Application of five-dimensional seismic prediction method based on amplitude attribute in Shunbei Well X area
-
摘要:
针对顺北超深层碳酸盐岩断控缝洞型储集体储层非均质性强、地震资料信噪比低、叠后储层预测精度不足及裂缝识别困难等问题,基于五维地震数据,探索了提高裂缝型储层预测精度的新方法。在研究顺北断控缝洞型油气藏储层发育特征的基础上,开展了五维地震各向异性正演模拟,建立了地震振幅与裂缝参数的关系,并优选了裂缝预测敏感参数;在此基础上推导出傅里叶级数形式的方位弹性阻抗方程,开展了裂缝型储层预测,并在顺北X井区进行了应用。研究结果明确了超深层碳酸盐岩断控储集体的AVAZ(amplitude variation with azimuth and offset)地震响应特征,指出裂缝密度是指示裂缝型储层的敏感参数;同时,利用二阶傅里叶系数表征了裂缝发育密度,在顺北X井区实现了裂缝型储层的精细表征,预测吻合率较高。基于振幅属性的五维地震预测技术通过挖掘宽方位地震数据的振幅、方位信息,丰富了裂缝发育密度和方向等相关信息的预测。建立的傅里叶系数−裂缝密度映射关系为断控缝洞型油藏预测提供了定量化工具,为断控缝洞型油藏裂缝预测及目标评价提供了新的思路。
Abstract:Objective In response to challenges such as strong reservoir heterogeneity, low signal-to-noise ratios in seismic data, insufficient prediction accuracy for poststack reservoirs, and difficulty in identifying fractures in ultradeep carbonate reservoirs in Shunbei, a new method is explored to increase the prediction accuracy for fractured reservoirs on the basis of five-dimensional seismic data.
Methods To study the reservoir development characteristics of the Shunbei fault-controlled fracture-cave-type oil and gas reservoirs, a five-dimensional seismic anisotropic forward simulation was conducted, relationship between the seismic amplitude and fracture parameters were established, and the sensitive parameters for fracture prediction were optimized. On the basis, a Fourier series form of the directional elastic impedance equation was derived, fracture-type reservoir prediction was carried out, and the method was applied to the Shunbei Well X area.
Results The AVAZ seismic response characteristics of ultradeep carbonate rock fault-controlled reservoirs were clarified, and the fracture density was identified as a sensitive parameter for identifying fractured reservoirs. Additionally, using second-order Fourier coefficients to characterize fracture development density, a precise characterization of fracture-type reservoirs in the Shunbei Well X area was achieved with high prediction accuracy.
Conclusion The application of five-dimensional seismic prediction technology based on amplitude attributes enhances the prediction of the fracture development density and direction by utilizing amplitude and orientation information from wide-azimuth seismic data. The established Fourier coefficient fracture density mapping relationship provides a quantitative prediction tool for fracture-controlled fracture-cave reservoirs and offers new ideas for fracture prediction and target evaluation in such reservoirs.
-
-
[1] 云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探,2021,26(3):41-52.YUN L. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance,Tarim Basin[J]. China Petroleum Exploration,2021,26(3):41-52. (in Chinese with English abstract [2] 刘雨晴,邓尚,张继标,等. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨[J]. 地学前缘,2023,30(6):95-109.LIU Y Q,DENG S,ZHANG J B,et al. Characteristics and formation mechainism of the strike-slip fault networks in the Shunbei area and the surroundings,Tarim Basin[J]. Earth Science Frontiers,2023,30(6):95-109. (in Chinese with English abstract [3] 姜忠正,唐大卿,沙旭光,等. 塔里木盆地塔中隆起中北部地区断裂构造特征及演化[J]. 地质科技通报,2024,43(3):120-132.JIANG Z Z,TANG D Q,SHA X G,et al. Structure and evolution of faults in central and northern parts of Tazhong Uplift,Tarim Basin[J]. Bulletin of Geological Science and Technology,2024,43(3):120-132. (in Chinese with English abstract [4] 漆立新,云露. 塔里木台盆区碳酸盐岩成藏模式与勘探实践[J]. 石油实验地质,2020,42(5):867-876.QI L X,YUN L. Carbonate reservoir forming model and exploration in Tarim Basin[J]. Petroleum Geology & Experiment,2020,42(5):867-876. (in Chinese with English abstract [5] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质,2017,38(5):831-839.JIAO F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology,2017,38(5):831-839. (in Chinese with English abstract [6] 杨海军,陈永权,田军,等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探,2020,25(2):62-72.YANG H J,CHEN Y Q,TIAN J,et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration,2020,25(2):62-72. (in Chinese with English abstract [7] 邓尚,李慧莉,张仲培,等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质,2018,39(5):878-888.DENG S,LI H L,ZHANG Z P,et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings,Tarim Basin[J]. Oil & Gas Geology,2018,39(5):878-888. (in Chinese with English abstract [8] 卜旭强,王来源,朱莲花,等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏,2023,35(3):152-160.BU X Q,WANG L Y,ZHU L H,et al. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin[J]. Lithologic Reservoirs,2023,35(3):152-160. (in Chinese with English abstract [9] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1-17. doi: 10.1016/S1876-3804(22)60001-6MA Y S,CAI X Y,YUN L,et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2022,49(1):1-17. (in Chinese with English abstract doi: 10.1016/S1876-3804(22)60001-6 [10] 马永生,黎茂稳,蔡勋育,等. 中国海相深层油气富集机理与勘探开发:研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质,2020,41(4):655-672.MA Y S,LI M W,CAI X Y,et al. Mechanisms and exploitation of deep marine petroleum accumulations in China:Advances,technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology,2020,41(4):655-672. (in Chinese with English abstract [11] 吕海涛,韩俊,张继标,等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质,2021,43(1):14-22.LÜ H T,HAN J,ZHANG J B,et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area,Tarim Basin[J]. Petroleum Geology & Experiment,2021,43(1):14-22. (in Chinese with English abstract [12] 李梁,孙庭斌,陈迎楠,等. 塔里木盆地肖塘南地区走滑断裂特征与断溶体勘探研究[J]. 地质科技通报,2023,42(1):239-245.LI L,SUN T B,CHEN Y N,et al. Characteristics of strike-slip faults and exploration of fault-dissolution body in Xiaotangnan area of Tarim Basin[J]. Bulletin of Geological Scienceand Technology,2023,42(1):239-245. (in Chinese with English abstract [13] 李宗杰,杨子川,李海英,等. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J]. 石油物探,2020,59(2):283-294.LI Z J,YANG Z C,LI H Y,et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area[J]. Geophysical Prospecting for Petroleum,2020,59(2):283-294. (in Chinese with English abstract [14] 刘军,龚伟,黄超,等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报,2022,41(4):1-11.LIU J,GONG W,HUANG C,et al. Seismic attribute characteristics of an ultradeep fractured- reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology,2022,41(4):1-11. (in Chinese with English abstract [15] 李海英,刘军,龚伟,等. 顺北地区走滑断裂与断溶体圈闭识别描述技术[J]. 中国石油勘探,2020,25(3):107-120.LI H Y,LIU J,GONG W,et al. Identification and characterization of strike-slip faults and traps of fault-karst reservoir in Shunbei area[J]. China Petroleum Exploration,2020,25(3):107-120. (in Chinese with English abstract [16] 漆立新. 塔里木盆地顺北地区海相超深碳酸盐岩油气勘探物探技术需求与创新应用[J]. 石油物探,2023,62(3):381-394.QI L X. Technical demand and innovative application of geophysical exploration technology for marine ultra-deep carbonate rocks in Shunbei area,Tarim Basin[J]. Geophysical Prospecting for Petroleum,2023,62(3):381-394. (in Chinese with English abstract [17] 何治亮,朱成宏,徐蔚亚,等. 深层−超深层碳酸盐岩多类型储集体地震预测[J]. 地球物理学报,2023,66(1):65-82.HE Z L,ZHU C H,XU W Y,et al. Seismic characterization of multi-type deep/ultra-deep carbonate reservoir[J]. Chinese Journal of Geophysics,2023,66(1):65-82. (in Chinese with English abstract [18] 廖茂辉,刘军,龚伟,等. 顺北地区断控缝洞型储层反射特征与预测技术探讨[J]. 工程地球物理学报,2020,17(6):703-710.LIAO M H,LIU J,GONG W,et al. Discussion on reflection characteristics and prediction technology of fault-controlling fractured-vuggy reservoir in Shunbei area[J]. Chinese Journal of Engineering Geophysics,2020,17(6):703-710. (in Chinese with English abstract [19] 张璐,何峰,陈晓智,等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏,2020,32(2):108-114.ZHANG L,HE F,CHEN X Z,et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control[J]. Lithologic Reservoirs,2020,32(2):108-114. (in Chinese with English abstract [20] 王鹏,刘军,顾汉明. 不连续性属性增强技术在顺北地区断控不同尺度裂缝检测中的应用[J]. 工程地球物理学报,2019,16(2):131-137.WANG P,LIU J,GU H M. The application of enhancement for seismic discontinuity attributes to detection of fracture with different scales in Shunbei area[J]. Chinese Journal of Engineering Geophysics,2019,16(2):131-137. (in Chinese with English abstract [21] 徐德奎,王玉英,郑江峰. 倾角导向的相干加强技术在改善复杂断块地震资料中的应用[J]. 地球物理学进展,2016,31(3):1224-1228.XU D K,WANG Y Y,ZHENG J F. Dip steering coherent-enhancing filtering and its application on seismic data of complex fault-block[J]. Progress in Geophysics,2016,31(3):1224-1228. (in Chinese with English abstract [22] 印兴耀,张洪学,宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探,2018,57(2):155-178.YIN X Y,ZHANG H X,ZONG Z Y. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum,2018,57(2):155-178. (in Chinese with English abstract [23] 印兴耀,马正乾,向伟,等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅰ):裂缝储层岩石物理理论[J]. 石油物探,2022,61(2):183-204.YIN X Y,MA Z Q,XIANG W,et al. Review of fracture prediction driven by the seismic rock physics theory(Ⅰ):Effective anisotropic seismic rock physics theory[J]. Geophysical Prospecting for Petroleum,2022,61(2):183-204. (in Chinese with English abstract [24] 印兴耀,马正乾,宗兆云,等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅱ):五维地震裂缝预测技术[J]. 石油物探,2022,61(3):373-391.YIN X Y,MA Z Q,ZONG Z Y,et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅱ):Fracture prediction from five-dimensional seismic data[J]. Geophysical Prospecting for Petroleum,2022,61(3):373-391. (in Chinese with English abstract [25] 朱剑兵,韩宏伟,李红梅. 高分辨率五维地震道集优化处理技术及其应用[J]. 石油物探,2024,63(3):589-597.ZHU J B,HAN H W,LI H M. High-resolution 5D seismic gather conditioning and its application[J]. Geophysical Prospecting for Petroleum,2024,63(3):589-597. (in Chinese with English abstract [26] 韦欣法. 基于OVT域五维地震属性的裂缝预测:以渤南洼陷沙四上亚段为例[J]. 山东石油化工学院学报,2023,37(4):1-5.WEI X F. Fracture prediction based on five-dimensional seismic attributes in OVT domain:A case study of the Upper Submember of Es4 in Bonan Sag[J]. Journal of Shandong Institute of Petroleum and Chemical Technology,2023,37(4):1-5. (in Chinese with English abstract [27] 陈怀震,印兴耀,高成国,等. 基于各向异性岩石物理的缝隙流体因子AVAZ反演[J]. 地球物理学报,2014,57(3):968-978.CHEN H Z,YIN X Y,GAO C G,et al. AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory[J]. Chinese Journal of Geophysics,2014,57(3):968-978. (in Chinese with English abstract [28] 范白涛,何英明,周长所,等. 基于Born逆散射理论的反射系数参数化及弱度参数反演方法研究与应用[J]. 地球物理学进展,2022,37(2):570-576.FAN B T,HE Y M,ZHOU C S,et al. Research and application of reflectance parameterization and inversion of weakness parameters based on Born inverse scattering theory[J]. Progress in Geophysics,2022,37(2):570-576. (in Chinese with English abstract [29] 田新,宋志华,田治康,等. 含气页岩储层脆性及裂缝参数方位地震反演方法研究与应用[J]. 地球物理学进展,2023,38(3):1191-1203.TIAN X,SONG Z H,TIAN Z K,et al. Azimuthal variation of seismic amplitude for brittleness and fracture parameter of gas-bearing shale reservoir[J]. Progress in Geophysics,2023,38(3):1191-1203. (in Chinese with English abstract [30] DOWNTON J E,ROURE B. Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters[J]. Interpretation,2015,3(3):ST9-ST27. doi: 10.1190/INT-2014-0235.1 [31] PŠENČíK I,MARTINS J L. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media[J]. Studia Geophysica et Geodaetica,2001,45(2):176-199. doi: 10.1023/A:1021868328668 [32] BAKULIN A,GRECHKA V,TSVANKIN I. Estimation of fracture parameters from reflection seismic data:Part I:HTI model due to a single fracture set[J]. Geophysics,2000,65(6):1788-1802. doi: 10.1190/1.1444863 [33] CONNOLLY P. Elastic impedance[J]. The Leading Edge,1999,18(4):438-452. doi: 10.1190/1.1438307 [34] MA Z Q,YIN X Y,ZONG Z Y,et al. Azimuthally variation of elastic impedances for fracture estimation[J]. Journal of Petroleum Science and Engineering,2019,181:106112. doi: 10.1016/j.petrol.2019.05.063 [35] MA Z Q,YIN X Y,ZONG Z Y. Fracture parameters estimation from azimuthal seismic data in orthorhombic medium[J]. Journal of Natural Gas Science and Engineering,2022,100:104470. doi: 10.1016/j.jngse.2022.104470 [36] MA Z Q,YIN X Y,LI K,et al. Fourier coefficients variation with angle for fracture detection and fluid discrimination in tilted transversely isotropic media[J]. Surveys in Geophysics,2022,43(3):775-813. doi: 10.1007/s10712-022-09704-5 [37] RÜGER A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics,1997,62(3):713. doi: 10.1190/1.1444181 [38] RÜGER A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935. doi: 10.1190/1.1444405 [39] CONNOLLY P. Elastic impedance[J]. The Leading Edge,1999,18(4):438-452. -