wall[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(1):75-84. (in Chinese with English abstract
    [15] 高海军,董丁明,赵琪,等. 循环荷载作用下加筋土路基动力响应研究[J]. 防灾减灾工程学报,2022,42(1):208-215.

    GAO H J,DONG D M,ZHAO Q,et al. Study on dynamic response of reinforced soil subgrade under cyclic loading[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(1):208-215. (in Chinese with English abstract
    [16] 宋飞,石磊,樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报,2024,43(1):184-193.

    SONG F,SHI L,FAN M Z. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology,2024,43(1):184-193. (in Chinese with English abstract
    [17] HOLTZ WESLEY G,GIBBS HAROLD J. Triaxial shear tests on pervious gravelly soils[J]. Journal of the Soil Mechanics and Foundations Division,1956,82(1):1-9.
    [18] DESAI C S,DRUMM E C,ZAMAN M M. Cyclic testing and modeling of interfaces[J]. Journal of Geotechnical Engineering,1985,111(6):793-815. doi: 10.1061/(ASCE)0733-9410(1985)111:6(793)
    [19] NYE C J,FOX P J. Dynamic shear behavior of a needle-punched geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(8):973-983. doi: 10.1061/(ASCE)1090-0241(2007)133:8(973)
    [20] 刘飞禹,王攀,王军,等. 筋—土界面循环剪切刚度和阻尼比的试验研究[J]. 岩土力学,2016,37(增刊1):159-165.

    LIU F Y,WANG P,WANG J,et al. Experimental research on reinforcement-soil interface stiffness and damping ratio under cyclic shearing[J]. Rock and Soil Mechanics,2016,37(S1):159-165. (in Chinese with English abstract
    [21] 刘飞禹,施静,王军,等. 三明治形加筋土筋-土界面动力剪切特性[J]. 岩土力学,2018,39(6):1991-1998.

    LIU F Y,SHI J,WANG J,et al. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand[J]. Rock and Soil Mechanics,2018,39(6):1991-1998. (in Chinese with English abstract
    [22] 中华人民共和国交通部. 公路工程土工合成材料试验规程:JTGE 50−2006[S]. 北京:人民交通出版社,2009.

    Ministry of Transport of the People's Republic of China. Test methods of geosynthetics for highway engineering:JTG E 50−2006[S]. Beijing:China Communications Press,2009. (in Chinese)
    [23] CHANG J Y,FENG S J. Dynamic shear behaviors of textured geomembrane/nonwoven geotextile interface under cyclic loading[J]. Geotextiles and Geomembranes,2021,49(2):388-398. doi: 10.1016/j.geotexmem.2020.10.010
    [24] 陈瑞锋,闫炜炀,刘晓凤,等. 不同含水率下赤泥改良土的动弹模及阻尼比研究[J]. 硅酸盐通报,2017,36(8):2810-2815.

    CHEN R F,YAN W Y,LIU X F,et al. Study of dynamic modulus and damping ratio of loess solidified by red mud under different water content[J]. Bulletin of the Chinese Ceramic Society,2017,36(8):2810-2815. (in Chinese with English abstract
    [25] 吴孟桃,刘方成,陈巨龙,等. 含水率对大应变下橡胶砂动剪模量和阻尼比的影响[J]. 岩土力学,2018,39(3):803-814.

    WU M T,LIU F C,CHEN J L,et al. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains[J]. Rock and Soil Mechanics,2018,39(3):803-814. (in Chinese with English abstract
    [26] 黄伟,邱鹏,赵鲁卿,等. 钢渣−土混拌基层材料试验研究及微观机理分析[J]. 土木与环境工程学报(中英文),2020,42(4):44-52. doi: 10.11835/j.issn.2096-6717.2020.037

    HUANG W,QIU P,ZHAO L Q,et al. Experimental study and micro-mechanism analysis of steel slag-soil mixed road base material[J]. Journal of Civil and Environmental Engineering,2020,42(4):44-52. (in Chinese with English abstract doi: 10.11835/j.issn.2096-6717.2020.037
    [27] 罗文俊,王海洋,刘焕强,等. 不同含水率红粘土的抗剪强度试验研究[J]. 华东交通大学学报,2020,37(1):119-126.

    LUO W J,WANG H Y,LIU H Q,et al. Experimental study on shear strength of red clay with different moisture content[J]. Journal of East China Jiaotong University,2020,37(1):119-126. (in Chinese with English abstract
    [28] MAGHOOL F,ARULRAJAH A,MIRZABABAEI M,et al. Interface shear strength properties of geogrid-reinforced steel slags using a large-scale direct shear testing apparatus[J]. Geotextiles and Geomembranes,2020,48(5):625-633. doi: 10.1016/j.geotexmem.2020.04.001
    [29] AGHILI E,HOSSEINPOUR I,JAMSHIDI CHENARI R,et al. Behavior of granular column-improved clay under cyclic shear loading[J]. Transportation Geotechnics,2021,31:100654. doi: 10.1016/j.trgeo.2021.100654
    [30] 肖杰,龙晨杰,何建刚,等. 大掺量激活钢渣微粉−水泥稳定碎石性能及微观特性[J]. 中国公路学报,2021,34(10):204-215. doi: 10.3969/j.issn.1001-7372.2021.10.017

    XIAO J,LONG C J,HE J G,et al. Performance and micro characteristics of cement stabilized macadam with a large amount of activated steel slag powder[J]. China Journal of Highway and Transport,2021,34(10):204-215. (in Chinese with English abstract doi: 10.3969/j.issn.1001-7372.2021.10.017
    [31] 王丽艳,李劲松,陶云翔,等. 废弃钢渣回填土工格栅加筋挡土墙的抗震性能振动台试验[J]. 中国公路学报,2021,34(1):35-46. doi: 10.3969/j.issn.1001-7372.2021.01.004

    WANG L Y,LI J S,TAO Y X,et al. Shaking table tests on seismic behavior of geogrid-reinforced retaining wall with waste steel slag backfill[J]. China Journal of Highway and Transport,2021,34(1):35-46. (in Chinese with English abstract doi: 10.3969/j.issn.1001-7372.2021.01.004
    [32] SUN X S,LI Y J,WEI X L,et al. High contents of steel slag in the road concrete:Hydration mechanism,mechanical property and durability performance[J]. Construction and Building Materials,2023,400:132703. doi: 10.1016/j.conbuildmat.2023.132703
    [33] 张冰冰,刘杰,阿肯江·托呼提,等. 土工格室加固风积沙路基不同深度动力响应试验研究[J]. 地质科技通报,2022,41(6):308-315.

    ZHANG B B,LIU J,AKJ·T H T ,et al. Experimental study on the dynamic response of aeolian sand subgrade reinforced by geocells at different depths[J]. Bulletin of Geological Science and Technology,2022,41(6):308-315. (in Chinese with English abstract
    [34] 蒋婷婷,潘华利,艾一帆,等. 冻融循环及含水率对冰碛土力学特性影响[J]. 地质科技通报,2024,43(2):238-252.

    JIANG T T,PAN H L,AI Y F,et al. Effect of freeze-thaw cycles and water content on the mechanical properties of moraine soil[J]. Bulletin of Geological Science and Technology,2024,43(2):238-252. (in Chinese with English abstract
    [35] 王泽成,李栋伟,张潮潮,等. 考虑含水率对人工冻结红黏土力学特性的影响[J]. 地质科技通报,2022,41(6):287-293.

    WANG Z C,LI D W,ZHANG C C,et al. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology,2022,41(6):287-293. (in Chinese with English abstract
    [36] 李福栋. 钢渣稳定粉质黏土的小应变动力特性试验研究[D]. 沈阳:沈阳建筑大学,2019.

    LI F D. Experimental study on small strain dynamic characteristics of steel slag stabilized silty clay[D]. Shenyang:Shenyang Jianzhu University,2019. (in Chinese with English abstract
    [37] 南雪丽,杨旭,张宇,等. 钢渣−矿渣基胶凝材料的协同水化机理[J]. 建筑材料学报,2024,27(4):366-374. doi: 10.3969/j.issn.1007-9629.2024.04.011

    NAN X L,YANG X,ZHANG Y,et al. Synergistic hydration mechanism of steel slag-slag based cementitious material[J]. Journal of Building Materials,2024,27(4):366-374. (in Chinese with English abstract doi: 10.3969/j.issn.1007-9629.2024.04.011
    [38] 崔雯雯,董晓强,刘晓勇,等. 赤泥基胶凝材料的水化动力学过程及其水化机制研究[J]. 岩土力学,2025,46(3):867-880.

    CUI W W,DONG X Q,LIU X Y,et al. Hydration kinetics and hydration mechanism of red mud-based cementitious materials[J]. Rock and Soil Mechanics,2025,46(3):867-880. (in Chinese with English abstract
    [39] 张刘阳,陈潇,吕国明,等. 钢渣特性随粒级分布的规律研究[J]. 材料导报,2025,39(3):133-140.

    ZHANG L Y,CHEN X,LÜ G M,et al. Study on the law of steel slag characteristics with particle size distribution[J]. Materials Reports,2025,39(3):133-140. (in Chinese with English abstract
    [40] YIN C S,WANG H L,LIU X M,et al. Monotonic and cyclic mechanical characteristics of reconstituted soil with high liquid limit reinforced by steel slag[J]. Bulletin of Engineering Geology and the Environment,2025,84(3):149. doi: 10.1007/s10064-025-04176-4
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 录用日期:  2024-08-26
  • 修回日期:  2024-07-12
  • 网络出版日期:  2025-07-09

目录

    /

    返回文章
    返回