留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂填充物封堵性演化阶段厘定:以贝尔凹陷大一段内F3断裂为例

史集建 付广 丁云浩 赵宗庆

史集建,付广,丁云浩,等. 断裂填充物封堵性演化阶段厘定:以贝尔凹陷大一段内F3断裂为例[J]. 地质科技通报,2026,45(1):15-24 doi: 10.19509/j.cnki.dzkq.tb20240302
引用本文: 史集建,付广,丁云浩,等. 断裂填充物封堵性演化阶段厘定:以贝尔凹陷大一段内F3断裂为例[J]. 地质科技通报,2026,45(1):15-24 doi: 10.19509/j.cnki.dzkq.tb20240302
SHI Jijian,FU Guang,DING Yunhao,et al. Delimiting the evolutionary stages of sealing properties of fault-zone fillings:Taking the F3 fault in K1d1 of Beier Depression as an example[J]. Bulletin of Geological Science and Technology,2026,45(1):15-24 doi: 10.19509/j.cnki.dzkq.tb20240302
Citation: SHI Jijian,FU Guang,DING Yunhao,et al. Delimiting the evolutionary stages of sealing properties of fault-zone fillings:Taking the F3 fault in K1d1 of Beier Depression as an example[J]. Bulletin of Geological Science and Technology,2026,45(1):15-24 doi: 10.19509/j.cnki.dzkq.tb20240302

断裂填充物封堵性演化阶段厘定:以贝尔凹陷大一段内F3断裂为例

doi: 10.19509/j.cnki.dzkq.tb20240302
基金项目: 国家自然科学基金项目(41702153);黑龙江省青年科学基金(QC2017034)
详细信息
    通讯作者:

    E-mail:shijijian@163.com

  • 中图分类号: P618.13

Delimiting the evolutionary stages of sealing properties of fault-zone fillings:Taking the F3 fault in K1d1 of Beier Depression as an example

More Information
  • 摘要:

    断裂填充物封堵性演化阶段不合理划分,可能造成断层圈闭内不同部位油气分布差异性无法合理解释。提出了对断裂填充物和其下伏储层岩石的紧闭指数和愈合指数的评价及其演化研究的方法,通过比较断裂填充物和下伏储层岩石的紧闭指数和愈合指数之间相对大小的转变,综合厘定断裂填充物封堵性演化阶段,利用其厘定海拉尔盆地贝尔凹陷呼和诺仁背斜构造大一段内F3断裂填充物封堵性演化阶段。结果表明:测点2,4,6,9~11处断裂填充物处于紧闭及愈合皆不封堵阶段,无油气获得;测点1,3,5处断裂填充物目前处于紧闭封堵阶段,但由于成藏关键时期处于紧闭及愈合皆不封堵演化阶段,也无油气获得;测点7,8,12~15处断裂填充物处于紧闭及愈合皆封堵阶段,有利于油气在南二段内聚集与保存,获得了工业油气流。因此,厘定断裂填充物封堵性演化阶段的方法是可行的,对于判断断层圈闭封堵性及其形成时间,提高油气勘探效率具有重要意义。

     

  • 图 1  断裂填充物封堵类型示意图

    a. 断裂填充物紧闭封闭(DfDs);b. 断裂填充物愈合封闭(DfDsAfAs);Df. 断裂填充物紧闭指数;Ds. 下伏储层岩石紧闭指数;Af. 断裂填充物愈合指数;As. 下伏储层岩石愈合指数;下同

    Figure 1.  Schematic diagram of fault-zone fillings sealing types

    图 2  断裂填充物封堵性演化阶段厘定示意图

    A. 愈合指数;D. 紧闭指数;t. 地质时期;T0. 断裂停止活动时间;TJ. 断裂填充物紧闭封堵开始形成时间;TJY. 断裂填充物愈合封堵开始形成时间;①紧闭及愈合皆不封堵阶段;②紧闭封堵阶段;③紧闭及愈合皆封堵阶段;下同

    Figure 2.  Schematic diagram of the evolutionary stages delimitation of fault-zone fillings sealing properties

    图 3  贝尔凹陷构造区划及F3断裂发育位置(a)和地层发育综合柱状图(b)

    Figure 3.  Tectonic division and the F3 fault development location (a) and comprehensive stratigraphic column (b) in Beier Depression

    图 4  呼和诺仁构造带F3断裂特征及油气分布

    a. F3断裂T22(南二段顶)构造图;b. F3断裂剖面图

    Figure 4.  Characteristics of the F3 fault in Huhenuoren tectonic belt and its oil and gas distribution

    图 5  大一段内F3断裂填充物紧闭和愈合封堵开始形成时间厘定图

    Figure 5.  Delimiting of formation time of closure sealing and cement sealing of the F3 fault-zone fillings in K1d1

    图 6  大一段内F3断裂填充物成藏期和现今封堵性演化阶段与油气显示对应关系图

    Figure 6.  Correspondence between the sealing evolutionary stages of the F3 fault-zone fillings in K1d1 during the accumulation period and at present and the oil and gas shows

    表  1  大一段内 F3断裂填充物封堵性演化历史预测数据

    Table  1.   Predicted data on the historical evolutionary of the F3 fault-zone fillings sealing properties in K1d1

    测点号 大一段内F3断裂填充
    物紧闭指数/MPa
    南二段岩石
    紧闭指数/MPa
    大一段内F3断裂填充物
    愈合指数/(MPa·Ma)
    南二段岩石愈合
    指数/(MPa·Ma)
    大一段内F3断裂填充物
    紧闭封堵开始形成时间
    大一段内F3断裂填充物
    愈合封堵开始形成时间
    1 7.14 6.84 698.2 836.9 新近系沉积末期
    2 4.15 4.65 423.0 604.8
    3 4.78 4.02 487.8 535.1 古近系沉积晚期
    4 4.27 4.90 432.1 637.3
    5 4.10 2.92 418.4 579.8 青元岗组沉积早期
    6 4.44 5.74 452.8 745.6
    7 4.76 2.12 535.5 275.4 青元岗组沉积早期 古近系沉积早期
    8 6.97 1.80 629.6 237.9 伊敏组沉积末期 青元岗组沉积中期
    9 7.20 8.33 734.1 1082.9
    10 7.36 9.34 751.1 1214.2
    11 7.43 8.83 757.6 1148.2
    12 7.91 5.64 826.5 726.8 青元岗组沉积早期 新近系沉积末期
    13 9.21 5.69 939.2 640.2 伊敏组沉积末期 古近系沉积末期
    14 8.90 6.76 928.4 789.0 青元岗组沉积末期 新近系沉积末期
    15 7.71 4.41 786.0 612.6 青元岗组沉积早期 新近系沉积中期
    下载: 导出CSV
  • [1] CHU R, WANG Y G, SHI H T. Quantitative evaluation of fault sealing capacity and hydrocarbon migration: Insight from the Liuzhuang fault in the Bohai Bay Basin, China[J]. International Journal of Earth Sciences, 2024, 113(2): 459-475. doi: 10.1007/s00531-024-02387-w
    [2] 赵军, 汪峻宇, 赖强, 等. 基于XGBoost算法的走滑断裂内部特征带的精细识别[J]. 地质科技通报, 2025, 44(2): 182-192. doi: 10.19509/j.cnki.dzkq.tb20230583

    ZHAO J, WANG J Y, LAI Q, et al. Fine-grained identification of internal characteristic zones within strike-slip faults via the XGBoost algorithm[J]. Bulletin of Geological Science and Technology, 2025, 44(2): 182-192. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230583
    [3] PEI Y W, PATON D A, KNIPE R J, et al. A review of fault sealing behaviour and its evaluation in siliciclastic rocks[J]. Earth-Science Reviews, 2015, 150: 121-138. doi: 10.1016/j.earscirev.2015.07.011
    [4] 李浩, 吴金涛, 黄建廷, 等. 断层垂向封闭性定量分析及其在渤海湾盆地A油田中的应用[J]. 地质科技通报, 2020, 39(4): 125-131. doi: 10.19509/j.cnki.dzkq.2020.0416

    LI H, WU J T, HUANG J T, et al. Quantitative analysis of fault vertical sealing ability and its application in A oilfield of Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 125-131. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2020.0416
    [5] BOUVIER J D, KAARS-SIJPESTEIJN C H, KLUESNER D F, et al. Three-dimensional seismic interpretation and fault sealing investigations, Nun River field, Nigeria[J]. AAPG Bulletin, 1989, 73(11): 1397-1414.
    [6] GRANT N T. A geometrical model for shale smear: Implications for upscaling in faulted geomodels[J]. Petroleum Geoscience, 2017, 23(1): 39-55. doi: 10.1144/petgeo2016-021
    [7] YIELDING G. Using probabilistic shale smear modelling to relate SGR predictions of column height to fault-zone heterogeneity[J]. Petroleum Geoscience, 2012, 18(1): 33-42.
    [8] 袁红旗, 魏鸣禄, 于英华. 油源断裂油气成藏期优势通道输导能力综合评判方法及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(3): 694-703. doi: 10.13278/j.cnki.jjuese.20200084

    YUAN H Q, WEI M L, YU Y H. Comprehensive evaluation method for oil and gas transmission capacity of oil source fracture dominant channel in oil and gas accumulation period and its application[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 694-703. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.20200084
    [9] 杨德相, 付广, 孙同文, 等. 油源断裂优势通道输导油气能力综合评价方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1678-1686. doi: 10.13278/j.cnki.jjuese.201706107

    YANG D X, FU G, SUN T W, et al. Comprehensive evaluation method and its application of oil carrying capacity through dominant channel of oil source fault[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6): 1678-1686. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.201706107
    [10] 吕延防, 胡欣蕾, 金凤鸣, 等. 基于积分数学-地质模型定量评价伸展断层侧向封闭性[J]. 石油勘探与开发, 2021, 48(3): 488-497. doi: 10.11698/PED.2021.03.05

    LYU Y F, HU X L, JIN F M, et al. Quantitative evaluation of lateral sealing of extensional fault by an integral mathematical-geological model[J]. Petroleum Exploration and Development, 2021, 48(3): 488-497. (in Chinese with English abstract doi: 10.11698/PED.2021.03.05
    [11] 胡欣蕾, 吕延防, 孙永河, 等. 泥岩盖层内断层垂向封闭能力综合定量评价: 以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718. doi: 10.13278/j.cnki.jjuese.20170006

    HU X L, LYU Y F, SUN Y H, et al. Comprehensive quantitative evaluation of vertical sealing ability of faults in caprock: An example of Ed2 mudstone caprock in Nanpu Sag[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3): 705-718. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.20170006
    [12] 薛红涛, 李文龙, 刘平, 等. 乌石凹陷断层封堵性分析[J]. 中国石油和化工标准与质量, 2023, 43(8): 83-85.

    XUE H T, LI W L, LIU P, et al. Fault sealing analysis in Wushi Sag[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(8): 83-85. (in Chinese with English abstract
    [13] 关蕴文, 周锋, 蒲仁海, 等. 西湖凹陷平北缓坡带盖层特征及封堵性评价[J]. 海洋地质前沿, 2022, 38(10): 34-41.

    GUAN Y W, ZHOU F, PU R H, et al. Caprock characteristics and sealing evaluation of Pingbei gentle slope belt in Xihu Sag[J]. Marine Geology Frontiers, 2022, 38(10): 34-41. (in Chinese with English abstract
    [14] 吴雨农, 袁红旗, 张亚雄, 等. 断盖配置封闭性演化阶段恢复方法及其应用[J]. 地质论评, 2022, 68(3): 1161-1169. doi: 10.16509/j.georeview.2021.11.041

    WU Y N, YUAN H Q, ZHANG Y X, et al. Restoration method of fault-caprock configuration sealing evolution stage and its application[J]. Geological Review, 2022, 68(3): 1161-1169. (in Chinese with English abstract doi: 10.16509/j.georeview.2021.11.041
    [15] 付晓飞, 宋宪强, 王海学, 等. 裂陷盆地断层圈闭含油气有效性综合评价: 以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发, 2021, 48(4): 677-686. doi: 10.11698/PED.2021.04.01

    FU X F, SONG X Q, WANG H X, et al. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: A case study of the Qikou Sag in the Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2021, 48(4): 677-686. (in Chinese with English abstract doi: 10.11698/PED.2021.04.01
    [16] JIANG D H, YAN S J, PU R H, et al. Hydrocarbon potential assessment methods in complex fault zones: A case study of the southern Pinghu structural belt, East China Sea[J]. Energies, 2024, 17(24): 6419. doi: 10.3390/en17246419
    [17] 李超, 安鹏, 张梦林, 等. 海拉尔盆地贝尔凹陷构造演化特征及其对烃源岩的控制作用[J]. 石油地球物理勘探, 2022, 57(增刊2): 193-197. doi: 10.13810/j.cnki.issn.1000-7210.2022.S2.031

    LI C, AN P, ZHANG M L, et al. Structural evolution characteristics of Beier Sag in Hailaer Basin and its control on source rocks[J]. Oil Geophysical Prospecting, 2022, 57(S2): 193-197. (in Chinese with English abstract doi: 10.13810/j.cnki.issn.1000-7210.2022.S2.031
    [18] 曹思佳, 许凤鸣, 孙显义, 等. 断裂致泥岩盖层封闭形成期滞后程度的预测方法及其应用[J]. 天然气工业, 2021, 41(6): 37-43. doi: 10.3787/j.issn.1000-0976.2021.06.004

    CAO S J, XU F M, SUN X Y, et al. A method for predicting the fault induced lag degree of seal formation time of mudstone cap rocks and its application[J]. Natural Gas Industry, 2021, 41(6): 37-43. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2021.06.004
    [19] 张丹凤, 方石, 邱善坤. 断层封启性的研究现状与发展方向[J]. 吉林大学学报(地球科学版), 2021, 51(1): 65-80. doi: 10.13278/j.cnki.jjuese.20190023

    ZHANG D F, FANG S, QIU S K. Current research states and development directions of fault sealing properties[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 65-80. (in Chinese with English abstract doi: 10.13278/j.cnki.jjuese.20190023
    [20] 张翥, 严恒, 汪新光, 等. 基于改进模糊综合评判法的断层封堵性综合评价[J]. 地球科学, 2024, 49(3): 1144-1153. doi: 10.3799/dqkx.2022.223

    ZHANG Z, YAN H, WANG X G, et al. Comprehensive evaluation of fault sealing based on improved fuzzy comprehensive evaluation method[J]. Earth Science, 2024, 49(3): 1144-1153. (in Chinese with English abstract doi: 10.3799/dqkx.2022.223
    [21] 张雨健, 王延斌. 渤海湾盆地歧口凹陷滨海-港西断层垂向封堵性评价研究[J]. 矿业科学学报, 2022, 7(1): 45-54. doi: 10.19606/j.cnki.jmst.2022.01.005

    ZHANG Y J, WANG Y B. Evaluation of vertical sealability of Binhai-Gangxi fault in Qikou Sag Bohai Bay Basin[J]. Journal of Mining Science and Technology, 2022, 7(1): 45-54. (in Chinese with English abstract doi: 10.19606/j.cnki.jmst.2022.01.005
    [22] WANG Z Y, GAO Z Q, FAN T L, et al. Architecture of strike-slip fault zones in the central Tarim Basin and implications for their control on petroleum systems[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110432. doi: 10.1016/j.petrol.2022.110432
    [23] 杨超群, 雷永昌, 邱欣卫, 等. 珠江口盆地陆丰凹陷A油田断层封堵性综合评价[J]. 海洋地质前沿, 2021, 37(2): 54-61.

    YANG C Q, LEI Y C, QIU X W, et al. An integrated assessment of fault sealing for oilfield A in Lufeng Sag of Pearl River Mouth Basin[J]. Marine Geology Frontiers, 2021, 37(2): 54-61. (in Chinese with English abstract
    [24] 展铭望, 付广. 由地震资料预测断−盖配置有效封闭部位[J]. 石油地球物理勘探, 2018, 53(4): 842-848. doi: 10.13810/j.cnki.issn.1000-7210.2018.04.024

    ZHAN M W, FU G. Effective sealed part prediction in the fault-caprock configuration on seismic data[J]. Oil Geophysical Prospecting, 2018, 53(4): 842-848. (in Chinese with English abstract doi: 10.13810/j.cnki.issn.1000-7210.2018.04.024
    [25] LIU T. Fine evaluation of source rocks in Wuerxun-Beier sags[J]. IOP Conference Series: Earth and Environmental Science, 2019, 360(1): 012026. doi: 10.1088/1755-1315/360/1/012026
    [26] 张丽娟, 邬光辉, 何曙, 等. 碳酸盐岩断层破碎带构造成岩作用: 以塔中Ⅰ号断裂带为例[J]. 岩石学报, 2016, 32(3): 922-934.

    ZHANG L J, WU G H, HE S, et al. Structural diagenesis in carbonate fault damage zone: A case study of the No. 1 fault zone in the Tarim Basin[J]. Acta Petrologica Sinica, 2016, 32(3): 922-934. (in Chinese with English abstract
    [27] 吴孔友, 李继岩, 崔世凌, 等. 断层成岩封闭及其应用[J]. 地质力学学报, 2011, 17(4): 350-360. doi: 10.19597/J.ISSN.1000-3754.202309063

    WU K Y, LI J Y, CUI S L, et al. Diagenetic sealing characteristics of faulting zone and its application[J]. Journal of Geomechanics, 2011, 17(4): 350-360. (in Chinese with English abstract doi: 10.19597/J.ISSN.1000-3754.202309063
    [28] 付广, 梁木桂. 断裂输导向遮挡油气转换时期厘定方法及其应用[J]. 地质学报, 2022, 96(2): 691-698. doi: 10.19762/j.cnki.dizhixuebao.2021183

    FU G, LIANG M G. Determination method and its application of the conversion period from fault transport to obstruction oil and gas[J]. Acta Geologica Sinica, 2022, 96(2): 691-698. (in Chinese with English abstract doi: 10.19762/j.cnki.dizhixuebao.2021183
    [29] 苏圣民, 蒋有录. 含油气盆地断裂带结构特征及其与油气运聚关系[J]. 中国石油大学学报(自然科学版), 2021, 45(4): 32-41.

    SU S M, JIANG Y L. Fault zone structures and its relationship with hydrocarbon migration and accumulation in petroliferous basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 32-41. (in Chinese with English abstract
    [30] 刘安, 陈孝红, 李培军, 等. 宜昌天阳坪断裂两侧页岩气保存条件对比研究[J]. 地质科技通报, 2020, 39(2): 10-19. doi: 10.19509/j.cnki.dzkq.2020.0202

    LIU A, CHEN X H, LI P J, et al. A comparative study of shale gas preservation conditions on both sides of Tianyangping fault in Yichang area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 10-19. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.2020.0202
    [31] YU W Q. The quantitative evaluation of fault sealing during the Cenozoic in Gaoyou Depression, Subei Basin[J]. Geological Journal, 2022, 57(10): 4099-4109. doi: 10.1002/gj.4531
    [32] 李娟, 卫平生, 石兰亭, 等. 海拉尔盆地贝尔凹陷基岩储集层流体作用机制与成岩改造[J]. 石油勘探与开发, 2020, 47(1): 45-56. doi: 10.11698/PED.2020.01.04

    LI J, WEI P S, SHI L T, et al. Fluid interaction mechanism and diagenetic reformation of basement reservoirs in Beier Sag, Hailar Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 45-56. (in Chinese with English abstract doi: 10.11698/PED.2020.01.04
    [33] 王艳清, 宋光永, 李森明, 等. 咸化湖相碎屑岩胶结特征及水体盐度对胶结作用的控制[J]. 中国石油大学学报(自然科学版), 2024, 48(5): 13-23. doi: 10.3969/j.issn.1673-5005.2024.05.002

    WANG Y Q, SONG G Y, LI S M, et al. Cementation characteristics of saline lacustrine clastic rock and control of water salinity on cementation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(5): 13-23. (in Chinese with English abstract doi: 10.3969/j.issn.1673-5005.2024.05.002
    [34] 吴海波, 李军辉, 刘赫. 海拉尔盆地乌尔逊—贝尔凹陷层序构成样式及油气成藏模式[J]. 岩性油气藏, 2015, 27(5): 155-160. doi: 10.3969/j.issn.1673-8926.2015.05.026

    WU H B, LI J H, LIU H. Sequence architecture pattern and hydrocarbon accumulation model of Lower Cretaceous in Wuerxun-Beier Depression, Hailaer Basin[J]. Lithologic Reservoirs, 2015, 27(5): 155-160. (in Chinese with English abstract doi: 10.3969/j.issn.1673-8926.2015.05.026
    [35] WANG Z M, WANG C L, XU K, et al. Characteristics and control factors of tectonic fractures of ultra-deep tight sandstone: Case study of the Lower Cretaceous reservoir in Bozi-Dabei area, Kuqa Depression, Tarim Basin, China[J]. Journal of Natural Gas Geoscience, 2023, 8(6): 439-453.
    [36] FU X F, JIANG M M, HU Z M, et al. Quantification of factors affecting fault sealing by using machine learning: Shuangtaizi fault anticline, southern margin of the Liaohe Western Depression, northeastern China[J]. Marine and Petroleum Geology, 2024, 168: 106999. doi: 10.1016/j.marpetgeo.2024.106999
    [37] 张鹏飞, 刘金华, 孟涛, 等. 断陷盆地复杂断裂区古构造恢复: 以渤海湾盆地济阳坳陷渤南洼陷沙四下亚段为例[J]. 天然气地球科学, 2024, 35(11): 1973-1982.

    ZHANG P F, LIU J H, MENG T, et al. Restoration of ancient structures in complex fault areas of faulted basins: Taking the Lower Section of the Fourth Member of Shahejie Formation in the Bonan Sag of Jiyang Depression of Bohai Bay Basin as an example[J]. Natural Gas Geoscience, 2024, 35(11): 1973-1982. (in Chinese with English abstract
    [38] 赵承锦, 蒋有录, 刘景东, 等. 基于正演与反演结合的孔隙度演化恢复方法: 以川东北地区须家河组为例[J]. 石油学报, 2021, 42(6): 708-723. doi: 10.7623/syxb202106002

    ZHAO C J, JIANG Y L, LIU J D, et al. A recovery method of porosity evolution based on forward and inverse analyses: A case study of the tight sandstone of Xujiahe Formation, Northeast Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(6): 708-723. (in Chinese with English abstract doi: 10.7623/syxb202106002
    [39] DUTTON D M, TRUDGILL B D. Four-dimensional analysis of the Sembo relay system, offshore Angola: Implications for fault growth in salt-detached settings[J]. AAPG Bulletin, 2009, 93(6): 763-794.
    [40] 宋戴雷. 贝尔凹陷呼和诺仁地区南屯组油气成藏规律研究[D]. 黑龙江大庆: 东北石油大学, 2019.

    SONG D L. Study on hydrocarbon accumulation law of Nantun Formation in Huhenuoren area of Beier Sag[D]. Daqing Heilongjiang: Northeast Petroleum University, 2019. (in Chinese with English abstract
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  242
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 录用日期:  2024-09-24
  • 修回日期:  2024-09-24
  • 网络出版日期:  2024-10-22

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部