Delimiting the evolutionary stages of sealing properties of fault-zone fillings:Taking the F3 fault in K1d1 of Beier Depression as an example
-
摘要:
断裂填充物封堵性演化阶段不合理划分,可能造成断层圈闭内不同部位油气分布差异性无法合理解释。提出了对断裂填充物和其下伏储层岩石的紧闭指数和愈合指数的评价及其演化研究的方法,通过比较断裂填充物和下伏储层岩石的紧闭指数和愈合指数之间相对大小的转变,综合厘定断裂填充物封堵性演化阶段,利用其厘定海拉尔盆地贝尔凹陷呼和诺仁背斜构造大一段内F3断裂填充物封堵性演化阶段。结果表明:测点2,4,6,9~11处断裂填充物处于紧闭及愈合皆不封堵阶段,无油气获得;测点1,3,5处断裂填充物目前处于紧闭封堵阶段,但由于成藏关键时期处于紧闭及愈合皆不封堵演化阶段,也无油气获得;测点7,8,12~15处断裂填充物处于紧闭及愈合皆封堵阶段,有利于油气在南二段内聚集与保存,获得了工业油气流。因此,厘定断裂填充物封堵性演化阶段的方法是可行的,对于判断断层圈闭封堵性及其形成时间,提高油气勘探效率具有重要意义。
Abstract:Objective The unreasonable classification of the evolutionary stages of the sealing ability of fault-zone fillings prevents a reasonable explanation of the variations in petroleum distribution in different parts of fault traps.
Methods To address this problem, we propose a method that evaluates and tracks the closure index and cement index for both fault-zone fillings and underlying reservoir rocks, and then comprehensively delimits the evolutionary stages of fault sealing by comparing the relative values of the closure index and cement index between fault-zone fillings and underlying reservoir rocks.The method was applied to the F3 fault in K1
d 1 of the Huhenuoren tectonic belt, Beier Depression, Hailar Basin.Results The results show that: The fault-zone fillings of the F3 fault in K1
d 1 are in the stage of non-closure sealing and non-cement sealing at measurement points 2, 4, 6, and 9-11, which is unfavorable for the accumulation and preservation of petroleum in K1n 2, consistent with the absence of petroleum during drilling. The fault-zone fillings of the F3 fault in K1d 1 at measurement points 1, 3, and 5 are currently in the closure sealing stage. However, due to their evolutionary stages being non-closure sealing and non-cement sealing during the critical period of reservoir formation, no petroleum was obtained during drilling. The fault-zone fillings of the F3 fault in K1d 1 at measurement points 7, 8, and 12-15 are in the closure sealing and cement sealing stages, which favors the accumulation and preservation of petroleum in K1n 2 and has bed to the acquisition of industrial oil and gas flous.Conclusion Therefore, the proposed method for delimiting the evolutionary stages of fault-zone fillings material sealing ability is feasible, providing important insights for assessing the sealing ability and formation timing of fault traps and enhancing the efficiency of oil and gas exploration.
-
Key words:
- Hailar Basin /
- Beier Depression /
- F3 fault /
- sealing property of fault-zone filling /
- evolutionary stage
-
表 1 大一段内 F3断裂填充物封堵性演化历史预测数据
Table 1. Predicted data on the historical evolutionary of the F3 fault-zone fillings sealing properties in K1d1
测点号 大一段内F3断裂填充
物紧闭指数/MPa南二段岩石
紧闭指数/MPa大一段内F3断裂填充物
愈合指数/(MPa·Ma)南二段岩石愈合
指数/(MPa·Ma)大一段内F3断裂填充物
紧闭封堵开始形成时间大一段内F3断裂填充物
愈合封堵开始形成时间1 7.14 6.84 698.2 836.9 新近系沉积末期 无 2 4.15 4.65 423.0 604.8 无 无 3 4.78 4.02 487.8 535.1 古近系沉积晚期 无 4 4.27 4.90 432.1 637.3 无 无 5 4.10 2.92 418.4 579.8 青元岗组沉积早期 无 6 4.44 5.74 452.8 745.6 无 无 7 4.76 2.12 535.5 275.4 青元岗组沉积早期 古近系沉积早期 8 6.97 1.80 629.6 237.9 伊敏组沉积末期 青元岗组沉积中期 9 7.20 8.33 734.1 1082.9 无 无 10 7.36 9.34 751.1 1214.2 无 无 11 7.43 8.83 757.6 1148.2 无 无 12 7.91 5.64 826.5 726.8 青元岗组沉积早期 新近系沉积末期 13 9.21 5.69 939.2 640.2 伊敏组沉积末期 古近系沉积末期 14 8.90 6.76 928.4 789.0 青元岗组沉积末期 新近系沉积末期 15 7.71 4.41 786.0 612.6 青元岗组沉积早期 新近系沉积中期 -
[1] CHU R, WANG Y G, SHI H T. Quantitative evaluation of fault sealing capacity and hydrocarbon migration: Insight from the Liuzhuang fault in the Bohai Bay Basin, China[J]. International Journal of Earth Sciences, 2024, 113(2): 459-475. doi: 10.1007/s00531-024-02387-w [2] 赵军, 汪峻宇, 赖强, 等. 基于XGBoost算法的走滑断裂内部特征带的精细识别[J]. 地质科技通报, 2025, 44(2): 182-192. doi: 10.19509/j.cnki.dzkq.tb20230583ZHAO J, WANG J Y, LAI Q, et al. Fine-grained identification of internal characteristic zones within strike-slip faults via the XGBoost algorithm[J]. Bulletin of Geological Science and Technology, 2025, 44(2): 182-192. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230583 [3] PEI Y W, PATON D A, KNIPE R J, et al. A review of fault sealing behaviour and its evaluation in siliciclastic rocks[J]. Earth-Science Reviews, 2015, 150: 121-138. doi: 10.1016/j.earscirev.2015.07.011 [4] 李浩, 吴金涛, 黄建廷, 等. 断层垂向封闭性定量分析及其在渤海湾盆地A油田中的应用[J]. 地质科技通报, 2020, 39(4): 125-131. doi: 10.19509/j.cnki.dzkq.2020.0416LI H, WU J T, HUANG J T, et al. Quantitative analysis of fault vertical sealing ability and its application in A oilfield of Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 125-131. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2020.0416 [5] BOUVIER J D, KAARS-SIJPESTEIJN C H, KLUESNER D F, et al. Three-dimensional seismic interpretation and fault sealing investigations, Nun River field, Nigeria[J]. AAPG Bulletin, 1989, 73(11): 1397-1414. [6] GRANT N T. A geometrical model for shale smear: Implications for upscaling in faulted geomodels[J]. Petroleum Geoscience, 2017, 23(1): 39-55. doi: 10.1144/petgeo2016-021 [7] YIELDING G. Using probabilistic shale smear modelling to relate SGR predictions of column height to fault-zone heterogeneity[J]. Petroleum Geoscience, 2012, 18(1): 33-42. [8] 袁红旗, 魏鸣禄, 于英华. 油源断裂油气成藏期优势通道输导能力综合评判方法及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(3): 694-703. doi: 10.13278/j.cnki.jjuese.20200084YUAN H Q, WEI M L, YU Y H. Comprehensive evaluation method for oil and gas transmission capacity of oil source fracture dominant channel in oil and gas accumulation period and its application[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 694-703. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.20200084 [9] 杨德相, 付广, 孙同文, 等. 油源断裂优势通道输导油气能力综合评价方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1678-1686. doi: 10.13278/j.cnki.jjuese.201706107YANG D X, FU G, SUN T W, et al. Comprehensive evaluation method and its application of oil carrying capacity through dominant channel of oil source fault[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6): 1678-1686. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.201706107 [10] 吕延防, 胡欣蕾, 金凤鸣, 等. 基于积分数学-地质模型定量评价伸展断层侧向封闭性[J]. 石油勘探与开发, 2021, 48(3): 488-497. doi: 10.11698/PED.2021.03.05LYU Y F, HU X L, JIN F M, et al. Quantitative evaluation of lateral sealing of extensional fault by an integral mathematical-geological model[J]. Petroleum Exploration and Development, 2021, 48(3): 488-497. (in Chinese with English abstract doi: 10.11698/PED.2021.03.05 [11] 胡欣蕾, 吕延防, 孙永河, 等. 泥岩盖层内断层垂向封闭能力综合定量评价: 以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718. doi: 10.13278/j.cnki.jjuese.20170006HU X L, LYU Y F, SUN Y H, et al. Comprehensive quantitative evaluation of vertical sealing ability of faults in caprock: An example of Ed2 mudstone caprock in Nanpu Sag[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3): 705-718. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.20170006 [12] 薛红涛, 李文龙, 刘平, 等. 乌石凹陷断层封堵性分析[J]. 中国石油和化工标准与质量, 2023, 43(8): 83-85.XUE H T, LI W L, LIU P, et al. Fault sealing analysis in Wushi Sag[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(8): 83-85. (in Chinese with English abstract [13] 关蕴文, 周锋, 蒲仁海, 等. 西湖凹陷平北缓坡带盖层特征及封堵性评价[J]. 海洋地质前沿, 2022, 38(10): 34-41.GUAN Y W, ZHOU F, PU R H, et al. Caprock characteristics and sealing evaluation of Pingbei gentle slope belt in Xihu Sag[J]. Marine Geology Frontiers, 2022, 38(10): 34-41. (in Chinese with English abstract [14] 吴雨农, 袁红旗, 张亚雄, 等. 断盖配置封闭性演化阶段恢复方法及其应用[J]. 地质论评, 2022, 68(3): 1161-1169. doi: 10.16509/j.georeview.2021.11.041WU Y N, YUAN H Q, ZHANG Y X, et al. Restoration method of fault-caprock configuration sealing evolution stage and its application[J]. Geological Review, 2022, 68(3): 1161-1169. (in Chinese with English abstract doi: 10.16509/j.georeview.2021.11.041 [15] 付晓飞, 宋宪强, 王海学, 等. 裂陷盆地断层圈闭含油气有效性综合评价: 以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发, 2021, 48(4): 677-686. doi: 10.11698/PED.2021.04.01FU X F, SONG X Q, WANG H X, et al. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: A case study of the Qikou Sag in the Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2021, 48(4): 677-686. (in Chinese with English abstract doi: 10.11698/PED.2021.04.01 [16] JIANG D H, YAN S J, PU R H, et al. Hydrocarbon potential assessment methods in complex fault zones: A case study of the southern Pinghu structural belt, East China Sea[J]. Energies, 2024, 17(24): 6419. doi: 10.3390/en17246419 [17] 李超, 安鹏, 张梦林, 等. 海拉尔盆地贝尔凹陷构造演化特征及其对烃源岩的控制作用[J]. 石油地球物理勘探, 2022, 57(增刊2): 193-197. doi: 10.13810/j.cnki.issn.1000-7210.2022.S2.031LI C, AN P, ZHANG M L, et al. Structural evolution characteristics of Beier Sag in Hailaer Basin and its control on source rocks[J]. Oil Geophysical Prospecting, 2022, 57(S2): 193-197. (in Chinese with English abstract doi: 10.13810/j.cnki.issn.1000-7210.2022.S2.031 [18] 曹思佳, 许凤鸣, 孙显义, 等. 断裂致泥岩盖层封闭形成期滞后程度的预测方法及其应用[J]. 天然气工业, 2021, 41(6): 37-43. doi: 10.3787/j.issn.1000-0976.2021.06.004CAO S J, XU F M, SUN X Y, et al. A method for predicting the fault induced lag degree of seal formation time of mudstone cap rocks and its application[J]. Natural Gas Industry, 2021, 41(6): 37-43. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2021.06.004 [19] 张丹凤, 方石, 邱善坤. 断层封启性的研究现状与发展方向[J]. 吉林大学学报(地球科学版), 2021, 51(1): 65-80. doi: 10.13278/j.cnki.jjuese.20190023ZHANG D F, FANG S, QIU S K. Current research states and development directions of fault sealing properties[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 65-80. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.20190023 [20] 张翥, 严恒, 汪新光, 等. 基于改进模糊综合评判法的断层封堵性综合评价[J]. 地球科学, 2024, 49(3): 1144-1153. doi: 10.3799/dqkx.2022.223ZHANG Z, YAN H, WANG X G, et al. Comprehensive evaluation of fault sealing based on improved fuzzy comprehensive evaluation method[J]. Earth Science, 2024, 49(3): 1144-1153. (in Chinese with English abstract doi: 10.3799/dqkx.2022.223 [21] 张雨健, 王延斌. 渤海湾盆地歧口凹陷滨海-港西断层垂向封堵性评价研究[J]. 矿业科学学报, 2022, 7(1): 45-54. doi: 10.19606/j.cnki.jmst.2022.01.005ZHANG Y J, WANG Y B. Evaluation of vertical sealability of Binhai-Gangxi fault in Qikou Sag Bohai Bay Basin[J]. Journal of Mining Science and Technology, 2022, 7(1): 45-54. (in Chinese with English abstract doi: 10.19606/j.cnki.jmst.2022.01.005 [22] WANG Z Y, GAO Z Q, FAN T L, et al. Architecture of strike-slip fault zones in the central Tarim Basin and implications for their control on petroleum systems[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110432. doi: 10.1016/j.petrol.2022.110432 [23] 杨超群, 雷永昌, 邱欣卫, 等. 珠江口盆地陆丰凹陷A油田断层封堵性综合评价[J]. 海洋地质前沿, 2021, 37(2): 54-61.YANG C Q, LEI Y C, QIU X W, et al. An integrated assessment of fault sealing for oilfield A in Lufeng Sag of Pearl River Mouth Basin[J]. Marine Geology Frontiers, 2021, 37(2): 54-61. (in Chinese with English abstract [24] 展铭望, 付广. 由地震资料预测断−盖配置有效封闭部位[J]. 石油地球物理勘探, 2018, 53(4): 842-848. doi: 10.13810/j.cnki.issn.1000-7210.2018.04.024ZHAN M W, FU G. Effective sealed part prediction in the fault-caprock configuration on seismic data[J]. Oil Geophysical Prospecting, 2018, 53(4): 842-848. (in Chinese with English abstract doi: 10.13810/j.cnki.issn.1000-7210.2018.04.024 [25] LIU T. Fine evaluation of source rocks in Wuerxun-Beier sags[J]. IOP Conference Series: Earth and Environmental Science, 2019, 360(1): 012026. doi: 10.1088/1755-1315/360/1/012026 [26] 张丽娟, 邬光辉, 何曙, 等. 碳酸盐岩断层破碎带构造成岩作用: 以塔中Ⅰ号断裂带为例[J]. 岩石学报, 2016, 32(3): 922-934.ZHANG L J, WU G H, HE S, et al. Structural diagenesis in carbonate fault damage zone: A case study of the No. 1 fault zone in the Tarim Basin[J]. Acta Petrologica Sinica, 2016, 32(3): 922-934. (in Chinese with English abstract [27] 吴孔友, 李继岩, 崔世凌, 等. 断层成岩封闭及其应用[J]. 地质力学学报, 2011, 17(4): 350-360. doi: 10.19597/J.ISSN.1000-3754.202309063WU K Y, LI J Y, CUI S L, et al. Diagenetic sealing characteristics of faulting zone and its application[J]. Journal of Geomechanics, 2011, 17(4): 350-360. (in Chinese with English abstract doi: 10.19597/J.ISSN.1000-3754.202309063 [28] 付广, 梁木桂. 断裂输导向遮挡油气转换时期厘定方法及其应用[J]. 地质学报, 2022, 96(2): 691-698. doi: 10.19762/j.cnki.dizhixuebao.2021183FU G, LIANG M G. Determination method and its application of the conversion period from fault transport to obstruction oil and gas[J]. Acta Geologica Sinica, 2022, 96(2): 691-698. (in Chinese with English abstract doi: 10.19762/j.cnki.dizhixuebao.2021183 [29] 苏圣民, 蒋有录. 含油气盆地断裂带结构特征及其与油气运聚关系[J]. 中国石油大学学报(自然科学版), 2021, 45(4): 32-41.SU S M, JIANG Y L. Fault zone structures and its relationship with hydrocarbon migration and accumulation in petroliferous basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 32-41. (in Chinese with English abstract [30] 刘安, 陈孝红, 李培军, 等. 宜昌天阳坪断裂两侧页岩气保存条件对比研究[J]. 地质科技通报, 2020, 39(2): 10-19. doi: 10.19509/j.cnki.dzkq.2020.0202LIU A, CHEN X H, LI P J, et al. A comparative study of shale gas preservation conditions on both sides of Tianyangping fault in Yichang area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 10-19. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2020.0202 [31] YU W Q. The quantitative evaluation of fault sealing during the Cenozoic in Gaoyou Depression, Subei Basin[J]. Geological Journal, 2022, 57(10): 4099-4109. doi: 10.1002/gj.4531 [32] 李娟, 卫平生, 石兰亭, 等. 海拉尔盆地贝尔凹陷基岩储集层流体作用机制与成岩改造[J]. 石油勘探与开发, 2020, 47(1): 45-56. doi: 10.11698/PED.2020.01.04LI J, WEI P S, SHI L T, et al. Fluid interaction mechanism and diagenetic reformation of basement reservoirs in Beier Sag, Hailar Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 45-56. (in Chinese with English abstract doi: 10.11698/PED.2020.01.04 [33] 王艳清, 宋光永, 李森明, 等. 咸化湖相碎屑岩胶结特征及水体盐度对胶结作用的控制[J]. 中国石油大学学报(自然科学版), 2024, 48(5): 13-23. doi: 10.3969/j.issn.1673-5005.2024.05.002WANG Y Q, SONG G Y, LI S M, et al. Cementation characteristics of saline lacustrine clastic rock and control of water salinity on cementation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(5): 13-23. (in Chinese with English abstract doi: 10.3969/j.issn.1673-5005.2024.05.002 [34] 吴海波, 李军辉, 刘赫. 海拉尔盆地乌尔逊—贝尔凹陷层序构成样式及油气成藏模式[J]. 岩性油气藏, 2015, 27(5): 155-160. doi: 10.3969/j.issn.1673-8926.2015.05.026WU H B, LI J H, LIU H. Sequence architecture pattern and hydrocarbon accumulation model of Lower Cretaceous in Wuerxun-Beier Depression, Hailaer Basin[J]. Lithologic Reservoirs, 2015, 27(5): 155-160. (in Chinese with English abstract doi: 10.3969/j.issn.1673-8926.2015.05.026 [35] WANG Z M, WANG C L, XU K, et al. Characteristics and control factors of tectonic fractures of ultra-deep tight sandstone: Case study of the Lower Cretaceous reservoir in Bozi-Dabei area, Kuqa Depression, Tarim Basin, China[J]. Journal of Natural Gas Geoscience, 2023, 8(6): 439-453. [36] FU X F, JIANG M M, HU Z M, et al. Quantification of factors affecting fault sealing by using machine learning: Shuangtaizi fault anticline, southern margin of the Liaohe Western Depression, northeastern China[J]. Marine and Petroleum Geology, 2024, 168: 106999. doi: 10.1016/j.marpetgeo.2024.106999 [37] 张鹏飞, 刘金华, 孟涛, 等. 断陷盆地复杂断裂区古构造恢复: 以渤海湾盆地济阳坳陷渤南洼陷沙四下亚段为例[J]. 天然气地球科学, 2024, 35(11): 1973-1982.ZHANG P F, LIU J H, MENG T, et al. Restoration of ancient structures in complex fault areas of faulted basins: Taking the Lower Section of the Fourth Member of Shahejie Formation in the Bonan Sag of Jiyang Depression of Bohai Bay Basin as an example[J]. Natural Gas Geoscience, 2024, 35(11): 1973-1982. (in Chinese with English abstract [38] 赵承锦, 蒋有录, 刘景东, 等. 基于正演与反演结合的孔隙度演化恢复方法: 以川东北地区须家河组为例[J]. 石油学报, 2021, 42(6): 708-723. doi: 10.7623/syxb202106002ZHAO C J, JIANG Y L, LIU J D, et al. A recovery method of porosity evolution based on forward and inverse analyses: A case study of the tight sandstone of Xujiahe Formation, Northeast Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(6): 708-723. (in Chinese with English abstract doi: 10.7623/syxb202106002 [39] DUTTON D M, TRUDGILL B D. Four-dimensional analysis of the Sembo relay system, offshore Angola: Implications for fault growth in salt-detached settings[J]. AAPG Bulletin, 2009, 93(6): 763-794. [40] 宋戴雷. 贝尔凹陷呼和诺仁地区南屯组油气成藏规律研究[D]. 黑龙江大庆: 东北石油大学, 2019.SONG D L. Study on hydrocarbon accumulation law of Nantun Formation in Huhenuoren area of Beier Sag[D]. Daqing Heilongjiang: Northeast Petroleum University, 2019. (in Chinese with English abstract -
下载:
