留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习与多源数据融合的江苏省潜水位空间分布估计

党婧萱 田涛 李闯 康学远 施小清

党婧萱,田涛,李闯,等. 基于机器学习与多源数据融合的江苏省潜水位空间分布估计[J]. 地质科技通报,2026,45(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240228
引用本文: 党婧萱,田涛,李闯,等. 基于机器学习与多源数据融合的江苏省潜水位空间分布估计[J]. 地质科技通报,2026,45(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240228
DANG Jingxuan,TIAN Tao,LI Chuang,et al. Exploration of groundwater table spatial estimation in Jiangsu Province based on machine learning and multi-source data fusion[J]. Bulletin of Geological Science and Technology,2026,45(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240228
Citation: DANG Jingxuan,TIAN Tao,LI Chuang,et al. Exploration of groundwater table spatial estimation in Jiangsu Province based on machine learning and multi-source data fusion[J]. Bulletin of Geological Science and Technology,2026,45(2):1-11 doi: 10.19509/j.cnki.dzkq.tb20240228

基于机器学习与多源数据融合的江苏省潜水位空间分布估计

doi: 10.19509/j.cnki.dzkq.tb20240228
基金项目: 国家自然科学基金项目(41977157;42202267);南京大学“AI & AI for Science”专项基金项目
详细信息
    作者简介:

    党婧萱:E-mail:3038044795@qq.com

    通讯作者:

    E-mail:xkyang@nju.edu.cn

Exploration of groundwater table spatial estimation in Jiangsu Province based on machine learning and multi-source data fusion

More Information
  • 摘要:

    确定区域潜水位的空间分布对地下水资源管理及地下水污染防治具有重要意义。由于地下水监测井数量有限且空间分布不均,传统插值方法难以准确刻画区域尺度的潜水流场,传统回归方法难以有效捕捉不同影响因素与地下水位间的复杂非线性关系,机器学习方法在表征强非线性方面具有显著的优势。综合利用高程、植被覆盖度、降雨量、与地表水的距离、地表温度、土壤含水量等多源数据,基于机器学习方法构建区域潜水位预测模型。收集了江苏省953个枯水期实测点位,机器学习模型在测试数据集的决定系数为0.91。模型预测所得江苏省潜水流场所反映的地表水−地下水补排关系与实际基本一致。选取3个典型示范场区进行验证,模型预测流向与实际相符。研究所构建的模型可有效应用于江苏省稳态潜水位空间分布估计,为区域尺度环境影响评价、地下水监测优化提供决策支持。

     

  • 图 1  水位观测点分布图

    Figure 1.  Distribution of groundwater level observation points

    图 2  6类影响要素空间分布图

    Figure 2.  Spatial distribution of six influencing factors

    图 3  模型框架示意图

    Figure 3.  Schematic diagram of the model

    图 4  模型拟合情况与克里金插值结果对比图

    Figure 4.  Comparison of model fitting and Kriging interpolation results

    图 5  江苏省点位预测值与实测值之差空间分布图

    Figure 5.  Spatial distribution of difference between predicted and measured point values in Jiangsu Province

    图 6  江苏省潜水位预测结果

    Figure 6.  Predicted Groundwater level in Jiangsu Province

    图 7  分辨率对比图: (a) 本文模型预测分辨率示意图;(b) 全国地下水模型分辨率示意图[15]

    Figure 7.  Resolution comparison (a) resolution of the model presented in this paper; (b) resolution of nationwide groundwater model

    图 8  洋口园区流场对比验证图

    Figure 8.  Comparison of estimated and measured flow field in Yangkou Park

    图 9  泰州医疗园区流场对比验证图

    Figure 9.  Comparison of estimated and measured flow field in Taizhou medical zone

    图 10  东台经济开发区流场预测对比验证

    Figure 10.  Comparison of estimated and measured flow field in Dongtai development zone (a) measured water table; (b) flow field interpolated by measured data; (c) estimated flow field

    图 11  变量重要性排序图

    Figure 11.  Rank of variable importance

    表  1  影响要素数据属性表

    Table  1.   data attribute of input factors

    数据名称 来源平台 数据精度
    ALOS高程数据 美国航天航空局(NASA)
    https://www.nasa.gov/
    12.5 m
    全国水体分布矢量数据 Open street map
    https://www.openstreetmap.org/
    30 m
    归一化植被指(NDVI) 地理国情监测云平台
    http://www.dsac.cn/
    1 km
    土壤含水量 科学数据银行
    ScienceDB (scidb.cn)
    0.5°
    地表温度数据 国家青藏高原科学数据中心
    https://data.tpdc.ac.cn/product
    0.1°
    2018年枯水季降雨量数据 国家青藏高原科学数据中心
    https://data.tpdc.ac.cn/product
    0.1°
    水位监测数据 硕博论文(CNKI)[30-32]
    https://www.cnki.net/
    下载: 导出CSV
  • [1] BUCHANAN S, TRIANTAFILIS J. Mapping water table depth using geophysical and environmental variables[J]. Ground Water, 2009, 47(1): 80-96. doi: 10.1111/j.1745-6584.2008.00490.x
    [2] BUECHLER S, MEKALA G D. Local responses to water resource degradation in India: Groundwater farmer innovations and the reversal of knowledge flows[J]. The Journal of Environment & Development, 2005, 14(4): 410-438. doi: 10.1177/1070496505281840
    [3] AO C, ZENG W Z, WU L F, et al. Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China[J]. Agricultural Water Management, 2021, 255: 107032. doi: 10.1016/j.agwat.2021.107032
    [4] ALLEY W M, TAYLOR C J. The value of long-term ground water level monitoring[J]. Ground Water, 2001, 39(6): 801. doi: 10.1111/j.1745-6584.2001.tb02466.x
    [5] JÚNEZ-FERREIRA H E, HERNÁNDEZ-HERNÁNDEZ M A, HERRERA G S, et al. Assessment of changes in regional groundwater levels through spatio-temporal Kriging: Application to the southern Basin of Mexico aquifer system[J]. Hydrogeology Journal, 2023, 31(6): 1405-1423. doi: 10.1007/s10040-023-02681-y
    [6] MIRZAIE-NODOUSHAN F, BOZORG-HADDAD O, LOÁICIGA H A. Optimal design of groundwater-level monitoring networks[J]. Journal of Hydroinformatics, 2017, 19(6): 920-929. doi: 10.2166/hydro.2017.044
    [7] GUEKIE SIMO A T, MARACHE A, LASTENNET R, et al. Geostatistical investigations for suitable mapping of the water table: The Bordeaux case (France)[J]. Hydrogeology Journal, 2016, 24(1): 231-248. doi: 10.1007/s10040-015-1316-4
    [8] MALEKZADEH M, KARDAR S, SHABANLOU S. Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models[J]. Groundwater for Sustainable Development, 2019, 9: 100279. doi: 10.1016/j.gsd.2019.100279
    [9] 郑凌云, 张永祥, 贾瑞涛, 等. 基于GMS的北京市朝阳区地下水环境数值模拟与预测分析[J]. 水利水电技术(中英文), 2022(1): 114-123. doi: 10.13928/j.cnki.wrahe.2022.01.012

    ZHENG L Y, ZHANG Y X, JIA R T, et al. GMS-based numerical simulation and prediction analysis of groundwater environment in Chaoyang District of Beijing[J]. Water Resources and Hydropower Engineering, 2022(1): 114-123. (in Chinese with English abstract doi: 10.13928/j.cnki.wrahe.2022.01.012
    [10] 吴鑫, 孙伯明, 陈菁, 等. 基于Visual MODFLOW的挠力河流域地下水数值模拟与预测分析[J]. 水电能源科学, 2020, 38(12): 37-40. doi: 10.20040/j.cnki.1000-7709.2020.12.009

    WU X, SUN B M, CHEN J, et al. Numerical simulation and prediction analysis of groundwater in naoli river basin based on visual MODFLOW[J]. Water Resources and Power, 2020, 38(12): 37-40. (in Chinese with English abstract doi: 10.20040/j.cnki.1000-7709.2020.12.009
    [11] FAN Y, LI H, MIGUEZ-MACHO G. Global patterns of groundwater table depth[J]. Science, 2013, 339: 940-943. doi: 10.1126/science.1229881
    [12] LANCIA M, YAO Y Y, ANDREWS C B, et al. The China groundwater crisis: A mechanistic analysis with implications for global sustainability[J]. Sustainable Horizons, 2022, 4: 100042. doi: 10.1016/j.horiz.2022.100042
    [13] 沈晔, 李海涛, 黎涛, 等. 地下水位预测: 集合卡尔曼滤波(EnKF)应用概述[J]. 水文地质工程地质, 2014, 41(1): 21-24. doi: 10.16030/j.cnki.issn.1000-3665.2014.01.004

    SHEN Y, LI H T, LI T, et al. Groundwater level forecast: Overview of application of the Ensemble Kalman filter(EnKF)[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 21-24. (in Chinese with English abstract doi: 10.16030/j.cnki.issn.1000-3665.2014.01.004
    [14] KNOTTERS M, BIERKENS M F P. Predicting water table depths in space and time using a regionalised time series model[J]. Geoderma, 2001, 103(1/2): 51-77. doi: 10.1016/s0016-7061(01)00069-6
    [15] YAN S F, YU S G, WU Y B, et al. Understanding groundwater table using a statistical model[J]. Water Science and Engineering, 2018, 11(1): 1-7. doi: 10.1016/j.wse.2018.03.003
    [16] MALAKAR P, MUKHERJEE A, BHANJA S N, et al. Machine-learning-based regional-scale groundwater level prediction using GRACE[J]. Hydrogeology Journal, 2021, 29(3): 1027-1042. doi: 10.1007/s10040-021-02306-2
    [17] PETERMANN E, MEYER H, NUSSBAUM M, et al. Mapping the geogenic radon potential for Germany by machine learning[J]. Science of The Total Environment, 2021, 754: 142291. doi: 10.1016/j.scitotenv.2020.142291
    [18] NAGHIBI S A, POURGHASEMI H R. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping[J]. Water Resources Management, 2015, 29(14): 5217-5236. doi: 10.1007/s11269-015-1114-8
    [19] KRISHNA B, SATYAJI RAO Y R, VIJAYA T. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks[J]. Hydrological Processes, 2008, 22(8): 1180-1188. doi: 10.1002/hyp.6686
    [20] ALSHEHRI F, SULTAN M, KARKI S, et al. Mapping the distribution of shallow groundwater occurrences using remote sensing-based statistical modeling over southwest Saudi Arabia[J]. Remote Sensing, 2020, 12(9): 1361. doi: 10.3390/rs12091361
    [21] 汪泉娟, 孙敬锋, 杨英杰, 等. 克里金方法与深度学习方法用于浅层地下水位估计的对比研究: 以深汕特别合作区为例[J]. 地质科技通报, 2024, 43(4): 291-301. doi: 10.19509/j.cnki.dzkq.tb20230192

    WANG Q J, SUN J F, YANG Y J, et al. A comparative study of Kriging and deep learning methods for shallow groundwater level estimation: A case study of the Shenzhen-Shanwei Special Cooperation Zone[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 291-301. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230192
    [22] RAO P Z, WANG Y C, LIU Y, et al. A comparison of multiple methods for mapping groundwater levels in the Mu Us Sandy Land, China[J]. Journal of Hydrology: Regional Studies, 2022, 43: 101189. doi: 10.1016/j.ejrh.2022.101189
    [23] CRACKNELL M J, READING A M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers & Geosciences, 2014, 63: 22-33. doi: 10.1016/j.cageo.2013.10.008
    [24] 刘兆凤, 吴士良. 江苏地下水资源概况[J]. 地质学刊, 1998(A12): 26-29.

    LIU Z F, WU S L. General situation of groundwater resources in Jiangsu Province[J]. Journal of Geology, 1998(A12): 26-29. (in Chinese)
    [25] 岳冬冬. 沂沭河下游沿海平原地下水化学形成演化与水文地球化学模拟[D]. 长春: 吉林大学, 2017.

    YUE D D. Groundwater chemical formation and evolution and inverse modeling in the coastal plain, downstream of Yishu River[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract
    [26] 马佳玉. 江苏沿海地区地面沉降多尺度精细化研究[D]. 南京: 南京大学, 2018.

    MA J Y. Meticulously research on land subsidence in coastal area of Jiangsu at different scales[D]. Nanjing: Nanjing University, 2018. (in Chinese with English abstract
    [27] 吴吉春, 冯志祥, 姚炳魁, 等. 江苏省地下水现代化管理研究[M]. 北京: 中国水利水电出版社, 2016.

    WU J C, FENG Z X, YAO B K. Study on modern management of groundwater in Jiangsu Province[M]. Beijing: China Water & Power Press, 2016. (in Chinese)
    [28] HAYKIN S. Neural networks: A comprehensive foundation[M]. US: Prentice Hall PTR, 1994.
    [29] PARTOVI F Y, ANANDARAJAN M. Classifying inventory using an artificial neural network approach[J]. Computers & Industrial Engineering, 2002, 41(4): 389-404. doi: 10.1016/S0360-8352(01)00064-X
    [30] AKSU G, GÜZELLER C O, ESER M T. The effect of the normalization method used in different sample sizes on the success of artificial neural network model[J]. International Journal of Assessment Tools in Education, 2019, 6(2): 170-192. doi: 10.21449/ijate.479404
    [31] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. J Mach Learn Res, 2020, 15: 1929-1958.
    [32] MONTAVON G, ORR G, MLLER K R. Neural Networks: Tricks of the Trade[M]. Springer Publishing Company, Incorporated, 2012.
    [33] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: , 1412, 6980: 2014.
    [34] 邰晋, 龚绪龙, 梁莹, 等. 基于光谱指数和端元混合模型的滨海地下水溶解性有机质来源示踪[J]. 地质科技通报, 2025, 44(6): 237-248. doi: 10.19509/j.cnki.dzkq.tb20230711

    TAI JIN, GONG XULONG, LIANG YING, et al. Tracing of the sources of dissolved organic matter in coastal groundwater using fluorescence indices and end-member mixing analysis[J]. Bulletin of Geological Science and Technology, 2025, 44(6): 237-248. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20230711
    [35] MOORE W S. The subterranean estuary: A reaction zone of ground water and sea water[J]. Marine Chemistry, 1999, 65(1/2): 111-125. doi: 10.1016/s0304-4203(99)00014-6
    [36] KOMMINENI M, REDDY K V, JAGATHI K, et al. Groundwater level prediction using modified linear regression[C]//2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore, India: IEEE, 2020: 1164-1168.
    [37] PASANDI M, SALMANI N, SAMANI N. Spatial estimation of water-table depth by artificial neural networks in light of ancillary data[J]. Hydrological Sciences Journal, 2017, 62(12): 2012-2024. doi: 10.1080/02626667.2017.1349908
    [38] RUDIN C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence, 2019, 1(5): 206-215. doi: 10.1038/s42256-019-0048-x
    [39] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]. Long Beach, CA, USA: Neural Information Processing Systems, 2017.
    [40] YILMAZ E O, TONBUL H, KAVZOGLU T. Marine mucilage mapping with explained deep learning model using water-related spectral indices: A case study of Dardanelles Strait, Turkey[J]. Stochastic Environmental Research and Risk Assessment, 2024, 38(1): 51-68. doi: 10.1007/s00477-023-02560-8
    [41] HU Z M, TANG S N, MO S X, et al. Water storage changes (2003-2020) in the Ordos Basin, China, explained by GRACE data and interpretable deep learning[J]. Hydrogeology Journal, 2024, 32(1): 307-320.
    [42] 霍思远, 靳孟贵. 不同降水及灌溉条件下的地下水入渗补给规律[J]. 水文地质工程地质, 2015, 42(5): 6-13. doi: 10.16030/j.cnki.issn.1000-3665.2015.05.02

    HUO S Y, JIN M G. Effects of precipitation and irrigation on vertical groundwater recharge[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 6-13. (in Chinese with English abstract doi: 10.16030/j.cnki.issn.1000-3665.2015.05.02
    [43] CORNISH P M, VERTESSY R A. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest[J]. Journal of Hydrology, 2001, 242(1/2): 43-63. doi: 10.1016/s0022-1694(00)00384-x
    [44] CORNISH P M. The effects of logging and forest regeneration on water yields in a moist eucalypt forest in New South Wales, Australia[J]. Journal of Hydrology, 1993, 150(2/3/4): 301-322. doi: 10.1016/0022-1694(93)90114-o
    [45] MENENTI M, BASTIAANSSEN W G M, VAN EICK D. Determination of surface hemispherical reflectance with Thematic Mapper data[J]. Remote Sensing of Environment, 1989, 28: 327-337. doi: 10.1016/0034-4257(89)90124-7
    [46] 梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151.

    LIANG X, ZHANG R Q, NIU H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151. (in Chinese with English abstract
    [47] SAJIL KUMAR P J. GIS-based mapping of water-level fluctuations (WLF) and its impact on groundwater in an Agrarian District in Tamil Nadu, India[J]. Environment, Development and Sustainability, 2022, 24(1): 994-1009. doi: 10.1007/s10668-021-01479-w
    [48] GONZALEZ R Q, ARSANJANI J J. Prediction of groundwater level variations in a changing climate: A Danish case study[J]. ISPRS International Journal of Geo-Information, 2021, 10(11): 792. doi: 10.3390/ijgi10110792
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  16
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 录用日期:  2025-02-14
  • 修回日期:  2025-02-06
  • 网络出版日期:  2026-01-29

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部