Research progress on formation mechanism and hydrocarbon accumulation of strike-slip fault-karst reservoir
-
摘要:
断溶体在国内多数盆地普遍发育,其资源量巨大,已经成为地学界研究的热点课题。但由于其埋藏深、勘探难度大,对断溶体的圈闭划分、形成机制、发育控制因素观点不一,亟需形成一致的认识。首先回顾了断溶体的基本概念,指出其具有埋藏深、非均质性强、流体性质差异大等特点,并强调了走滑断层在油气储集和运移中的重要作用。通过对塔里木盆地顺北地区及其他地区的地质数据进行分析,揭示了断溶体的圈闭类型、形成机制及其控藏因素。研究认为走滑断层的分段性、溶蚀流体的活动以及烃类的及时侵位对断溶体油气藏的发育至关重要。此外,研究了大气淡水、热液流体和烃类流体在储层改造中的作用,及如何共同影响断溶体油气藏的形成和分布。总结了断溶体油气藏的成藏模式。本研究有助于开拓新的油气勘探领域和方向。
Abstract:[Significance] Fault-karst systems are widely developed in many basins in China and have become a new hot topic in geoscience due to the huge petroleum resources. However, the reservoirs of fault-karst systems are typically deeply buried and challenging to explore, resulting in an urgent need for a consensus understanding of trap classification, formation mechanisms, and controlling factors.[Progress and Conclusions] Based on a comprehensive literature review, this paper deeply discusses the formation mechanism of fault-karst reservoirs, which are fracture-vuggy carbonate systems formed by karstification influenced by multi-stage tectonic activities. First, the basic concept of the fault-karst reservoir is reviewed. The fault-karst reservoirs are characterized by deep burial, strong heterogeneity, and significant variations in fluid properties. Then, the critical role of strike-slip faults in hydrocarbon accumulation and migration is emphasized. Based on the analysis of geological data in the Shunbei area and other regions of the Tarim Basin, this paper reveals the trap types, formation mechanisms, and reservoir-controlling factors of the fault-karst reservoir. The analysis concludes that the segmentation of strike-slip faults, the activity of solvent fluid, and the timely emplacement of hydrocarbons are crucial to the development of fault-karst reservoir. Furthermore, the roles of atmospheric freshwater, hydrothermal fluids, and hydrocarbon fluids in reservoir reconstruction are discussed, illustrating how they jointly affect the formation and distribution of fault-karst reservoir. Finally, the paper summarizes the reservoir-forming models of the fault-karst reservoir.[Prospects] The discovery and ongoing research into fault-karst reservoirs have unveiled a new and promising frontier for petroleum exploration.-
Key words:
- fault-karst reservoir /
- trap type /
- formation mechanism /
- reservoir control /
- strike-slip fault /
- accumulation model
-
图 1 塔河地区奥陶系断溶体野外露头[4]
Figure 1. Ordovician outcrop of fault-karst reservoir in the Tahe area
图 2 塔河油田托甫台区奥陶系断溶体结构层次划分(据文献[23]修改)
a. 第1层次,走滑断层综合影响下的断溶体范围;b. 第2层次,断溶体内破碎程度高、溶蚀作用强的综合影响范围;c. 第3层次,断溶体内部缝洞带单元;d. 第4层次,大型洞穴內部填充,从下至上依次为角砾充填、砂岩充填、泥岩充填、碳酸盐岩充填、砂岩充填及无充填部分。洞穴内的填充情况十分复杂,在不同的沉积环境下洞穴的填充序列各不相同。$ {\rm{T}}^{4}_{7}.$中奥陶统一间房组顶面地震反射界面;$ {\rm{T}}^{6}_{7}.$ 中−下奥陶统鹰山组顶面地震反射界面;$ {\rm{T}}^{8}_{7}.$下奥陶统蓬莱坝组顶面地震反射界面;$ {\rm{T}}^{0}_{8}.$寒武系顶面地震反射界面;$ {\rm{T}}^{0}_{9}.$震旦系顶面地震反射界面;下同
Figure 2. Structure division of Ordovician fault-karst reservoir in the Tofutai area, Tahe Oilfield
图 3 断溶体圈闭类型及特征[25]
Figure 3. Trap types and characteristics of fault-karst reservoir
图 4 塔河地区圈闭类型实例(据文献[25]修改;$ {\rm{T}}^{2}_{7}.$上奥陶统良里塔格组顶面地震反射界面)
Figure 4. Examples of trap types in the Tahe area
图 6 塔里木盆地奥陶系断溶体储层流体改造机制(据文献[48]修改)
Z1s. 震旦系苏盖提布拉克组;Z2q. 震旦系奇格布拉克组;S-D. 志留系−泥盆系;O3l. 奥陶系良里塔格组;Є1. 下寒武统;Є3. 上寒武统
Figure 6. Fluid transformation mechanism in the Ordovician fault-karst reservoir of the Tarim Basin
图 8 顺北油田走滑断裂带不同分段样式油气成藏与富集模式(据文献[14]修改)
Figure 8. Petroleum accumulation and enrichment models in the strike-slip fault zone of the Shunbei Oilfield
-
[1] 漆立新, 云露. 塔里木台盆区碳酸盐岩成藏模式与勘探实践[J]. 石油实验地质, 2020, 42(5): 867-876.QI L X, YUN L. Carbonate reservoir forming model and exploration in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 867-876. (in Chinese with English abstract [2] 赵彬, 侯加根, 刘钰铭. 塔河油田奥陶系碳酸盐岩溶洞型储层三维地质建模与应用[J]. 石油天然气学报, 2011, 33(5): 12-16.ZHAO B, HOU J G, LIU Y M. Three dimensional modeling and application of Ordovician carbonate cavity reservoirs in Tahe oilfield[J]. Journal of Oil and Gas Technology, 2011, 33(5): 12-16. (in Chinese with English abstract [3] 刘钰铭, 侯加根, 胡向阳, 等. 塔河油田古岩溶储集体三维建模[J]. 中国石油大学学报(自然科学版), 2012, 36(2): 34-38.LIU Y M, HOU J G, HU X Y, et al. 3D modeling of paleokarst reservoir in Tahe oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(2): 34-38. (in Chinese with English abstract [4] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347-355.LU X B, HU W G, WANG Y, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355. (in Chinese with English abstract [5] 伍齐乔, 李景瑞, 曹飞, 等. 顺北1井区奥陶系断溶体油藏岩溶发育特征[J]. 中国岩溶, 2019, 38(3): 444-449.WU Q Q, LI J R, CAO F, et al. Characteristics of fault-karst carbonate reservoirs in the Shunbei No. 1 Well block, Tarim Basin[J]. Carsologica Sinica, 2019, 38(3): 444-449. (in Chinese with English abstract [6] 吴丰, 代槿, 姚聪, 等. 塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖[J]. 断块油气田, 2022, 29(1): 33-39.WU F, DAI J, YAO C, et al. Developmental mode analysis of the fault-karst reservoir in Yijianfang Formation and Yingshan Formation of Ordovician in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 33-39. (in Chinese with English abstract [7] 徐诗雨, 曾乙洋, 林怡, 等. 川中地区中二叠统茅口组地层水化学特征及成因演化[J]. 中国石油勘探, 2024, 29(6): 116-129.XU S Y, ZENG Y Y, LIN Y, et al. Chemical characteristics and genesis and evolution of formation water in the Middle Permian Maokou Formation, Central Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(6): 116-129. (in Chinese with English abstract [8] 徐敏, 梁虹, 邓绍强, 等. 川西北JLS地区下二叠统茅口组“断溶体” 地震预测[J]. 长江大学学报(自然科学版), 2019, 16(11): 21-26.XU M, LIANG H, DENG S Q, et al. Seismic prediction of "broken solution" in Lower Permian of JLS area in northwestern Sichuan[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(11): 21-26. (in Chinese with English abstract [9] 韩冰, 郭帅飞, 刘雅博, 等. 川东北地区茅口组断溶体识别[J]. 中国石油和化工标准与质量, 2021, 41(11): 99-100.HAN B, GUO S F, LIU Y B, et al. Identification of fault solution in Maokou Formation in Northeast Sichuan[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(11): 99-100. (in Chinese) [10] 李一超, 杨飞, 徐天鑫, 等. 川西南井研地区灯影组断溶体形成机制与识别[J]. 断块油气田, 2020, 27(2): 193-197.LI Y C, YANG F, XU T X, et al. Forming mechanism and identification of fault-karst carbonate reservoirs of Dengying Formation in Jingyan area, southwestern Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2020, 27(2): 193-197. (in Chinese with English abstract [11] MAZZULLO S J. Overview of porosity evolution in carbonate reservoirs[J]. Kansas Geological Society Bulletin, 2004, 79(1/2): 20-28. [12] BJØRLYKKE K, AVSETH P. Petroleum geoscience: From sedimentary environments to rock physics[M]. Berlin: Springer, 2010: 141-200. [13] EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion? : Reply[J]. AAPG Bulletin, 2013, 97(2): 347-349. [14] 雷启鸿, 马福建, 何右安, 等. 鄂尔多斯盆地陆相页岩油藏天然裂缝刻画与储层改造对策[J]. 中国石油勘探, 2024, 29(3)131-145.LEI Q H, MA F J, HE Y A, et al. Characterization of natural fractures and reservoir reconstruction strategy for continental shale oil reservoir in Ordos Basin[J]. China Petroleum Exploration, 2024, 29(3): 131-145. (in Chinese with English abstract [15] 邓兴梁, 乔占峰, 王彭, 等. 埋藏期“断溶体” 的储集特征、成因及发育规律: 以塔中十号带奥陶系良里塔格组岩溶储层为例[J]. 海相油气地质, 2018, 23(1): 47-55.DENG X L, QIAO Z F, WANG P, et al. Origin, development and features of the "fault-dissolved body" Reservoir formed in burial stage: A case study of Middle Ordovician Lianglitage Formation in Tarim Basin, Northwest China[J]. Marine Origin Petroleum Geology, 2018, 23(1): 47-55. (in Chinese with English abstract [16] LI J Y, WANG Y S, LIU C H, et al. Hydrothermal fluid activity and the quantitative evaluation of its impact on carbonate reservoirs: A case study of the Lower Paleozoic in the West of Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(3): 395-403. doi: 10.1016/S1876-3804(16)30046-5 [17] 吕修祥, 杨宁, 周新源, 等. 塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响[J]. 中国科学(D辑: 地球科学), 2008, 38(增刊1): 48-54.LYU X X, YANG N, ZHOU X Y, et al. Influence of fault activity in Tarim Basin on Ordovician carbonate reservoir[J]. Science in China (Series D: Earth Sciences), 2008, 38(S1): 48-54. (in Chinese. [18] 云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52.YUN L. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. (in Chinese with English abstract [19] 庞雄奇, 陈君青, 李素梅, 等. 塔里木盆地特大型海相油田原油来源: 来自深部低TOC烃源岩的证据与相对贡献评价[J]. 石油学报, 2018, 39(1): 23-41.PANG X Q, CHEN J Q, LI S M, et al. Crude oil sources of giant marine oilfield in Tarim Basin: Evidences and relative contribution evaluation of deep present-day low-TOC source rocks[J]. Acta Petrolei Sinica, 2018, 39(1): 23-41. (in Chinese with English abstract [20] 支东明, 何文军, 谢安, 等. 准噶尔盆地深层油气勘探新领域认识与启示[J]. 中国石油勘探, 2025, 30(3): 1-24.ZHI D M, HE W J, XIE A, et al. Recognition and enlightenments of new oil and gas exploration fields in deep formations in Junggar Basin[J]. China Petroleum Exploration, 2025, 30(3): 1-24. (in Chinese with English abstract [21] 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53.MA A L, JIN Z J, ZHU C S. Detection and research significance of thiadiamondoids from crude oil in Well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53. (in Chinese with English abstract [22] 侯加根, 马晓强, 胡向阳, 等. 碳酸盐岩溶洞型储集体地质建模的几个关键问题[J]. 高校地质学报, 2013, 19(1): 64-69.HOU J G, MA X Q, HU X Y, et al. Key issues of 3D geological modeling of paleokarst-cave carbonate reservoir[J]. Geological Journal of China Universities, 2013, 19(1): 64-69. (in Chinese with English abstract [23] 张文彪, 张亚雄, 段太忠, 等. 塔里木盆地塔河油田托甫台区奥陶系碳酸盐岩断溶体系层次建模方法[J]. 石油与天然气地质, 2022, 43(1): 207-218.ZHANG W B, ZHANG Y X, DUAN T Z, et al. Hierarchy modeling of the Ordovician fault-karst carbonate reservoir in Tuoputai area, Tahe oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2022, 43(1): 207-218. (in Chinese with English abstract [24] 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部“层控” 与“断控” 型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469.LU X B, YANG M, WANG Y, et al. Geological characteristics of "strata-bound" and "fault-controlled" reservoirs in the northern Tarim Basin: Taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469. (in Chinese with English abstract [25] 程洪, 汪彦, 鲁新便. 塔河地区深层碳酸盐岩断溶体圈闭类型及特征[J]. 石油学报, 2020, 41(3): 301-309.CHENG H, WANG Y, LU X B. Classifications and characteristics of deep carbonate fault-karst trap in Tahe area[J]. Acta Petrolei Sinica, 2020, 41(3): 301-309. (in Chinese with English abstract [26] 李会军, 丁勇, 周新桂, 等. 塔河油田奥陶系海西早期、加里东中期岩溶对比研究[J]. 地质论评, 2010, 56(3): 415-427.LI H J, DING Y, ZHOU X G, et al. Study on hercynian and Middle Caledonian karstification of Ordovician in the Tahe oilfield, Tarim Basin[J]. Geological Review, 2010, 56(3): 415-427. (in Chinese with English abstract [27] 韩长城, 林承焰, 鲁新便, 等. 塔河油田奥陶系碳酸盐岩岩溶斜坡断控岩溶储层特征及形成机制[J]. 石油与天然气地质, 2016, 37(5): 644-652.HAN C C, LIN C Y, LU X B, et al. Characterization and genesis of fault-controlled karst reservoirs in Ordovician carbonate karst slope of Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(5): 644-652. (in Chinese with English abstract [28] 严威, 王兴志, 张廷山, 等. 塔河油田加里东中期第Ⅲ幕岩溶作用[J]. 石油学报, 2011, 32(3): 411-416.YAN W, WANG X Z, ZHANG T S, et al. Investigations of the karst during the episode Ⅲ of the Mid-Caledonian in the Tahe oilfield[J]. Acta Petrolei Sinica, 2011, 32(3): 411-416. (in Chinese with English abstract [29] 程洪, 张杰, 张文彪. 断溶体储层类型识别、预测及发育模式探讨: 以塔里木盆地塔河十区TH10421单元为例[J]. 石油与天然气地质, 2020, 41(5): 996-1003.CHENG H, ZHANG J, ZHANG W B. Discussion on identification, prediction and development pattern of faulted-karst carbonate reservoirs: A case study of TH10421 fracture-cavity unit in Block 10 of Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(5): 996-1003. (in Chinese with English abstract [30] 周文, 李秀华, 金文辉, 等. 塔河奥陶系油藏断裂对古岩溶的控制作用[J]. 岩石学报, 2011, 27(8): 2339-2348.ZHOU W, LI X H, JIN W H, et al. The control action of fault to paleokarst in view of Ordovician reservoir in Tahe area[J]. Acta Petrologica Sinica, 2011, 27(8): 2339-2348. (in Chinese with English abstract [31] 王玉伟, 陈红汉, 曹自成, 等. 顺北地区流体活动对储层形成的控制作用[J]. 断块油气田, 2023, 30(1): 44-51.WANG Y W, CHEN H H, CAO Z C, et al. Controlling effects of fluid activity on reservoir formation in Shunbei area[J]. Fault-Block Oil & Gas Field, 2023, 30(1): 44-51. (in Chinese with English abstract [32] GAO D L. Volume texture extraction for 3D seismic visualization and interpretation[J]. Geophysics, 2003, 68(4): 1294-1302. doi: 10.1190/1.1598122 [33] GAO D L. Structure-oriented texture model regression: Application to seismic structure visualization and interpretation[C]//SEG Technical Program Expanded Abstracts 2006. Society of Exploration Geophysicists, 2006: 1083-1087. [34] GAO D L. Application of three-dimensional seismic texture analysis with special reference to deep-marine facies discrimination and interpretation: Offshore Angola, West Africa[J]. AAPG Bulletin, 2007, 91(12): 1665-1683. doi: 10.1306/08020706101 [35] GAO D L. Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: A review[J]. Geophysics, 2011, 76(2): 1-13. doi: 10.1190/1.3553479 [36] 金强, 田飞. 塔河油田岩溶型碳酸盐岩缝洞结构研究[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 15-21.JIN Q, TIAN F. Investigation of fracture-cave constructions of karsted cabonate reservoirs of Ordovician in Tahe Oilfield, Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 15-21. (in Chinese with English abstract [37] 庞宏, 庞雄奇, 吴松, 等. 塔北及周缘地区奥陶系碳酸盐岩烃源岩生−残−排烃特征[J]. 地学前缘, 2023, 30(6): 213-231.PANG H, PANG X Q, WU S, et al. Hydrocarbon generation, residual hydrocarbon and petroleum expulsion characteristics of Ordovician carbonate source rocks in northern Tarim and its surrounding areas[J]. Earth Science Frontiers, 2023, 30(6): 213-231. (in Chinese with English abstract [38] BAKALOWICZ M. 6.15 Epikarst Processes[J]. Reference Module in Earth Systems and Environmental Sciences: Treatise on Geomorphology, 2013, 6: 164-171. [39] JAMES N P, CHOQUETTE P W. Carbonate sedimentology and petrology[M]. Washington, D. C: American Geophysical Union, 1989: 45-78. [40] 宗劭康, 褚学伟, 张佳欣, 等. 酸性淋滤液对碳酸盐岩的溶蚀损伤试验[J]. 地质科技通报, 2025, 44(5): 225-233.ZONG S K, CHU X W, ZHANG J X, et al. Experimental of dissolution damage to carbonate rocks by acidic leachate[J]. Bulletin of Geological Science and Technology, 2025, 44(5): 225-233. (in Chinese with English abstract [41] 韩长城. 塔河油田奥陶系断控岩溶储集体特征及分布规律研究[D]. 山东 东营: 中国石油大学(华东), 2017.HAN C C. Study on characteristics and distribution of Ordovician fault-controlled reservoirs in Tahe oilfield[D]. Dongying Shandong: China University of Petroleum (Huadong), 2017. (in Chinese with English abstract [42] 王永辉, 张友浩, 高先志, 等. 北部湾盆地涠西南凹陷碳酸盐岩潜山表生岩溶储层特征与演化模式[J]. 地球学报, 2022, 43(5): 676-688.WANG Y H, ZHANG Y H, GAO X Z, et al. Characteristics and evolvement model of epigenetic karst reservoirs in carbonate buried hill in Weixi'nan Sag, Beibuwan Basin[J]. Acta Geoscientica Sinica, 2022, 43(5): 676-688. (in Chinese with English abstract [43] 黄诚, 云露, 曹自成, 等. 塔里木盆地顺北地区中−下奥陶统“断控” 缝洞系统划分与形成机制[J]. 石油与天然气地质, 2022, 43(1): 54-68.HUANG C, YUN L, CAO Z C, et al. Division and formation mechanism of fault-controlled fracture-vug system of the Middle-to-Lower Ordovician, Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54-68. (in Chinese with English abstract [44] 陈兰朴. 塔河−顺北地区中下奥陶统断裂带流体活动特征及储层改造效应研究[D]. 武汉: 中国地质大学(武汉), 2022.CHEN L P. Study on the fluid activity characteristics and reservoir modification effect in fault zones of the Middle-Lower Ordovician in Tahe-Shunbei area[D]. Wuhan: China University of Geosciences (Wuhan), 2022. (in Chinese with English abstract [45] 漆立新, 云露. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J]. 石油与天然气地质, 2010, 31(1): 1-12.QI L X, YUN L. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe oilfield[J]. Oil & Gas Geology, 2010, 31(1): 1-12. (in Chinese with English abstract [46] 俞仁连, 傅恒. 构造运动对塔河油田奥陶系碳酸盐岩的影响[J]. 天然气勘探与开发, 2006, 29(2): 1-6.YU R L, FU H. Influence of tectonic movement on Ordovician carbonates of Tahe oilfield[J]. Natural Gas Exploration and Development, 2006, 29(2): 1-6. (in Chinese with English abstract [47] YANG X F, WANG X Z, TANG H, et al. The Early Hercynian paleo-karstification in the Block 12 of Tahe oilfield, northern Tarim Basin, China[J]. Carbonates and Evaporites, 2014, 29(3): 251-261. doi: 10.1007/s13146-013-0167-0 [48] 吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22.LÜ H T HAN J, ZHANG J B, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14-22. (in Chinese with English abstract [49] NAVON O, HUTCHEON I D, ROSSMAN G R, et al. Mantle-derived fluids in diamond micro-inclusions[J]. Nature, 1988, 335: 784-789. doi: 10.1038/335784a0 [50] KUMP L R, PAVLOV A, ARTHUR M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia[J]. 2005, 33(5): 397-400. [51] 金之钧, 朱东亚, 胡文瑄, 等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 2006, 80(2): 245-253.JIN Z J, ZHU D Y, HU W X, et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 2006, 80(2): 245-253. (in Chinese with English abstract [52] 陈红汉, 鲁子野, 曹自成, 等. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用[J]. 石油学报, 2016, 37(1): 43-63.CHEN H H, LU Z Y, CAO Z C, et al. Hydrothermal alteration of Ordovician reservoir in northeastern slope of Tazhong uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 43-63. (in Chinese with English abstract [53] 朱秀, 朱红涛, 陈红汉, 等. 塔里木盆地顺南地区中−下奥陶统深成岩溶特征[J]. 石油与天然气地质, 2016, 37(5): 653-662.ZHU X, ZHU H T, CHEN H H, et al. Characterization of hypogenic karst systems in the Middle-Lower Ordovician of Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(5): 653-662. (in Chinese with English abstract [54] 鲁子野, 陈红汉, 云露, 等. 塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系[J]. 地球科学, 2016, 41(3): 487-498.LU Z Y, CHEN H H, YUN L, et al. The coupling relationship between hydrothermal fluids and the hydrocarbon gas accumulation in Ordovician of Shunnan gentle slope, northern slope of Tazhong uplift[J]. Earth Science, 2016, 41(3): 487-498. (in Chinese with English abstract [55] 李培军, 陈红汉, 唐大卿, 等. 塔里木盆地顺南地区中−下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系[J]. 地球科学, 2017, 42(1): 93-104.LI P J, CHEN H H, TANG D Q, et al. Coupling relationship between NE strike-slip faults and hypogenic karstification in Middle-Lower Ordovician of Shunnan area, Tarim Basin, Northwest China[J]. Earth Science, 2017, 42(1): 93-104. (in Chinese with English abstract [56] 朱松柏, 王洪峰, 王胜军, 等. 玉北地区深部热液活动的发现及其储层改造意义[J]. 岩性油气藏, 2016, 28(3): 42-47.ZHU S B, WANG H F, WANG S J, et al. Hydrothermal activities of Ordovician and its significance for alteration to carbonate reservoirs in Yubei area[J]. Lithologic Reservoirs, 2016, 28(3): 42-47. (in Chinese with English abstract [57] 丁茜, 胡秀芳, 高奇东, 等. 塔里木盆地奥陶系碳酸盐岩热液蚀变类型及蚀变流体的分带特征[J]. 浙江大学学报(理学版), 2019, 46(5): 600-609.DING Q, HU X F, GAO Q D, et al. The hydrothermal alteration types and zoning features of Ordovician carbonate in Tarim Basin[J]. Journal of Zhejiang University (Science Edition), 2019, 46(5): 600-609. (in Chinese with English abstract [58] 袁立, 姚君波, 韩杰. 塔中地区奥陶系热液溶蚀作用特征及其对储层物性的影响[J]. 重庆科技学院学报(自然科学版), 2013, 15(4): 1-4.YUAN L, YAO J B, HAN J. Charatistics of the Ordovician hydrothermal dissolution activity and impact to the reservoir's physical property in Tazhong area[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2013, 15(4): 1-4. (in Chinese with English abstract [59] 王嗣敏, 金之钧, 解启来. 塔里木盆地塔中45井区碳酸盐岩储层的深部流体改造作用[J]. 地质论评, 2004, 50(5): 543-547.WANG S M, JIN Z J, XIE Q L. Transforming Effect of Deep Fluids on Carbonate Reservoirs in the Well TZ45 region[J]. Geological Review, 2004(5): 543-547. (in Chinese with English abstract [60] 张兴阳, 顾家裕, 罗平. 塔中45井萤石成因与油气成藏[J]. 新疆石油地质, 2004, 25(5): 479-482.ZHANG X Y, GU J Y, LUO P. Fluorite origin and petroleum reservoir in Well TZ-45 in Tarim Basin[J]. Xinjiang Petroleum Geology, 2004, 25(5): 479-482. (in Chinese with English abstract [61] 朱东亚, 胡文瑄, 宋玉才, 等. 塔里木盆地塔中45井油藏萤石化特征及其对储层的影响[J]. 岩石矿物学杂志, 2005, 24(3): 205-215.ZHU D Y, HU W X, SONG Y C, et al. Fluoritization in Tazhong 45 reservoir: Characteristics and its effect on the reservoir bed[J]. Acta Petrologica et Mineralogica, 2005, 24(3): 205-215. (in Chinese with English abstract [62] 张兴阳, 顾家裕, 罗平, 等. 塔里木盆地奥陶系萤石成因及其油气地质意义[J]. 岩石学报, 2006, 22(8): 2220-2228.ZHANG X Y, GU J Y, LUO P, et al. Genesis of the fluorite in the Ordovician and its significance to the petroleum geology of Tarim Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2220-2228. (in Chinese with English abstract [63] 朱东亚, 金之钧, 胡文瑄, 等. 塔里木盆地深部流体对碳酸盐岩储层影响[J]. 地质论评, 2008, 54(3): 348-354.ZHU D Y, JIN Z J, HU W X, et al. Effects of deep fluid on carbonates reservoir in Tarim Basin[J]. Geological Review, 2008, 54(3): 348-354. (in Chinese with English abstract [64] AL-AASM I. Origin and characterization of hydrothermal dolomite in the western Canada sedimentary basin[J]. Journal of Geochemical Exploration, 2003, 78: 9-15. [65] SWART P K, CANTRELL D L, WESTPHAL H, et al. Origin of dolomite in the Arab-D reservoir from the Ghawar field, Saudi Arabia: Evidence from petrographic and geochemical constraints[J]. 2005, 75(3): 476-491. [66] 何云峰, 陈叔阳, 刘耀宇, 等. 断控缝洞型油气藏储集体建模研究: 以顺北4号断裂带为例[J]. 地质科技通报, 2025, 44(3): 108-121.HE Y F, CHEN S Y, LIU Y Y, et al. Reservoir modeling of fault-controlled fractured-cavity reservoirs: A case study of Shunbei fault zone No. 4[J]. Bulletin of Geological Science and Technology, 2025, 44(3): 108-121. (in Chinese with English abstract [67] 李双建, 杨天博, 韩月卿, 等. 四川盆地中二叠统热液白云岩化作用及其储层改造意义[J]. 石油与天然气地质, 2021, 42(6): 1265-1280.LI S J, YANG T B, HAN Y Q, et al. Hydrothermal dolomitization and its role in improving Middle Permian reservoirs for hydrocarbon accumulation, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1265-1280. (in Chinese with English abstract [68] 张涛, 林娟华, 韩月卿, 等. 四川盆地东部中二叠统茅口组热液白云岩发育模式及对储层的改造[J]. 石油与天然气地质, 2020, 41(1): 132-143.ZHANG T, LIN J H, HAN Y Q, et al. Pattern of hydrothermal dolomitization in the Middle Permian Maokou Formation, eastern Sichuan Basin, and its alteration on reservoirs herein[J]. Oil & Gas Geology, 2020, 41(1): 132-143. (in Chinese with English abstract [69] 黎霆, 诸丹诚, 杨明磊, 等. 热液活动对四川盆地中西部地区二叠系茅口组白云岩的影响[J]. 石油与天然气地质, 2021, 42(3): 639-651.LI T, ZHU D C, YANG M L, et al. Influence of hydrothermal activity on the Maokou Formation dolostone in the central and western Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3): 639-651. (in Chinese with English abstract [70] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.JIAO F Z. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. (in Chinese with English abstract [71] MAZZULLO S J, Harris P M. Mesogenetic dissolution: Its role in porosity development in carbonate reservoirs (1)[J]. AAPG Bulletin, 1992, 76: 607-620. [72] BARTH T, BJØRLYKKE K. Organic acids from source rock maturation: Generation potentials, transport mechanisms and relevance for mineral diagenesis[J]. Applied Geochemistry, 1993, 8(4): 325-337. doi: 10.1016/0883-2927(93)90002-X [73] 朱光有, 张水昌, 马永生, 等. TSR(H2S)对石油天然气工业的积极性研究: H2S的形成过程促进储层次生孔隙的发育[J]. 地学前缘, 2006, 13(3): 141-149.ZHU G Y, ZHANG S C, MA Y S, et al. Effectiveness of thermochemical sulfate reduction on oil and gas industry: A H2S formation accelerating development of the secondary pores in reservoirs[J]. Earth Science Frontiers, 2006, 13(3): 141-149. (in Chinese with English abstract [74] 胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40(5): 947-956.HU W X, YAO S P, LU X C, et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40(5): 947-956. (in Chinese with English abstract [75] MESHRI I D. On The reactivity of carbonic and organic acids and generation of secondary porosity[J]. Special Publications, 1986, 38: 123-128. [76] 李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中: 下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484.LI Y T, QI L X, ZHANG S N, et al. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484. (in Chinese with English abstract [77] 曲占庆, 林强, 郭天魁, 等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田, 2019, 26(4): 533-536.QU Z Q, LIN Q, GUO T K, et al. Experimental study on acid fracture conductivity of carbonate rock in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 533-536. (in Chinese with English abstract [78] 韩俊, 曹自成, 邱华标, 等. 塔中北斜坡奥陶系走滑断裂带与岩溶储集体发育模式[J]. 新疆石油地质, 2016, 37(2): 145-151.HAN J, CAO Z C, QIU H B, et al. Model for strike-slip fault zones and karst reservoir development of Ordovician in northern slope of Tazhong uplift, Tarim Basin[J]. Xinjiang Petroleum Geology, 2016, 37(2): 145-151. (in Chinese with English abstract [79] 杨德彬, 鲁新便, 高志前, 等. 塔北深层海相碳酸盐岩断溶体成藏认识及油藏特征[J]. 地学前缘, 2023, 30(4): 43-50.YANG D B, LU X B, GAO Z Q, et al. Hydrocarbon accumulation and reservoir characteristics of deep marine fault-karst reservoirs in northern Tarim Basin[J]. Earth Science Frontiers, 2023, 30(4): 43-50. (in Chinese with English abstract [80] 丁志文, 汪如军, 陈方方, 等. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例[J]. 石油勘探与开发, 2020, 47(2): 286-296.DING Z W, WANG R J, CHEN F F, et al. Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296. (in Chinese with English abstract [81] 朱文剑. 塔里木盆地阿满过渡带构造演化与断溶体储层特征研究[D]. 山东 东营: 中国石油大学(华东), 2019.ZHU W J. Structural evolution and reservoir characteristics of fault-karst in the aman transition zone of the Tarim Basin[D]. Dongying Shandong: China University of Petroleum (Huadong), 2019. (in Chinese with English abstract [82] 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142.YUN L. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. (in Chinese with English abstract [83] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888.DENG S, LI H L, ZHANG Z P, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. (in Chinese with English abstract [84] 雷川, 陈红汉, 苏奥, 等. 碳酸盐岩埋藏溶蚀研究进展[J]. 断块油气田, 2014, 21(2): 165-170.LEI C, CHEN H H, SU A, et al. Study progress on buried dissolution in carbonate rock[J]. Fault-Block Oil & Gas Field, 2014, 21(2): 165-170. (in Chinese with English abstract [85] FLOODGATEL G. The fate of petroleum in marine ecosystems[M]. Atlas R M. Petroleum Microbiology. New York: Macmillan Publishing Co, 1984: 355-398. -
下载:
