留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晋祠泉域西边山岩溶关键带地下水污染机制研究

高旭波 王倩 毛智锋 张鑫 段燕

高旭波,王倩,毛智锋,等. 晋祠泉域西边山岩溶关键带地下水污染机制研究[J]. 地质科技通报,2025,${article_volume}(0):1-11 doi: 10.19509/j.cnki.dzkq.tb20240278
引用本文: 高旭波,王倩,毛智锋,等. 晋祠泉域西边山岩溶关键带地下水污染机制研究[J]. 地质科技通报,2025,${article_volume}(0):1-11 doi: 10.19509/j.cnki.dzkq.tb20240278
GAO Xubo,WANG Qian,MAO Zhifeng,et al. Groundwater pollution mechanisms in karst critical zone of western mountain of the Jinci Spring area[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-11 doi: 10.19509/j.cnki.dzkq.tb20240278
Citation: GAO Xubo,WANG Qian,MAO Zhifeng,et al. Groundwater pollution mechanisms in karst critical zone of western mountain of the Jinci Spring area[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-11 doi: 10.19509/j.cnki.dzkq.tb20240278

晋祠泉域西边山岩溶关键带地下水污染机制研究

doi: 10.19509/j.cnki.dzkq.tb20240278
基金项目: 国家自然科学基金项目(230988000)
详细信息
    作者简介:

    高旭波:E-mail:xubo.gao.cug@gmail.com

    通讯作者:

    E-mail:xubo.gao.cug@gmail.com

Groundwater pollution mechanisms in karst critical zone of western mountain of the Jinci Spring area

More Information
  • 摘要:

    岩溶地下水资源是我国重要供水水源。在全球气候变化和采煤等强烈人类活动的叠加作用下,晋祠泉域地下水水质恶化。探明水环境问题,识别泉域岩溶关键带地下水污染机制对于泉域岩溶地下水保护具有重要意义。采用熵权法水质指数对泉域地下水进行水质评价。基于水质评价结果,采用水化学耦合地下水硫酸盐硫氧和硝酸盐氮氧同位素进行地下水污染溯源。通过地下水无机碳同位素、锶同位素和硫同位素进一步识别出岩溶地下水污染途径。结果表明,岩溶水中硫酸盐均值为582.07 mg/L,孔隙水硝酸盐质量浓度高达424.72 mg/L,研究区地下水受到明显硫酸盐、硝酸盐污染。污染岩溶水中硫酸盐硫同位素显著偏负,硝酸盐污染岩溶水锶同位素和碳同位素特征与深部孔隙水相似。地下水中过量硫酸盐的主要来源是硫化物氧化和石膏溶解,污水排放和粪肥输入是地下水受硝酸盐污染的重要原因。岩溶含水层的主要污染途径为孔隙水的反向补给和上层老窑水的串层补给。研究成果为晋祠泉域岩溶地下水污染治理及岩溶水资源的合理开发利用提供了重要科学依据。

     

  • 图 1  晋祠泉域西边山岩溶关键带地质综合图

    a. 主要地层年代略图;b. 研究区地质剖面图(A-A'-A");c. 采样点位置图

    Figure 1.  Comprehensive geological map of the karst critical zone of the Jinci Spring

    图 2  地下水水样EWQI值堆积柱状图(TH为总硬度)

    Figure 2.  Stacking histogram of EWQI values of groundwater samples

    图 3  地下水EWQI空间分布图

    Figure 3.  Spatial distribution of EWQI in groundwater

    图 4  地下水污染组分(a) TDS, (b) Na+, (c) ${\mathrm{NO}}_3^{-} $和(d) ${\mathrm{SO}}_4^{2-} $空间分布图

    Figure 4.  Spatial distribution of contaminant (a) TDS, (b) Na+, (c) ${\mathrm{NO}}_3^{-} $, and (d) ${\mathrm{SO}}_4^{2-} $ concentrations in groundwater

    图 5  地下水硫酸盐δ18O-δ32S散点图(a)以及地下水硫酸盐$ \delta^{18}{\mathrm{S}}\text{-}{\mathrm{SO}}_4^{2-} $散点图(b)

    Figure 5.  Scatter plot of δ18O-δ32S in groundwater sulfate (a), and scatter plot of $\delta^{18}{\mathrm{S}}\text{-}{\mathrm{SO}}_4^{2-} $ in groundwater sulfate (b)

    图 6  地下水$c({\mathrm{NO}}_3^{-}) $/c(Cl)与c(Cl)变化图(a)以及地下水硝酸盐δ15N-δ18O散点图(b)

    Figure 6.  Variation of ${\mathrm{NO}}_3^{-} $/Cl molar ratios and Cl concentrations in groundwater (a) and Scatter plot of δ15N-δ18O nitrate (b) in groundwater

    图 7  δ13C与$ {\mathrm{NO}}_3^{-} $/(Ca2++Mg2+)摩尔比散点图(a)以及δ13C与$ {\mathrm{NO}}_3^{-}/{\mathrm{HCO}}_3^{-} $摩尔比散点图(b)

    Figure 7.  Scatter plot of δ13C versus ${\mathrm{NO}}_3^{-} $/(Ca2++Mg2+) molar ratios in groundwater (a), and scatter plot of δ13C versus ${\mathrm{NO}}_3^{-}/{\mathrm{HCO}}_3^{-} $ molar ratios in groundwater (b)

    图 8  地下水87Sr/86Sr与1/Sr散点图

    Figure 8.  Scatter plot of 87Sr/86Sr versus 1/Sr in groundwater

    图 9  地下水硫酸盐$ {\mathrm{SO}}_4^{2-}\text{-}\delta^{34}{\mathrm{S}} $散点图

    Figure 9.  Scatter plot of ${\mathrm{SO}}_4^{2-}\text{-}\delta^{34}{\mathrm{S}} $ in groundwater sulfate

    表  1  EWQI等级分类

    Table  1.   Grade classification of EWQI

    EWQI 等级 水质描述
    EWQI≤25 优秀
    25<EWQI≤50 良好
    50<EWQI≤100 中等
    100<EWQI≤150 较差
    150<EWQI 极差
    下载: 导出CSV

    表  2  研究区水化学参数统计表

    Table  2.   Statistical table of hydrochemical parameters in the study area

    样品 项目 pH Ca2+ Mg2+ Na+ K+ ${\mathrm{NO}}_3^{-} $ Cl ${\mathrm{SO}}_4^{2-} $ ${\mathrm{HCO}}_3^{-} $ F TDS
    ρB/(mg·L−1)


    最小值 6.59 23.85 2.27 20.61 0.00 0.00 10.45 94.68 83.54 0.00 449.70
    最大值 7.66 456.09 123.93 253.73 36.68 80.73 124.50 1558.64 664.25 1.22 2645.86
    平均值 7.18 229.00 61.14 70.40 8.78 17.14 29.06 582.07 290.00 0.46 1145.16
    变异系数 0.19 0.60 0.62 1.01 1.24 1.52 0.92 0.72 0.41 0.83 0.54


    最小值 6.75 46.36 0.00 27.83 0.00 0.00 20.92 67.12 65.33 0.00 377.58
    最大值 9.49 718.63 151.36 183.52 42.68 424.72 172.47 1489.07 640.50 0.65 2595.51
    平均值 7.47 214.94 51.13 82.56 5.57 77.32 70.50 430.25 352.70 0.14 1111.23
    变异系数 0.64 0.80 0.76 0.51 1.66 1.56 0.69 0.85 0.39 1.59 0.55


    最小值 7.42 19.35 2.11 21.85 0.25 5.05 6.78 60.68 166.07 0.00 252.30
    最大值 8.39 114.59 36.50 83.56 5.43 210.19 105.3 245.97 296.95 0.57 770.71
    平均值 8.01 65.76 19.87 55.66 3.99 45.43 23.1 119.98 233.76 0.21 451.38
    变异系数 0.04 0.41 0.57 0.43 0.40 1.41 31.3 0.47 0.17 0.97 0.37


    最小值 7.66 40.80 17.20 35.25 3.07 0.00 13.10 132.84 154.41 0.00 431.65
    最大值 8.56 225.63 76.49 125.41 8.45 41.10 69.01 820.16 326.64 1.87 1200.15
    平均值 8.03 102.14 34.26 65.46 4.56 14.09 31.33 324.72 240.19 0.58 697.31
    变异系数 0.04 0.70 0.64 0.44 0.35 0.87 0.57 0.76 0.23 1.00 301.78
    注:pH无量纲,其他指标单位均为mg/L,TDS为总溶解性固体,下同
    下载: 导出CSV
  • [1] 林云,曹飞龙,武亚遵,等. 北方典型岩溶泉域地下水水文地球化学特征分析:以鹤壁许家沟泉域为例[J]. 地球与环境,2020,48(3):294-306.

    LIN Y,CAO F L,WU Y Z,et al. Hydrogeochemical characteristics of groundwater in typical karst spring areas of North China:A case study in the Xujiagou Spring area,Hebi[J]. Earth and Environment,2020,48(3):294-306. (in Chinese with English abstract
    [2] 梁永平,申豪勇,赵春红,等. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶,2021,40(3):363-380.

    LIANG Y P,SHEN H Y,ZHAO C H,et al. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica,2021,40(3):363-380. (in Chinese with English abstract
    [3] EINSIEDL F,MAYER B. Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb,southern Germany[J]. Environmental Science & Technology,2006,40(21):6697-6702.
    [4] 康凤新,郑婷婷,冯亚伟,等. 北方岩溶区降水入渗补给系数及补给机制:以羊庄岩溶水系统为例[J]. 地质科技通报,2024,43(2):268-282.

    KANG F X,ZHENG T T,FENG Y W,et al. Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China:A case study of Yangzhuang karst water system[J]. Bulletin of Geological Science and Technology,2024,43(2):268-282. (in Chinese with English abstract
    [5] DE GRAAF I E M,GLEESON T,VAN BEEK L P H,et al. Environmental flow limits to global groundwater pumping[J]. Nature,2019,574:90-94. doi: 10.1038/s41586-019-1594-4
    [6] JUTEBRING STERTE E,LIDMAN F,LINDBORG E,et al. How catchment characteristics influence hydrological pathways and travel times in a boreal landscape[J]. Hydrology and Earth System Sciences,2021,25(4):2133-2158. doi: 10.5194/hess-25-2133-2021
    [7] 霍建光,赵春红,梁永平,等. 娘子关泉域径流−排泄区岩溶水污染特征及成因分析[J]. 地质科技情报,2015,34(5):147-152.

    HUO J G,ZHAO C H,LIANG Y P,et al. Characteristic and cause analysis in the runoff-drainage area of Niangziguan Spring[J]. Geological Science and Technology Information,2015,34(5):147-152. (in Chinese with English abstract
    [8] TAUFIQ A,EFFENDI A J,ISKANDAR I,et al. Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin,Indonesia,deduced by combined use of stable isotope ratios,CFC age dating,and socioeconomic parameters[J]. Water Research,2019,148:292-305. doi: 10.1016/j.watres.2018.10.049
    [9] 刘安,于聪灵,王立平,等. 河北省典型铅锌矿区重金属来源解析及生态风险评价[J]. 地质科技通报,2024,43(2):307-317.

    LIU A,YU C L,WANG L P,et al. Heavy metal sources and ecological risk assessment of typical lead-zinc mining areas in Hebei Province[J]. Bulletin of Geological Science and Technology,2024,43(2):307-317. (in Chinese with English abstract
    [10] 高旭波,王万洲,侯保俊,等. 中国北方岩溶地下水污染分析[J]. 中国岩溶,2020,39(3):287-298.

    GAO X B,WANG W Z,HOU B J,et al. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica,2020,39(3):287-298. (in Chinese with English abstract
    [11] 卢丽,王喆,裴建国,等. 西南地区典型岩溶地下水系统污染模式[J]. 南水北调与水利科技,2018,16(6):89-96.

    LU L,WANG Z,PEI J G,et al. Study on pollution model of typical karst groundwater system in area of Southwest China[J]. South-to-North Water Transfers and Water Science & Technology,2018,16(6):89-96. (in Chinese with English abstract
    [12] LI C C,GAO X B,WANG W Z,et al. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system:A case study at Jinci,northern China[J]. Journal of Hydrology,2021,596:125691. doi: 10.1016/j.jhydrol.2020.125691
    [13] 邹霜,张东,李小倩,等. 豫北山前平原深层地下水硫酸盐来源与污染途径的同位素示踪[J]. 地球科学,2022,47(2):700-716.

    ZOU S,ZHANG D,LI X Q,et al. Sources and pollution pathways of deep groundwater sulfate underneath the piedmont plain in the north Henan Province[J]. Earth Science,2022,47(2):700-716. (in Chinese with English abstract
    [14] 孙斌,邢立亭,李常锁. 趵突泉泉域岩溶水典型污染组分变化特征及污染途径[J]. 中国岩溶,2018,37(6):810-818.

    SUN B,XING L T,LI C S. Variation of typical pollution components and pollution way of karst water in Baotu spring region[J]. Carsologica Sinica,2018,37(6):810-818. (in Chinese with English abstract
    [15] 王焰新. 我国北方岩溶泉域生态修复策略研究:以晋祠泉为例[J]. 中国岩溶,2022,41(3):331-344.

    WANG Y X. Study on ecological restoration strategy of karst spring region in North China:Taking Jinci Spring as an example[J]. Carsologica Sinica,2022,41(3):331-344. (in Chinese with English abstract
    [16] 张广禄,刘海燕,郭华明,等. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘,2023,30(4):485-503.

    ZHANG G L,LIU H Y,GUO H M,et al. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain[J]. Earth Science Frontiers,2023,30(4):485-503. (in Chinese with English abstract
    [17] DASHORA M,KUMAR A,KUMAR S,et al. Geochemical assessment of groundwater in a desertic region of India using chemometric analysis and entropy water quality index (EWQI)[J]. Natural Hazards,2022,112(1):747-782. doi: 10.1007/s11069-021-05204-8
    [18] JIANG C F,GAO X B,HOU B J,et al. Occurrence and environmental impact of coal mine goaf water in karst areas in China[J]. Journal of Cleaner Production,2020,275:123813. doi: 10.1016/j.jclepro.2020.123813
    [19] 王凯,郑秀清,贾振兴,等. 基于EOF和M-K的晋祠泉域岩溶地下水水化学时空变化特征分析[J]. 中国岩溶,2018,37(5):690-697.

    WANG K,ZHENG X Q,JIA Z X,et al. Analysis on temporal and spatial variation characteristics of karst groundwater hydrochemistry in Jinci Spring area based on EOF and M-K models[J]. Carsologica Sinica,2018,37(5):690-697. (in Chinese with English abstract
    [20] 肖勇,莫培,尹世洋,等. 北京南郊平原地下水化学特征及成因分析[J]. 环境工程,2021,39(8):99-107.

    XIAO Y,MO P,YIN S Y,et al. Hydrochemical characteristics and genesis of groundwater in southern suburb of Beijing Plain[J]. Environmental Engineering,2021,39(8):99-107. (in Chinese with English abstract
    [21] TORRES-MARTÍNEZ J A,MORA A,KNAPPETT P S K,et al. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research,2020,182:115962. doi: 10.1016/j.watres.2020.115962
    [22] 张东,黄兴宇,李成杰. 硫和氧同位素示踪黄河及支流河水硫酸盐来源[J]. 水科学进展,2013,24(3):418-426.

    ZHANG D,HUANG X Y,LI C J. Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes[J]. Advances in Water Science,2013,24(3):418-426. (in Chinese with English abstract
    [23] MOORE K B,EKWURZEL B,ESSER B K,et al. Sources of groundwater nitrate revealed using residence time and isotope methods[J]. Applied Geochemistry,2006,21(6):1016-1029. doi: 10.1016/j.apgeochem.2006.03.008
    [24] 曹慧丽,李伟,苏春利,等. 水化学及硫同位素对大冶矿区地下水硫酸盐污染的指示[J]. 地球科学,2023,48(9):3432-3443.

    CAO H L,LI W,SU C L,et al. Indication of hydrochemistry and $ \delta^{34}{\mathrm{S}}\text{-}{\mathrm{SO}}_4^{2-} $ on sulfate pollution of groundwater in Daye mining area[J]. Earth Science,2023,48(9):3432-3443. (in Chinese with English abstract
    [25] 雍亮,王毅博,冯民权. 混合土地利用下长河流域硝酸盐污染源解析[J]. 环境科学学报,2023,43(7):56-69.

    YONG L,WANG Y B,FENG M Q. Analysis of nitrate pollution sources in Changhe River Basin under mixed land use[J]. Acta Scientiae Circumstantiae,2023,43(7):56-69. (in Chinese with English abstract
    [26] TORRES-MARTÍNEZ J A,MORA A,MAHLKNECHT J,et al. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera),combining major ions,stable isotopes and MixSIAR model[J]. Environmental Pollution,2021,269:115445. doi: 10.1016/j.envpol.2020.115445
    [27] KIM S H,KIM H R,YU S,et al. Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island,South Korea:With emphasis on legacy effects on water management[J]. Water Research,2021,191:116814. doi: 10.1016/j.watres.2021.116814
    [28] PINZONE M,DAMSEAUX F,MICHEL L N,et al. Stable isotope ratios of carbon,nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales[J]. Chemosphere,2019,237:124448. doi: 10.1016/j.chemosphere.2019.124448
    [29] 张东,刘丛强,汪福顺,等. 农业活动干扰下地下水无机碳循环过程研究[J]. 中国环境科学,2015,35(11):3359-3370.

    ZHANG D,LIU C Q,WANG F S,et al. Inorganic carbon cycling in subsurface environment influenced by agricultural activities[J]. China Environmental Science,2015,35(11):3359-3370. (in Chinese with English abstract
    [30] LI S L,LIU C Q,LI J,et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China:Isotopic and chemical constraints[J]. Chemical Geology,2010,277(3/4):301-309.
    [31] WIDORY D,PETELET-GIRAUD E,NÉGREL P,et al. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes:A synthesis[J]. Environmental Science & Technology,2005,39(2):539-548.
    [32] 孙厚云,卫晓锋,甘凤伟,等. 滦河流域中上游富锶地下水成因类型与形成机制[J]. 地球学报,2020,41(1):65-79.

    SUN H Y,WEI X F,GAN F W,et al. Genetic type and formation mechanism of strontium-rich groundwater in the upper and middle reaches of Luanhe River Basin[J]. Acta Geoscientica Sinica,2020,41(1):65-79. (in Chinese with English abstract
    [33] HAN G L,LIU C Q. Water geochemistry controlled by carbonate dissolution:A study of the river waters draining karst-dominated terrain,Guizhou Province,China[J]. Chemical Geology,2004,204(1/2):1-21.
    [34] HOSONO T,WANG C H,UMEZAWA Y,et al. Multiple isotope (H,O,N,S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area[J]. Journal of Hydrology,2011,397(1/2):23-36.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  22
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 录用日期:  2024-07-16
  • 修回日期:  2024-06-07
  • 网络出版日期:  2025-07-08

目录

    /

    返回文章
    返回