留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地富满油田FI17走滑断裂带奥陶系原油地化特征、充注差异及其控制因素

王清华 蔡振忠 平宏伟 张银涛 刘瑞东 杨美纯 鲁中灯 杨鑫 张新乐

王清华,蔡振忠,平宏伟,等. 塔里木盆地富满油田FI17走滑断裂带奥陶系原油地化特征、充注差异及其控制因素[J]. 地质科技通报,2025,44(5):13-28 doi: 10.19509/j.cnki.dzkq.tb20240159
引用本文: 王清华,蔡振忠,平宏伟,等. 塔里木盆地富满油田FI17走滑断裂带奥陶系原油地化特征、充注差异及其控制因素[J]. 地质科技通报,2025,44(5):13-28 doi: 10.19509/j.cnki.dzkq.tb20240159
WANG Qinghua,CAI Zhenzhong,PING Hongwei,et al. Geochemical characteristics, charging differences, and controlling factors of the Ordovician crude oil in the FI17 strike-slip fault zone of the Fuman Oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):13-28 doi: 10.19509/j.cnki.dzkq.tb20240159
Citation: WANG Qinghua,CAI Zhenzhong,PING Hongwei,et al. Geochemical characteristics, charging differences, and controlling factors of the Ordovician crude oil in the FI17 strike-slip fault zone of the Fuman Oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology,2025,44(5):13-28 doi: 10.19509/j.cnki.dzkq.tb20240159

塔里木盆地富满油田FI17走滑断裂带奥陶系原油地化特征、充注差异及其控制因素

doi: 10.19509/j.cnki.dzkq.tb20240159
基金项目: 国家自然科学基金项目(42072176;42272169)
详细信息
    作者简介:

    王清华:E-mail:wqh-tlm@petrochina.com.cn

    通讯作者:

    E-mail:howping@qq.com

  • 中图分类号: P618.13

Geochemical characteristics, charging differences, and controlling factors of the Ordovician crude oil in the FI17 strike-slip fault zone of the Fuman Oilfield, Tarim Basin

More Information
  • 摘要:

    富满油田油气勘探潜力巨大,是塔里木油田增储上产的重要战略接替区。分析该区原油的来源、热成熟度以及充注过程对揭示研究区油气成藏模式和富集规律以及指导后期油气勘探至关重要。通过对富满油田FI17走滑断裂带15个原油样品的有机地球化学和3口井(HD32,MS2和MS5)流体包裹体样品的系统分析,结合走滑断裂的走向分段及活动期次探讨了FI17走滑断裂带原油地球化学特征和油气充注过程及其主要控制因素。研究结果表明该断裂带原油均源于下寒武统玉尔吐斯组烃源岩,芳烃参数换算的原油等效镜质体反射率值介于0.80%~1.20%之间,总体经历了较弱的原油热化学硫酸盐还原作用(TSR)、气洗和原油裂解作用。断裂带及周缘经历了加里东晚期、海西中−晚期和喜山期3期不同成熟度油和喜山期天然气充注,但南北存在同期不同成熟油充注差异,北段和中段以第2期(蓝绿色荧光)和第3期(亮蓝色荧光)油贡献为主,南段以第2期(亮蓝色荧光)油充注为主且存在喜山期天然气气侵改造。FI17走滑断裂带原油热成熟度、气洗和原油裂解程度以及晚期油气贡献由北向南呈增大趋势,这种变化规律主要受控于南强北弱的断裂活动强度差异。研究表明断裂带北段−中段深部可能存在晚期较高成熟度油气,当前勘探深度并未达到液态烃赋存的下限,更深部的储层仍具有较大的油气勘探潜力。

     

  • 图 1  塔里木盆地富满油田构造单元图(a)及FI17走滑断裂带取样井分布(b)

    Figure 1.  Structural unit map of the Fuman Oilfield, Tarim Basin (a) and distribution of sampling wells in FI17 strike-slip fault zone

    图 2  富满油田FI17断裂带原油、族组分和干酪根碳同位素(a)以及原油正构烷烃碳同位素分布图(b)(玉尔吐斯组$({\epsilon_1}y )$烃源岩干酪根碳同位素据ZHU等[29],吐木休克组(O3t)烃源岩干酪根碳同位素据杨海军等[1];Oil. 原油;Ker. 干酪根)

    Figure 2.  Carbon isotopic distributions of oil, grouped compositions, kerogen (a) and n-alkanes (b) of crude oils in the FI17 fault zone in the Fuman Oilfield

    图 3  富满油田FI17断裂带原油成熟度判识图

    F1=(2-MP+3-MP)/(2-MP+3-MP+1-MP+9-MP);F2=2-MP/(2-MP+3-MP+1-MP+9-MP);MPI1=1.5(2-MP+3-MP)/(P+1-MP+9-MP);MNI2. 甲基萘指数;MNI2= MN /TMN;MPI. 甲基菲指数;MPI=MP/P;MPR=(2-MP+3-MP)/(1-MP+9-MP);P. 菲;MP. 甲基菲;MN. 甲基萘;TMN. 三甲基萘

    Figure 3.  Identification plot of crude oil maturity in the FI17 fault zone in the Fuman Oilfield

    图 4  富满油田典型原油总离子色谱(TIC)图(a1, b1)与正构烷烃物质的量浓度对数(lncB)及碳数的交汇图(a2, b2)(f为实测数据与未分馏数据的差值)

    Figure 4.  Total ion chromatogram (TIC) (a1, b1) and cross-plot of logarithm of the molar aoncentration of n-alkane (lncB) vs. n-alkane carbon number(a2, b2) for typical crude oils in the Fuman Oilfield

    图 5  富满油田原油C29 ααα20R甾烷和(3- + 4-)甲基金刚烷含量交汇图

    Figure 5.  Cross-plots of concentrations of C29ααα20R steranes vs. (3- + 4-) methyldimantanes for crude oils in the Fuman Oilfield

    图 6  FI17走滑断裂带一间房组储层典型显微荧光及荧光光谱照片

    a~c. HD32井,O2yj7373.6 m;d~f. MS5井,O2yj7606.4 m;g~i. MS2井,O2yj8057.0 m;b,e,h为荧光照片,其他为透射光照片,红色箭头为油包裹体

    Figure 6.  Typical fluorescent and fluorescence spectrum pictures of oil inclusions from Yijianfang Formation in the FI17 strike-slip fault zone

    图 7  油包裹体(a)和原油(b)荧光光谱参数λmax和QF-535 交汇图

    Figure 7.  Cross-plots of λmax and QF-535 of fluorescence spectrum parameters of oil inclusions (a) and crude oils (b)

    图 8  富满油田FI17走滑断裂带包裹体均一温度频数分布图

    a. HD32井,O2yj7373.67405.3 m;b. MS5井,O2yj7606.47609 m;c. MS2井,O1-2y7777.77782.6 m

    Figure 8.  Homogenization temperature frequency distribution of inclusions in the FI17 strike-slip fault zone of the Fuman Oilfield

    图 9  富满油田FI17走滑断裂带原油及油包裹体相对密度(API°)频数分布图

    a. HD32井,O2yj7373.67405.3 m;b. MS5井,O2yj7606.47609 m;c. MS2井,O1-2y7777.77782.6 m

    Figure 9.  API° frequency distribution of crude oil and oil inclusions in the FI17 strike-slip fault zone of the Fuman Oilfield

    图 10  FI17断裂带油气充注期次与时期确定图

    O. 奥陶系;S. 志留系;D. 泥盆系;C. 石炭系;P. 二叠系;T. 三叠系;J. 侏罗系;K. 白垩系;E. 古近系;N+Q. 新近系+第四系;Lid. 兰多维列统;Mississipian. 密西西比亚系;Penn. 宾夕法尼亚亚系;Cis. 乌拉尔统;Gua. 瓜德鲁普统;Plc. 古新统;Eoc. 始新统;Oli. 渐新统;Mio. 中新统;D3. 上泥盆统;O3. 上奥陶统

    Figure 10.  Determination of hydrocarbon charging stages and periods in the FI17 fault zone

    图 11  富满油田FI17断裂带结构和油气性质变化图

    TO3t. 吐木休克组底界面;TO1-2y. 鹰山组底界面;TЄ3. 上寒武统底界面

    Figure 11.  Variation of characteristics of oil and gas, and structure in the FI17 fault zone of the Fuman Oilfield

    表  1  富满油田FI17断裂带原油样品物性和族组分参数

    Table  1.   Physical property, parameters of organic geochemistry and fluorescence spectrum of crude oil in the FI17 fault zone in the Fuman Oilfield

    断裂段 井号 深度/m 层位 原油类型 密度/(g·cm−3) GOR/(m3·m−3) Sat Aro Res Asp 回收率/%
    wB/%
    北段 HD32-H1 72197703 O2yj 中质油 0.82 298 50.81 8.29 21.80 4.68 85.58
    HD32 73237607 O2yj 中质油 0.83 296 52.58 7.87 5.62 3.37 69.44
    MS506H 74307857 O1-2y 中质油 0.81 319 48.43 6.28 28.10 4.46 87.27
    MS504H 74878150 O1-2y 挥发油 0.81 352 65.21 5.38 17.63 4.64 92.86
    MS504-H2 75108521 O1-2y 挥发油 0.80 334 77.89 5.03 1.30 4.28 88.50
    MS501H 76138033 O2yj 挥发油 0.81 453 75.40 4.83 1.84 1.15 83.22
    中段 MS5 69147192 O1-2y 挥发油 0.80 478 75.11 3.56 1.33 1.56 81.56
    MS502H 75717992 O1-2y 挥发油 0.79 449 75.25 4.11 1.37 3.42 84.15
    MS503H 75968305 O2yj 挥发油 0.79 497 71.67 3.69 18.80 1.76 95.92
    MS301H 75328639 O1-2y 挥发油 0.80 391 73.88 3.16 1.70 0.97 79.71
    MS3 75478010 O2yj 挥发油 0.79 407 76.69 3.18 1.17 1.34 82.38
    南段 MS1 75097665 O2yj 挥发油 0.79 743 81.83 3.38 1.35 0.90 87.46
    MS2 80578470 O1-2y 挥发油 0.80 755 86.78 3.27 1.40 2.10 93.55
    MS4-H2 73968372 O1-2y 挥发油 0.78 763 88.18 3.29 18.20 2.25 111.92
    MS4 75738202 O2yj 挥发油 0.79 784 88.72 2.56 1.10 1.28 93.66
    注:GOR. 气油比;Sat. 饱和烃;Aro. 芳烃;Res. 非烃;Asp. 沥青质;O2yj. 一间房组;O1−2y. 鹰山组;下同
    下载: 导出CSV

    表  2  富满油田FI17断裂带原油典型生标及芳烃热成熟度参数

    Table  2.   Typical biomarker and aromatic thermal maturity parameters of crude oil in the FI17 fault zone in the Fuman Oilfield, Tarim Basin

    断裂带 井号 nC21/nC22+ (nC21+nC22)/(nC28+nC29) Pr/Ph ω(A)/(μg·g−1) B C D E Rc1/% Rc2/% Rc3/% Rc4/% Q/%
    北段 HD32-H1 2.27 2.66 0.81 101.56 0.56 0.62 12.96 1.82 0.82 0.75 0.77 0.78 9.6
    HD32 2.65 3.07 0.79 16.89 0.57 0.60 16.76 2.31 0.85 0.80 0.83 0.83 10.7
    MS506H 2.32 2.75 0.83 107.40 0.55 0.59 20.84 2.83 0.87 0.83 0.86 0.85 9.4
    MS504H 2.57 2.90 0.81 46.96 0.56 0.60 29.32 4.27 0.94 0.93 0.97 0.94 9.8
    MS504-H2 2.60 2.76 0.92 22.13 0.45 0.57 29.34 5.19 0.96 0.97 1.01 0.98 10.6
    MS501H 3.52 10.99 0.76 16.55 0.59 0.68 27.76 5.01 0.98 1.00 1.03 1.00 16.3
    中段 MS5 3.21 4.21 0.78 13.99 0.56 0.57 53.75 8.40 1.04 1.10 1.14 1.09 19.0
    MS502H 3.21 4.83 0.82 4.70 0.55 0.56 42.74 8.01 1.01 1.08 1.13 1.07 20.0
    MS503H 3.00 4.44 0.84 3.37 0.64 0.62 17.68 4.72 1.09 1.18 1.21 1.16 13.1
    MS301H 2.68 3.38 0.84 8.47 0.48 0.66 29.55 7.22 1.06 1.16 1.20 1.14 11.9
    MS3 3.20 4.40 0.80 0.92 0.63 0.60 30.08 7.17 1.08 1.18 1.22 1.16 12.8
    南段 MS1 3.60 6.14 0.87 1.32 0.53 0.53 34.90 8.20 1.22 1.13 1.20 1.18 16.1
    MS2 3.21 4.59 0.89 1.70 0.46 0.74 35.80 8.26 1.05 1.16 1.21 1.14 17.0
    MS4-H2 3.11 4.62 0.90 7.29 0.61 0.58 44.95 8.94 1.12 1.24 1.31 1.22 13.6
    MS4 2.56 2.85 0.86 1.44 0.54 0.77 42.62 8.72 1.10 1.24 1.30 1.21 14.2
    注:Pr. 姥鲛烷;ph. 植烷;A. C29 ααα 20R 甾烷;B. C29 ββ/(αα + ββ)甾烷;C. C29 20S/(20S + 20R)甾烷;D. 4-MDBT/1-MDBT;E. 2,4-DMDBT/1,4-DMDBT;MDBT. 甲基二苯并噻吩;DMDBT. 二甲基二苯并噻吩;Rc1Rc2Rc3Rc4. 原油等效镜质体反射率;Rc1=0.6×MPI1+0.4,MPI1. 甲基菲指数,计算公式据文献[19];Rc2=(−0.166+2.242F1−0.112+3.739F2)/2,F1F2. 甲基菲分布系数,计算公式据文献[20];Rc3=0.5946 ln(MPR)+0.9728MPR. 甲基菲比值,计算公式据文献[21];Rc4=(Rc1+Rc2+Rc3)/3;Q. 气洗正构烷烃损失量[22];下同
    下载: 导出CSV
  • [1] 杨海军, 蔡振忠, 李勇, 等. 塔里木盆地富满地区吐木休克组烃源岩有机地球化学特征及其油气勘探意义[J]. 地质科技通报, 2024, 43(3): 81-93.

    YANG H J, CAI Z Z, LI Y, et al. Organic geochemical characters of source rock and significance for exploration of the Tumuxiuke Formation in Fuman area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 81-93. (in Chinese with English abstract
    [2] 田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985. doi: 10.7623/syxb202108001

    TIAN J, YANG H J, ZHU Y F, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman Oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8): 971-985. (in Chinese with English abstract doi: 10.7623/syxb202108001
    [3] 王清华. 塔里木盆地富满油田凝析气藏成因[J]. 石油勘探与开发, 2023, 50(6): 1128-1139. doi: 10.11698/PED.20230301

    WANG Q H. Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139. (in Chinese with English abstract doi: 10.11698/PED.20230301
    [4] 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262.

    MA A L, QI L X. Geochemical characteristics and phase behavior of the Ordovician ultra-deep reservoir fluid, No. 4 fault, northern Shuntuoguole, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 247-262. (in Chinese with English abstract
    [5] 刘雨晴, 邓尚. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例[J]. 中国矿业大学学报, 2022, 51(1): 124-136. doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201012

    LIU Y Q, DENG S. Structural analysis of intraplate strike-slip faults with small to medium displacement: A case study of the Shunbei 4 fault, Tarim Basin[J]. Journal of China University of Mining & Technology, 2022, 51(1): 124-136. (in Chinese with English abstract doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201012
    [6] 李映涛, 邓尚, 张继标, 等. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式: 以塔里木盆地顺北4号断裂带为例[J]. 地学前缘, 2023, 30(6): 80-94.

    LI Y T, DENG S, ZHANG J B, et al. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 80-94. (in Chinese with English abstract
    [7] 宋刚, 李海英, 叶宁, 等. 塔里木盆地顺托果勒低隆起顺北4号走滑断裂带成岩流体类型及活动特征[J]. 石油实验地质, 2022, 44(4): 603-612. doi: 10.11781/sysydz202204603

    SONG G, LI H Y, YE N, et al. Types and features of diagenetic fluids in Shunbei No. 4 strike-slip fault zone in Shuntuoguole Low Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 603-612. (in Chinese with English abstract doi: 10.11781/sysydz202204603
    [8] 彭威龙, 邓尚, 张继标, 等. 深层海相凝析油气藏成因机制与富集主控因素: 以塔里木盆地顺北4号断裂带为例[J]. 天然气地球科学, 2024, 35(5): 838-850. doi: 10.11764/j.issn.1672-1926.2024.04.008

    PENG W L, DENG S, ZHANG J B, et al. Genetic mechanism and main controlling factors of deep marine condensate reservoirs: A case study of the Shunbei No. 4 fault zone in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2024, 35(5): 838-850. (in Chinese with English abstract doi: 10.11764/j.issn.1672-1926.2024.04.008
    [9] LU Z D, PING H W, CHEN H H, et al. Geochemical characteristics of Ordovician crude oils in the FI17 strike-slip fault zone of the Fuman Oilfield, Tarim Basin: Implications for ultra-deep hydrocarbon accumulation in the Tarim Basin[J]. Marine and Petroleum Geology, 2024, 163: 106800. doi: 10.1016/j.marpetgeo.2024.106800
    [10] 刘强, 张银涛, 陈石, 等. 塔里木盆地走滑断裂发育演化特征精细解析及其地质意义: 以富满油田FI17断裂为例[J]. 现代地质, 2023, 37(5): 1123-1135.

    LIU Q, ZHANG Y T, CHEN S, et al. Development and evolution characteristics of strike-slip faults in Tarim Basin and its geological significance: A case study of FI17 fault in Fuman Oilfield[J]. Geoscience, 2023, 37(5): 1123-1135. (in Chinese with English abstract
    [11] 金之钧, 刘全有, 云金表, 等. 塔里木盆地环满加尔凹陷油气来源与勘探方向[J]. 中国科学(地球科学), 2017, 47(3): 310-320.

    JIN Z J, LIU Q Y, YUN J B, et al. Potential petroleum sources and exploration directions around the Manjar Sag in the Tarim Basin[J]. Science China (Earth Sciences), 2017, 47(3): 310-320.
    [12] 石平舟, 李婷, 朱永峰, 等. 缝洞充填物地球化学特征及环境指示意义: 以塔里木盆地富满地区中奥陶统一间房组为例[J]. 科学技术与工程, 2023, 23(11): 4527-4535.

    SHI P Z, LI T, ZHU Y F, et al. Geochemical characteristics and environmental implications of fracture-cave fillings: A case study of the Middle Ordovician Yijianfang Formation in Fuman area, Tarim Basin[J]. Science Technology and Engineering, 2023, 23(11): 4527-4535. (in Chinese with English abstract
    [13] LU Z D, CHEN Z L, LIU Y, et al. A small-scale neutral alumina column chromatography method for carbon isotope determination of hopanes in crude oils or rock extracts[J]. Journal of Chromatography A, 2023, 1689: 463729. doi: 10.1016/j.chroma.2022.463729
    [14] 国家能源局. 原油中金刚烷类化合物的定量分析方法: SY/T7470-2020[S]. 北京: 中国标准出版社, 2021.

    National Energy Agency. Quantitative analysis method of adamantane compounds in crude oil: SY/T 7470-2020[S]. Beijing: China Standard Press, 2021. (in Chinese)
    [15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地质样品有机地球化学分析方法: 第2部分: 有机质稳定碳同位素测定同位素质谱法: GB/T18340.2-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Organic geochemistry analysis method for geology samples: Part 2: Determination of organic carbon stable isotopic component isotopic mass spectrometry: GB/T18340.2-2010[S]. Beijing: China Standard Press, 2010. (in Chinese)
    [16] PING H W, CHEN H H, GEORGE S C. Quantitatively predicting the thermal maturity of oil trapped in fluid inclusions based on fluorescence and molecular geochemical data of oil inclusions in the Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2020, 104(8): 1751-1791.
    [17] PING H W, LI C Q, CHEN H H, et al. Overpressure release: Fluid inclusion evidence for a new mechanism for the formation of heavy oil[J]. Geology, 2020, 48(8): 803-807. doi: 10.1130/G47227.1
    [18] MUNZ I A. Petroleum inclusions in sedimentary basins: Systematics, analytical methods and applications[J]. Lithos, 2001, 55(1/2/3/4): 195-212.
    [19] RADKE M. Application of aromatic compounds as maturity indicators in source rocks and crude oils[J]. Marine and Petroleum Geology, 1988, 5(3): 224-236. doi: 10.1016/0264-8172(88)90003-7
    [20] KVALHEIM O M, CHRISTY A A, TELNÆS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888. doi: 10.1016/0016-7037(87)90179-7
    [21] 陈琰, 包建平, 刘昭茜, 等. 甲基菲指数及甲基菲比值与有机质热演化关系: 以柴达木盆地北缘地区为例[J]. 石油勘探与开发, 2010, 37(4): 508-512.

    CHEN Y, BAO J P, LIU Z Q, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example[J]. Petroleum Exploration and Development, 2010, 37(4): 508-512. (in Chinese with English abstract
    [22] LOSH S, CATHLES L, MEULBROEK P. Gas washing of oil along a regional transect, offshore Louisiana[J]. Organic Geochemistry, 2002, 33(6): 655-663. doi: 10.1016/S0146-6380(02)00025-6
    [23] TEN HAVEN H L, DE LEEUW J W, RULLKÖTTER J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330: 641-643.
    [24] TEN HAVEN H L, RULLKÖTTER J, DE LEEUW J W, et al. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988, 333: 604.
    [25] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. Cambridge, UK: Cambridge University Press, 2005.
    [26] ZHU X K, WANG Z C, CHEN H Y. Advances in isotope geochronology and isotope geochemistry: A preface[J]. Journal of Earth Science, 2022, 33(1): 1-4. doi: 10.1007/s12583-021-1605-x
    [27] GALIMOV E M. Isotope organic geochemistry[J]. Organic Geochemistry, 2006, 37(10): 1200-1262. doi: 10.1016/j.orggeochem.2006.04.009
    [28] 张科, 苏劲, 陈永权, 等. 塔里木盆地寒武系: 奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报, 2023, 97(6): 2026-2041.

    ZHANG K, SU J, CHEN Y Q, et al. The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(6): 2026-2041. (in Chinese with English abstract
    [29] ZHU G Y, MILKOV A V, LI J F, et al. Deepest oil in Asia: Characteristics of petroleum system in the Tarim Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108246. doi: 10.1016/j.petrol.2020.108246
    [30] BJORÓY M, HALL P B, HUSTAD E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/2/3): 89-105.
    [31] WAPLES D, MACHIHARA T. Biomarkers for geologists: A practical guide to the application of steranes and triterpanes in petroleum geology[M]. Tulsa, Okla. , USA: American Association of Petroleum Geologists, 1991.
    [32] SEIFERT W K, MOLDOWAN J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986, 24: 261-290.
    [33] BEIN A, SOFFER Z. Origin of oils in Helez region, Israel: Implications for exploration in the eastern Mediterranean[J]. AAPG Bulletin, 1987, 71(1): 65-75.
    [34] CASSANI F, GALLANGO O, TALUKDAR S, et al. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin[J]. Organic Geochemistry, 1988, 13(1/2/3): 73-80.
    [35] 朱光有, 张水昌, 梁英波, 等. 硫酸盐热化学还原反应对烃类的蚀变作用[J]. 石油学报, 2005, 26(5): 48-52.

    ZHU G Y, ZHANG S C, LIANG Y B, et al. Alteration of thermochemical sulfate reduction to hydrocarbons[J]. Acta Petrolei Sinica, 2005, 26(5): 48-52. (in Chinese with English abstract
    [36] 张水昌, 朱光有, 何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报, 2011, 27(3): 809-826.

    ZHANG S C, ZHU G Y, HE K. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826. (in Chinese with English abstract
    [37] MANGO F D. An invariance in the isoheptanes of petroleum[J]. Science, 1987, 237: 514-517. doi: 10.1126/science.237.4814.514
    [38] SONG D F, ZHANG C M, LI S M, et al. Elevated mango's K1 values resulting from thermochemical sulfate reduction within the Tazhong oils, Tarim Basin[J]. Energy & Fuels, 2017, 31(2): 1250-1258.
    [39] CAI C F, HU W S, WORDEN R H. Thermochemical sulphate reduction in Cambro–Ordovician carbonates in central Tarim[J]. Marine and Petroleum Geology, 2001, 18(6): 729-741. doi: 10.1016/S0264-8172(01)00028-9
    [40] 马安来, 金之钧, 朱翠山, 等. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据[J]. 石油与天然气地质, 2018, 39(4): 730-737. doi: 10.11743/ogg20180410

    MA A L, JIN Z J, ZHU C S, et al. Effect of TSR on the crude oil in Ordovician reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from molecular markers[J]. Oil & Gas Geology, 2018, 39(4): 730-737. (in Chinese with English abstract doi: 10.11743/ogg20180410
    [41] ZHANG S C, HUANG H P, SU J, et al. Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China: Part 5. Effect of maturation, TSR and mixing on the occurrence and distribution of alkyldibenzothiophenes[J]. Organic Geochemistry, 2015, 86: 5-18. doi: 10.1016/j.orggeochem.2015.05.008
    [42] THOMPSON K F M. Gas-condensate migration and oil fractionation in deltaic systems[J]. Marine and Petroleum Geology, 1988, 5(3): 237-246. doi: 10.1016/0264-8172(88)90004-9
    [43] LARTER S, MILLS N. Phase-controlled molecular fractionations in migrating petroleum charges[J]. Geological Society, London, Special Publications, 1991, 59(1): 137-147. doi: 10.1144/GSL.SP.1991.059.01.10
    [44] LOSH S, CATHLES L. Phase fractionation and oil-condensate mass balance in the South Marsh Island Block 208-239 area, offshore Louisiana[J]. Marine and Petroleum Geology, 2010, 27(2): 467-475. doi: 10.1016/j.marpetgeo.2009.10.004
    [45] PING H W, CHEN H H, ZHAI P Q, et al. Petroleum charge history in the Baiyun Depression and Panyu Lower Uplift in the Pearl River Mouth Basin, northern South China Sea: Constraints from integration of organic geochemical and fluid inclusion data[J]. AAPG Bulletin, 2019, 103(6): 1401-1442. doi: 10.1306/11151817369
    [46] 贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.

    JIA C Z, ZHANG S C. The formation of marine ultra-deep petroleum in China[J]. Acta Geologica Sinica, 2023, 97(9): 2775-2801. (in Chinese with English abstract
    [47] ZHU G Y, MILKOV A V, CHEN F R, et al. Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 252-262. doi: 10.1016/j.marpetgeo.2017.07.019
    [48] DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399: 54-57. doi: 10.1038/19953
    [49] MOLDOWAN J M (, DAHL J, ZINNIKER D, et al. Underutilized advanced geochemical technologies for oil and gas exploration and production: 1. The diamondoids[J]. Journal of Petroleum Science and Engineering, 2015, 126: 87-96. doi: 10.1016/j.petrol.2014.11.010
    [50] PING H W, CHEN H H, THIÉRY R, et al. Effects of oil cracking on fluorescence color, homogenization temperature and trapping pressure reconstruction of oil inclusions from deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 80: 538-562. doi: 10.1016/j.marpetgeo.2016.12.024
    [51] 平宏伟, 陈红汉, 宋国奇, 等. 油气充注成藏贡献度及其意义[J]. 地球科学(中国地质大学学报), 2012, 37(1): 163-170.

    PING H W, CHEN H H, SONG G Q, et al. Contributions degree of petroleum charging to oil and gas accumulation and its significance[J]. Earth Science (Journal of China University of Geosciences), 2012, 37(1): 163-170. (in Chinese with English abstract
    [52] PING H W, CHEN H H, JIA G H. Petroleum accumulation in the deeply buried reservoirs in the northern Dongying Depression, Bohai Bay Basin, China: New insights from fluid inclusions, natural gas geochemistry, and 1-D basin modeling[J]. Marine and Petroleum Geology, 2017, 80: 70-93. doi: 10.1016/j.marpetgeo.2016.11.023
    [53] 陈红汉. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展[J]. 地球科学, 2023, 48(6): 2039-2066.

    CHEN H H. Advances on relationship between strike-slip structures and hydrocarbon accumulations in large superimposed craton basins, China[J]. Earth Science, 2023, 48(6): 2039-2066. (in Chinese with English abstract
    [54] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. doi: 10.3969/j.issn.1672-7703.2020.01.010

    QI L X. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2020.01.010
    [55] 云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52. doi: 10.3969/j.issn.1672-7703.2021.03.004

    YUN L. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2021.03.004
    [56] 王清华, 杨海军, 李勇, 等. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式[J]. 地学前缘, 2022, 29(6): 239-251.

    WANG Q H, YANG H J, LI Y, et al. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim Basin: A reservoir model[J]. Earth Science Frontiers, 2022, 29(6): 239-251. (in Chinese with English abstract
    [57] 韩剑发, 王彭, 朱光有, 等. 塔里木盆地超深层千吨井油气地质与高效区分布规律[J]. 天然气地球科学, 2023, 34(5): 735-748.

    HAN J F, WANG P, ZHU G Y, et al. Petroleum geology and distribution law of high efficiency areas in ultra-deep kiloton wells in Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(5): 735-748. (in Chinese with English abstract
    [58] 张钰, 曹自成, 陈红汉, 等. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性[J]. 地球科学, 2023, 48(6): 2168-2188.

    ZHANG Y, CAO Z C, CHEN H H, et al. Difference of hydrocarbon charging events and their contribution percentages to Ordovician reservoirs among strike-slip fault belts in Shunbei area, Tarim Basin[J]. Earth Science, 2023, 48(6): 2168-2188. (in Chinese with English abstract
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  93
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 录用日期:  2025-03-25
  • 修回日期:  2025-01-13
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回