Refined modeling and stability analysis of open-pit mine slopes segmented by fault planes
-
摘要:
露天矿边坡断层带是边坡三维稳定性分析及数值模拟的重点,由于地质断层面将矿岩三维空间分割成复杂空间面域,成为露天矿边坡三维精细化网格生成的难点。为了提高含断层露天矿边坡稳定性分析的准确度,需要在对含断层露天矿边坡准确三维建模的基础上,对断层带网格模型进行细化。首先建立含断层露天矿边坡真三维网格模型;其次以断层面网格为中心,对边坡三维四面体网格模型进行分级自适应细化,以VC++为开发平台,对TetGen库进行开发得以实现;最后以内蒙古自治区西二露天煤矿含断层边坡为例,使用FLAC3D软件通过数值模拟方法对细化前后的模型进行稳定性分析,得到分级细化前后模型的稳定性系数分别为1.35和1.20。通过对模型细化前后的对比分析,发现精细化网格能够显著提高地质体的数值模拟精度。将数值模拟结果与实际滑体进行对比,验证了自适应分级细化方法的可靠性与有效性。
Abstract:Objective The fault zone in an open-pit mine slope is a key focus of three-dimensional stability analysis and numerical simulation. Geological fault planes divide the three-dimensional space of ore rock into complex spatial areas, making the generation of refined three-dimensional meshes for open-pit mine slopes a major challenge. To enhance the accuracy of stability analysis for open-pit mine slopes with faults, it is necessary to refine the mesh model of the fault zone based on accurate three-dimensional modeling of such slopes.
Methods First, an actual three-dimensional mesh model of an open-pit mine slope with faults was established. Then, using the fault plane mesh as the center, the three-dimensional tetrahedral mesh model of the slope was adaptively refined through a hierarchical approach. This method was implemented by developing the TetGen library on the VC++ platform.
Results Taking the slope with faults of the Xi’er open-pit coal mine in Inner Mongolia Autonomous Region as an example, stability analysis was performed using FLAC3D for the models before and after mesh refinement. The stability coefficients of the models before and after graded refinement were 1.35 and 1.20, respectively.
Conclusion Through comparative analysis of the models before and after refinement, it is found that the refined mesh can significantly improve the numerical simulation accuracy of the geological body. Finally, by comparing the numerical results with the actual sliding mass, the reliability and effectiveness of the adaptive graded refinement method are verified.
-
表 1 断层影响范围
Table 1. Fault influence range
逆断层 正断层 平移断层 长度L/km 影响范围R/m 长度L/km 影响范围R/m 长度L/km 影响范围R/m 2.43 120 0.85 40 0.74 58 4.57 150 2.27 75 2.45 97 6.88 178 4.36 100 4.11 120 9.71 195 5.83 115 6.68 145 表 2 岩土体物理力学指标
Table 2. Physical and mechanical properties of rock and soil masses
岩层 黏聚力
C/kPa内摩擦
角φ/(°)容重γ/
(kN·m−3)弹性模量
E/MPa泊松比
υ第四系 15 26.9 2.03 10.0 0.38 古近系、新近系 70 28.7 20.8 40.9 0.38 泥岩 80 25.0 1.96 107.0 0.34 砂岩 150 14.3 2.01 107.8 0.34 煤层 70 30.0 1.22 800.0 0.30 排弃物料 15.13 14.0 1.80 80.0 0.34 表 3 数值模拟对比
Table 3. Comparison of numerical simulations
数据来源 滑坡位置 滑体空间展布 现场滑体 煤层顶板上方
3个剥离台阶朝向采场空间的水平Y向
(近EW向)位移未细化模型数值模拟 煤层顶板上方
1个剥离台阶朝向采场空间的水平Y向位移 细化模型数值模拟 煤层顶板上方
3个剥离台阶朝向采场空间的水平Y向位移 -
[1] 陈应显, 叶永超, 杨红霞, 等. 基于多剖面生成露天矿三维边坡最危险滑面[J]. 地质科技通报, 2025, 44(6): 147-156. doi: 10.19509/j.cnki.dzkq.tb20230690CHEN Y X, YE Y C, YANG H X, et al. Most dangerous sliding surface of the three-dimensional slope of the open-pit mine was generated based on multiple profiles[J]. Bulletin of Geological Science and Technology, 2025, 44(6): 147-156. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230690 [2] 曹兰柱, 王珍, 王东, 等. 露天矿含断层逆倾软岩边坡滑移模式及稳定性研究[J]. 安全与环境学报, 2018, 18(2): 457-461. doi: 10.13637/j.issn.1009-6094.2018.02.009CAO L Z, WANG Z, WANG D, et al. Study on the sliding mode and stability of counter-dip bedded soft rock slope with fault in surface mine[J]. Journal of Safety and Environment, 2018, 18(2): 457-461. (in Chinese with English abstract doi: 10.13637/j.issn.1009-6094.2018.02.009 [3] 曹兰柱, 王珍, 王东, 等. 露天煤矿端帮逆倾软岩边坡稳定性研究[J]. 煤炭科学技术, 2017, 45(3): 1-6.CAO L Z, WANG Z, WANG D, et al. Study on stability of reversed inclined soft rock slope at end slope of surface mine[J]. Coal Science and Technology, 2017, 45(3): 1-6. (in Chinese with English abstract [4] STEAD D, WOLTER A. A critical review of rock slope failure mechanisms: The importance of structural geology[J]. Journal of Structural Geology, 2015, 74: 1-23. doi: 10.1016/j.jsg.2015.02.002 [5] LIU T, LIN B Q, YANG W. Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression[J]. Tectonophysics, 2017, 712: 330-343. [6] KALATEHJARI R, ALI N. A review of three-dimensional slope stability analyses based on limit equilibrium method[J]. The Electronic Journal of Geotechnical Engineering, 2013, 18: 119-134. [7] CHENG P, LIU Y, HU J, et al. Experimental study on dynamic response and failure mode of bedding rock slope with cracks under earthquake[J]. Bulletin of Engineering Geology and the Environment, 2025, 84(2): 81. doi: 10.1007/s10064-025-04100-w [8] 侯林. 断层对露天矿边坡稳定性影响数值模拟[J]. 露天采矿技术, 2017, 32(9): 59-62. doi: 10.13235/j.cnki.ltcm.2017.09.015HOU L. Numerical simulation of the effect of faultage on slope stability in open-pit mine[J]. Opencast Mining Technology, 2017, 32(9): 59-62. (in Chinese with English abstract doi: 10.13235/j.cnki.ltcm.2017.09.015 [9] 尚彦军, 金维浚, 张腾飞, 等. 断层控制与采空塌落诱发的天山北麓某煤矿滑坡分布特征[J]. 新疆地质, 2020, 38(1): 106-112. doi: 10.3969/j.issn.1000-8845.2020.01.019SHANG Y J, JIN W J, ZHANG T F, et al. Landslides controlled by faults and triggered by underground excavation at one coal mine at the north foot of Tianshan Mountain[J]. Xinjiang Geology, 2020, 38(1): 106-112. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8845.2020.01.019 [10] 杜昌华, 宋景辉, 李蕊, 等. 露天煤矿含断层顺倾边坡渗流与稳定性分析[J]. 露天采矿技术, 2024, 39(2): 51-55.DU C H, SONG J H, LI R, et al. Analysis of seepage and stability of down dip slopes in open-pit coal mines containing faults[J]. Opencast Mining Technology, 2024, 39(2): 51-55. (in Chinese with English abstract [11] 黄赠, 王锐, 赵宇, 等. 隐伏断层地震诱发滑坡易发性评价[J]. 浙江大学学报(工学版), 2017, 51(11): 2136-2143.HUANG Z, WANG R, ZHAO Y, et al. Susceptibility assessment of landslides triggered by buried fault earthquake[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(11): 2136-2143. (in Chinese with English abstract [12] JIANG S H, CHEN J D, WANG Z Z, et al. Three-dimensional discrete element analysis of jointed rock slope stability based on the universal elliptical disc model[J]. Rock Mechanics and Rock Engineering, 2024, 57(1): 505-525. doi: 10.1007/s00603-023-03575-x [13] MIAO S S, SU L J, ZHANG C L, et al. Dynamic response characteristics and damage failure process of bedding rock slope in shaking table test[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(9): 358. doi: 10.1007/s10064-024-03843-2 [14] 王林康, 郑子涵, 章广成, 等. 顺层陡倾岩质边坡倾倒模式试验[J]. 地质科技通报, 2025, 44(2): 340-354. doi: 10.19509/j.cnki.dzkq.tb20230550WANG L K, ZHENG Z H, ZHANG G C, et al. Test study on the toppling mode of steep bedding rock slope[J]. Bulletin of Geological Science and Technology, 2025, 44(2): 340-354. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230550 [15] SU Z N, SHAO L T. A three-dimensional slope stability analysis method based on finite element method stress analysis[J]. Engineering Geology, 2021, 280: 105910. doi: 10.1016/j.enggeo.2020.105910 [16] 邓东平, 李亮. 基于滑动面搜索新方法对地震作用下边坡稳定性拟静力分析[J]. 岩石力学与工程学报, 2012, 31(1): 86-98.DENG D P, LI L. Based on a new method of searching for sliding surface pseudo-static stability analysis of slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 86-98. (in Chinese with English abstract [17] 钟德云, 王李管, 毕林. 复杂矿体模型多域自适应网格剖分方法[J]. 武汉大学学报(信息科学版), 2019, 44(10): 1538-1544. doi: 10.13203/j.whugis20170304ZHONG D Y, WANG L G, BI L. Adaptive meshing of multi-domain complex orebody models[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1538-1544. (in Chinese with English abstract doi: 10.13203/j.whugis20170304 [18] 毕林, 刘晓明, 陈鑫, 等. 一种基于矿体轮廓线的三维建模新方法[J]. 武汉大学学报(信息科学版), 2016, 41(10): 1359-1365. doi: 10.13203/j.whugis20150405BI L, LIU X M, CHEN X, et al. An automatic 3D modeling method based on orebody contours[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1359-1365. (in Chinese with English abstract doi: 10.13203/j.whugis20150405 [19] 陈佳瑜, 况立群, 庞敏, 等. 基于轮廓线与薄板样条的三维自动化建模方法[J]. 计算机仿真, 2019, 36(4): 184-189. doi: 10.3969/j.issn.1006-9348.2019.04.039CHEN J Y, KUANG L Q, PANG M, et al. Three-dimensional automatic modeling method based on contour line and thin plate spline[J]. Computer Simulation, 2019, 36(4): 184-189. (in Chinese with English abstract doi: 10.3969/j.issn.1006-9348.2019.04.039 [20] 沈蔚, 李京, 陈云浩, 等. 基于LIDAR数据的建筑轮廓线提取及规则化算法研究[J]. 遥感学报, 2008, 12(5): 692-698.SHEN W, LI J, CHEN Y H, et al. Algorithms study of building boundary extraction and normalization based on LIDAR data[J]. Journal of Remote Sensing, 2008, 12(5): 692-698. (in Chinese with English abstract [21] 杜菊民, 景永波, 陈诚, 等. 坦桑尼亚纳钦圭阿石墨矿三维矿体建模及资源量估算对比[J]. 现代矿业, 2021, 37(9): 31-34. doi: 10.3969/j.issn.1674-6082.2021.07.011DU J M, JING Y B, CHEN C, et al. 3D model construction and resource estimation comparison of nachingwea graphite mine in Tanzania[J]. Modern Mining, 2021, 37(9): 31-34. (in Chinese with English abstract doi: 10.3969/j.issn.1674-6082.2021.07.011 [22] 陈应显, 杨红霞, 李佳莹, 等. 基于空间多剖面边坡稳定性系数计算方法[J]. 地质科技通报, 2025, 44(5): 181-190. doi: 10.19509/j.cnki.dzkq.tb20230610CHEN Y X, YANG H X, LI J Y, et al. Calculation method of slope stability coefficients based on spatial multi-profile slopes[J]. Bulletin of Geological Science and Technology, 2025, 44(5): 181-190. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230610 [23] 黄书岭, 丁秀丽, 邬爱清, 等. 层状岩体多节理本构模型与试验验证[J]. 岩石力学与工程学报, 2012, 31(8): 1627-1635.HUANG S L, DING X L, WU A Q, et al. Study of multi-joint constitutive model of layered rockmass and experimental verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1627-1635. (in Chinese with English abstract [24] 石玉玲, 侯明杰, 李怀鑫, 等. 断层斜交岩质高边坡开挖变形特征及其治理效果评价: 以陕南地区某岩质高边坡为例[J]. 地球科学与环境学报, 2024, 46(3): 400-413.SHI Y L, HOU M J, LI H X, et al. Excavation deformation characteristics and treatment effect inspection of high rock slope with oblique intersecting faults: Taking a high rock slope in the southern Shaanxi, China as an example[J]. Journal of Earth Sciences and Environment, 2024, 46(3): 400-413. (in Chinese with English abstract [25] 荆永滨, 杜学胜, 张瑞林, 等. 复杂地质构造煤层三维模型自动构建技术[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(3): 243-247.JING Y B, DU X S, ZHANG R L, et al. Techniques for automatic 3D modeling of coal seam with complicated geological structure[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(3): 243-247. (in Chinese with English abstract [26] 赵洪宝, 张博, 张驰, 等. 采动诱发断层滑移评估模型及失稳范围确定方法[J]. 煤田地质与勘探, 2025, 53(3): 23-33. doi: 10.3969/j.issn.1001-1986.2010.05.002ZHAO H B, ZHANG B, ZHANG C, et al. Mining-induced fault slip: Assessment model and method for determining fault instability ranges[J]. Coal Geology & Exploration, 2025, 53(3): 23-33. (in Chinese with English abstract doi: 10.3969/j.issn.1001-1986.2010.05.002 [27] 孙劲光, 高天鹏. 地质断层三维建模的表达式方法[J]. 地球信息科学学报, 2016, 18(10): 1322-1331.SUN J G, GAO T P. The research of expression method on geological fault modeling[J]. Journal of Geo-Information Science, 2016, 18(10): 1322-1331. (in Chinese with English abstract [28] WELLMANN F, CAUMON G. 3D structural geological models: Concepts, methods, and uncertainties[A]. In: Advances in Geophysics[M]. Amsterdam: Elsevier, 2018: 1-121. [29] HILLIER M, WELLMANN F, BRODARIC B, et al. Three-dimensional structural geological modeling using graph neural networks[J]. Mathematical Geosciences, 2021, 53(8): 1725-1749. doi: 10.1007/s11004-021-09945-x [30] HILLIER M, WELLMANN F, DE KEMP E A, et al. GeoINR 1.0: An implicit neural network approach to three-dimensional geological modelling[J]. Geoscientific Model Development, 2023, 16(23): 6987-7012. doi: 10.5194/gmd-16-6987-2023 [31] FERRER R, EMERY X, MALEKI M, et al. Modeling the uncertainty in the layout of geological units by implicit boundary simulation accounting for a preexisting interpretive geological model[J]. Natural Resources Research, 2021, 30(6): 4123-4145. doi: 10.1007/s11053-021-09964-9 [32] WANG Y, MA G W, REN F, et al. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media[J]. Computers & Geosciences, 2017, 109: 134-148. [33] 崔泽茹, 王胜平, 陈小叶, 等. 基于点云的船闸精细化三维建模[J]. 海洋测绘, 2022, 42(5): 64-67.CUI Z R, WANG S P, CHEN X Y, et al. Refinement modeling and accuracy analysis of ship lock based on point cloud[J]. Hydrographic Surveying and Charting, 2022, 42(5): 64-67. (in Chinese with English abstract [34] 武姝凝, 李华强, 刘洋, 等. 考虑供热系统精细化建模的区域综合能源系统多目标优化调度[J]. 电网技术, 2023, 47(5): 1979-1992. doi: 10.13335/j.1000-3673.pst.2022.1413WU S N, LI H Q, LIU Y, et al. Multi-objective optimal scheduling of regional integrated energy system considering refined modeling of heating system[J]. Power System Technology, 2023, 47(5): 1979-1992. (in Chinese with English abstract doi: 10.13335/j.1000-3673.pst.2022.1413 [35] 冯陈, 周大庆, 郑源, 等. 基于精细化建模的抽水蓄能机组低水头背靠背启动多目标优化[J]. 中国电机工程学报, 2023, 43(8): 3059-3071. doi: 10.13334/j.0258-8013.pcsee.212704FENG C, ZHOU D Q, ZHENG Y, et al. Multi-objective optimization of back-to-back starting process for pumped storage units at low head area based on refined model[J]. Proceedings of the CSEE, 2023, 43(8): 3059-3071. (in Chinese with English abstract doi: 10.13334/j.0258-8013.pcsee.212704 [36] PETROV M S, TODOROV T D. Refinement strategies related to cubic tetrahedral meshes[J]. Applied Numerical Mathematics, 2019, 137: 169-183. doi: 10.1016/j.apnum.2018.11.006 [37] BELDA-FERRÍN G, GARGALLO-PEIRÓ A, ROCA X. Local bisection for conformal refinement of unstructured 4D simplicial meshes[C]//Anon. 27th international meshing roundtable. Cham: Springer International Publishing, 2019: 229-247. [38] FREYMUTHH N, DAHLINGER P, WÜRTH, T, et al. Swarm reinforcement learning for adaptive mesh refinement[J]. Advances in Neural Information Processing Systems, 2023, 36: 73312-73347. [39] LYU Z. Simplicial mesh refinement in computational geometry[R]. San Diego, US: University of California. 2018. [40] ALKÄMPER M. Mesh refinement for parallel-adaptive FEM: Theory and implementation[D]. Stuttgart, Germany: Universität Stuttgart, 2019. [41] 雷光伟, 杨春和, 王贵宾, 等. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报, 2016, 35(2): 231-241.LEI G W, YANG C H, WANG G B, et al. The development law and mechanical causes of fault influenced zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 231-241. (in Chinese with English abstract -
下载:
