留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑土壤结构和吸附力作用下的土壤水分运移模拟

王云权 陈思源 齐鹏飞

王云权,陈思源,齐鹏飞. 考虑土壤结构和吸附力作用下的土壤水分运移模拟[J]. 地质科技通报,2026,45(1):272-278 doi: 10.19509/j.cnki.dzkq.tb20240286
引用本文: 王云权,陈思源,齐鹏飞. 考虑土壤结构和吸附力作用下的土壤水分运移模拟[J]. 地质科技通报,2026,45(1):272-278 doi: 10.19509/j.cnki.dzkq.tb20240286
WANG Yunquan,CHEN Siyuan,QI Pengfei. Simulation of soil water transport considering the effects of soil structure and adsorption forces[J]. Bulletin of Geological Science and Technology,2026,45(1):272-278 doi: 10.19509/j.cnki.dzkq.tb20240286
Citation: WANG Yunquan,CHEN Siyuan,QI Pengfei. Simulation of soil water transport considering the effects of soil structure and adsorption forces[J]. Bulletin of Geological Science and Technology,2026,45(1):272-278 doi: 10.19509/j.cnki.dzkq.tb20240286

考虑土壤结构和吸附力作用下的土壤水分运移模拟

doi: 10.19509/j.cnki.dzkq.tb20240286
基金项目: 北方农牧交错带生态退化的地质−生态−水文耦合机制与生态承载力阈值识别项目( U2244230)
详细信息
    通讯作者:

    E-mail:wangyq@cug.edu.cn

  • 中图分类号: S152.7

Simulation of soil water transport considering the effects of soil structure and adsorption forces

More Information
  • 摘要:

    传统土壤水力模型基于毛细理论,对土壤结构(大孔隙)和土壤吸附作用的表征较差,不能准确刻画近饱和以及土壤含水量较低情形下的土壤水力特征,因而不能准确模拟土壤水分运移特征。为了对比不同土壤水力特征模型的表现,基于FLUXNET数据库7个站点土壤含水量的连续实测数据,分别使用考虑土壤结构、吸附力以及毛细作用的FXW-M3模型和仅考虑毛细力的VGM模型,通过改进的HYDRUS-1D软件对站点实测土壤含水量数据进行模拟分析。结果表明考虑土壤结构和吸附力影响的FXW-M3模型显著提高了土壤水分运移模拟的精度。7个站点FXW-M3模型的均方根误差RMSE的平均值为0.0048 cm3/cm3,低于VGM模型的0.0113 cm3/cm3;相关系数R的平均值为0.80,高于VGM模型的0.75。模拟结果表明土壤结构和干吸附力对土壤水分运移有着显著影响。

     

  • 图 1  USDA-NRCS土壤分级三角图

    Figure 1.  USDA-NRCS soil classification triangle map

    图 2  7个站点土壤含水量的实测值和模拟值

    Figure 2.  Measured and simulated values of soil water content at seven sites

    表  1  站点信息

    Table  1.   Site information

    站点
    名称
    纬度 经度 模拟开
    始时间
    模拟
    时间/d
    年降雨
    量/cm
    年平均
    温度/℃
    年潜在蒸
    散发量/cm
    AU-ASM 22.2830 133.2490 2011/11/01 92 41.16 25.26 36.49
    AU-Emr 23.8587 148.4746 2013/01/01 92 56.60 23.02 34.50
    AU-Stp 17.1507 133.3502 2010/11/01 92 112.19 27.46 72.97
    AU-TTE 22.2870 133.6400 2013/10/01 92 27.74 30.09 29.39
    CN-Dan 30.4978 91.0664 2004/07/01 92 55.04 5.70 66.85
    IT-BCi 40.5237 14.9574 2009/02/01 92 119.67 18.86 66.92
    US-ARM 36.6058 97.4888 2004/05/12 92 90.13 16.39 63.39
    下载: 导出CSV

    表  2  土壤含水量的模拟误差

    Table  2.   Simulation error of soil water content

    站点 AU-ASM AU-Emr AU-Stp AU-TTE CN-Dan IT-BCi US-ARM 平均值
    相关系数R FXW-M3模型 0.81 0.80 0.80 0.81 0.89 0.76 0.75 0.80
    VGM模型 0.80 0.68 0.76 0.76 0.87 0.71 0.67 0.75
    均方根误差RMSE/(cm3·cm−3) FXW-M3模型 0.0004 0.0038 0.0179 0.0020 0.0007 0.0003 0.0089 0.0113
    VGM模型 0.0054 0.0032 0.0393 0.0013 0.0065 0.0127 0.0112 0.0048
    下载: 导出CSV
  • [1] VEREECKEN H, HUISMAN J A, PACHEPSKY Y, et al. On the spatio-temporal dynamics of soil moisture at the field scale[J]. Journal of Hydrology, 2014, 516: 76-96. doi: 10.1016/j.jhydrol.2013.11.061
    [2] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333. doi: 10.1063/1.1745010
    [3] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [4] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [5] MILLINGTON R J, QUIRK J P. Permeability of porous solids[J]. Transactions of the Faraday Society, 1961, 57: 1200-1207.
    [6] ORR F M, SCRIVEN L E, RIVAS A P. Pendular rings between solids: Meniscus properties and capillary force[J]. Journal of Fluid Mechanics, 1975, 67(4): 723-742. doi: 10.1017/S0022112075000572
    [7] TOKUNAGA T K. Hydraulic properties of adsorbed water films in unsaturated porous media[J]. Water Resources Research, 2009, 45(6): 1-9.
    [8] ROSSI C, NIMMO J R. Modeling of soil water retention from saturation to oven dryness[J]. Water Resources Research, 1994, 30(3): 701-708. doi: 10.1029/93WR03238
    [9] NIMMO J R. Comment on the treatment of residual water content in "a consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface" by L. Luckner et al[J]. Water Resources Research, 1991, 27(4): 661-662. doi: 10.1029/91WR00165
    [10] TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257-1276.
    [11] LEBEAU M, KONRAD J M. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 2010, 46(12): 1-15.
    [12] WANG Y Q, MA J Z, ZHANG Y L, et al. A new theoretical model accounting for film flow in unsaturated porous media[J]. Water Resources Research, 2013, 49(8): 5021-5028. doi: 10.1002/wrcr.20390
    [13] ZHANG Z F. Soil water retention and relative permeability for conditions from oven-dry to full saturation[J]. Vadose Zone Journal, 2011, 10(4): 1299-1308. doi: 10.2136/vzj2011.0019
    [14] TULLER M, OR D, DUDLEY L M. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores[J]. Water Resources Research, 1999, 35(7): 1949-1964. doi: 10.1029/1999WR900098
    [15] NIMMO J R. Modeling structural influences on soil water retention[J]. Soil Science Society of America Journal, 1997, 61(3): 712-719.
    [16] VAN GENUCHTEN M T, NIELSEN D R. On describing and predicting the hydraulic properties[C]//Anon. Annales Geophysicae. [S.l.]: [S.n.], 1985, 3(5): 615-628.
    [17] SCHAAP M G, LEIJ F J. Improved prediction of unsaturated hydraulic conductivity with the mualem-van genuchten model[J]. Soil Science Society of America Journal, 2000, 64(3): 843-851. doi: 10.2136/sssaj2000.643843x
    [18] SCHAAP M G, LEIJ F J, VAN GENUCHTEN M T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J]. Journal of Hydrology, 2001, 251(3/4): 163-176.
    [19] GERKE H H. Preferential flow descriptions for structured soils[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 382-400. doi: 10.1002/jpln.200521955
    [20] JARVIS N J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality[J]. European Journal of Soil Science, 2007, 58(3): 523-546. doi: 10.1111/j.1365-2389.2007.00915.x
    [21] SILVA O, GRIFOLL J. A soil-water retention function that includes the hyper-dry region through the BET adsorption isotherm[J]. Water Resources Research, 2007, 43(11): 1-13.
    [22] WANG Y Q, JIN M G, DENG Z J. Alternative model for predicting soil hydraulic conductivity over the complete moisture range[J]. Water Resources Research, 2018, 54(9): 6860-6876. doi: 10.1029/2018WR023037
    [23] WANG Y Q, MA R, ZHU G F. Improved prediction of hydraulic conductivity with a soil water retention curve that accounts for both capillary and adsorption forces[J]. Water Resources Research, 2022, 58(4): 1-22.
    [24] LIAO K H, LAI X M, ZHOU Z W, et al. A simple and improved model for describing soil hydraulic properties from saturation to oven dryness[J]. Vadose Zone Journal, 2018, 17(1): 180082.
    [25] YANG Z L, LI Z, TONG X, et al. Weibull distribution models for describing soil hydraulic properties over the entire matric suction range[J]. Journal of Hydrology, 2023, 622: 129661. doi: 10.1016/j.jhydrol.2023.129661
    [26] PETERS A, HOHENBRINK T L, IDEN S C, et al. Prediction of the absolute hydraulic conductivity function from soil water retention data[J]. Hydrology and Earth System Sciences, 2023, 27(7): 1565-1582. doi: 10.5194/hess-27-1565-2023
    [27] ZHANG Y G, WEIHERMÜLLER L, TOTH B, et al. Analyzing dual porosity in soil hydraulic properties using soil databases for pedotransfer function development[J]. Vadose Zone Journal, 2022, 21(5): e20227. doi: 10.1002/vzj2.20227
    [28] DURNER W, DIAMANTOPOULOS E, IDEN S C, et al. Hydraulic properties and non-equilibrium water flow in soils[M]. Cham: Springer International Publishing, 2014: 403-434.
    [29] DEXTER A R. Advances in characterization of soil structure[J]. Soil and Tillage Research, 1988, 11(3/4): 199-238.
    [30] VAN GENUCHTEN M T, NIELSEN D R. On describing and predicting the hydraulic properties of unsaturated soils[J]. Annales Geophysicae, 1985, 3: 615-627.
    [31] FATICHI S, OR D, WALKO R, et al. Soil structure is an important omission in earth system models[J]. Nature Communications, 2020, 11: 522. doi: 10.1038/s41467-020-14411-z
    [32] WANG Y Q, MA R, ZHU G F. Representation of the influence of soil structure on hydraulic conductivity prediction[J]. Journal of Hydrology, 2023, 619: 129330. doi: 10.1016/j.jhydrol.2023.129330
    [33] FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [34] ŠIMŮNEK J, VAN GENUCHTEN M T, ŠEJNA M. Recent developments and applications of the HYDRUS computer software packages[J]. Vadose Zone Journal, 2016, 15(7).
    [35] DUAN Q Y, SOROOSHIAN S, GUPTA V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research, 1992, 28(4): 1015-1031. doi: 10.1029/91WR02985
    [36] POLLACCO J A P, NASTA P, SORIA-UGALDE J M, et al. Reduction of feasible parameter space of the inverted soil hydraulic parameter sets for kosugi model[J]. Soil Science, 2013, 178(6): 267-280. doi: 10.1097/SS.0b013e3182a2da21
    [37] 王兴华, 李小倩, 谢晓涵, 等. 土壤因子对三氯乙烯土−气分配系数的影响[J]. 地质科技通报, 2024, 43(5): 272-278. doi: 10.19509/j.cnki.dzkq.tb20240028

    WANG X H, LI X Q, XIE X H, et al. Impact of soil factors on soil-gas partition coefficient of trichloroethylene[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 272-278. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20240028
    [38] 王铭森, 邓斌, 张晚祺, 等. 非均质包气带土壤含水率分布定量刻画及其模拟[J]. 地质科技通报, 2025, 44(3): 296-308. doi: 10.19509/j.cnki.dzkq.tb20240256

    WANG M S, DENG B, ZHANG W Q, et al. Quantitative characterization and simulation of soil moisture distribution in heterogeneous vadose zone[J]. Bulletin of Geological Science and Technology, 2025, 44(3): 296-308. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20240256
    [39] 金玉, 陈文岭, 王铭森, 等. 基于露点水势仪与滤纸法的盐渍土蒸发过程中吸力动态规律[J]. 地质科技通报, 2025, 44(6): 270-280. doi: 10.19509/j.cnki.dzkq.tb20240065

    JIN Y, CHEN W L, WANG M S, et al. Dynamic law of suction during the evaporation process of saline soil based on dew point water potential meter and filter paper method[J]. Bulletin of Geological Science and Technology, 2025, 44(6): 270-280. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20240065
    [40] 李培月, 李佳慧, 吴健华, 等. 黄土−古土壤互层对土壤水分运移及土体微结构的影响[J]. 水文地质工程地质, 2024, 51(3): 1-11.

    LI P Y, LI J H, WU J H, et al. Effects of loess-paleosol interbedding on soil moisture transport and soil microstructure[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 1-11.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  42
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 录用日期:  2024-10-24
  • 修回日期:  2024-10-24
  • 网络出版日期:  2025-12-17

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部