留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维改良弱膨胀土的强度及裂隙特性

宋琨 刘跃 阮迪 黄维 袁晶晶 艾东

宋琨,刘跃,阮迪,等. 玄武岩纤维改良弱膨胀土的强度及裂隙特性[J]. 地质科技通报,2026,45(1):110-120 doi: 10.19509/j.cnki.dzkq.tb20240143
引用本文: 宋琨,刘跃,阮迪,等. 玄武岩纤维改良弱膨胀土的强度及裂隙特性[J]. 地质科技通报,2026,45(1):110-120 doi: 10.19509/j.cnki.dzkq.tb20240143
SONG Kun,LIU Yue,RUAN Di,et al. Strength and cracking behavior of weak expansive soil improved by basalt fiber[J]. Bulletin of Geological Science and Technology,2026,45(1):110-120 doi: 10.19509/j.cnki.dzkq.tb20240143
Citation: SONG Kun,LIU Yue,RUAN Di,et al. Strength and cracking behavior of weak expansive soil improved by basalt fiber[J]. Bulletin of Geological Science and Technology,2026,45(1):110-120 doi: 10.19509/j.cnki.dzkq.tb20240143

玄武岩纤维改良弱膨胀土的强度及裂隙特性

doi: 10.19509/j.cnki.dzkq.tb20240143
基金项目: 国家自然科学基金项目(42077239)
详细信息
    通讯作者:

    E-mail:songkun_ctgu@163.com

  • 中图分类号: TU443

Strength and cracking behavior of weak expansive soil improved by basalt fiber

More Information
  • 摘要:

    膨胀土引发的工程地质问题成为了制约城市地质安全的关键。为了研究玄武岩纤维改良膨胀土的效果和机理,以湖北宜昌三峡机场弱膨胀土为研究对象,通过掺入质量分数为0.2%,0.4%和0.6%的玄武岩纤维改良土的三轴压缩试验和干湿循环试验,并结合数字图像处理技术,研究改良土的强度和干湿循环下的表面裂隙随纤维掺量的变化规律。结果表明:玄武岩纤维掺量对改良土的黏聚力影响明显,对内摩擦角影响不显著,玄武岩纤维掺量为0.4%时,改良土的黏聚力提高了57.1%;不同玄武岩纤维掺量的改良系数均大于1.0,掺量为0.4%时改良效果最佳;首次干湿循环后,改良土和素膨胀土没有出现裂隙,后续循环期次玄武岩纤维改良土裂隙面积率和分形维数均比原土小,裂隙面积率的最大差值由2.41%增至4.54%,分形维数的最大差值由0.058降至0.037,掺量为0.4%时,玄武岩纤维抑制土的裂隙效果最好。“嵌固”在土体中的纤维使裂隙尖端的应力集中程度降低,从而限制了裂隙的发展。研究结果可为区域性玄武岩纤维改良弱膨胀土的工程应用提供参考。

     

  • 图 1  取样地理位置及周边环境

    Figure 1.  Sampling location and surrounding environment

    图 2  试验土颗粒级配曲线

    Figure 2.  Grain size distribution curve of test soil

    图 3  12 mm玄武岩纤维

    Figure 3.  12 mm basalt fibers

    图 4  试验技术路线图(n为干湿循环次数)

    Figure 4.  Experimental workflow

    图 5  各围压下的主应力差−轴向应变曲线

    Figure 5.  Major principal stress difference-axial strain curves under different confining pressures

    图 6  各纤维掺量下的孔隙水压力−轴向应变曲线

    Figure 6.  Pore water pressure-axial strain curves under different fiber contents

    图 7  干湿循环过程中试样裂隙发育情况

    Figure 7.  Development of cracks in samples during dry-wet cycles

    图 8  干湿循环过程中试样裂隙二值化图像

    Figure 8.  Binarized images of cracks in samples during dry-wet cycles

    图 9  试样裂隙参数与循环次数的关系

    Figure 9.  Relationship between crack parameters and number of cycle in samples

    图 10  试样裂隙参数与纤维掺量的关系

    Figure 10.  Relationship between crack parameters and fiber content in samples

    图 11  玄武岩纤维的“嵌固”作用示意图(a. 膨胀土;b. 纤维改良膨胀土)

    Figure 11.  Schematic diagram of "embedding" effect of basalt fiber

    表  1  膨胀土基本物理指标

    Table  1.   Basic physical properties of expansive soil

    液限
    ωL/%
    塑限
    ωP/%
    塑性
    指数IP
    天然含
    水率ω/%
    天然湿密
    度/(g∙cm−3)
    最优含
    水率ω/%
    最大干密
    度/(g∙cm−3)
    自由膨胀
    FS/%
    55.01 16.18 38.83 20.94 2.02 18.25 1.73 48.00
    下载: 导出CSV

    表  2  玄武岩纤维物理力学参数

    Table  2.   Physical and mechanical parameters of basalt fiber

    抗拉强度/MPa 弹性模量/GPa 纤维密度/(g·cm−3) 断裂伸长率/% 熔点/℃
    20002200 85~90 2.699 2.8 1450
    下载: 导出CSV

    表  3  三轴压缩试验方案

    Table  3.   Triaxial compression test scheme

    试验方法 围压/kPa 纤维掺量/% 含水率/% 剪切速率/(mm·min−1
    固结不
    排水
    (CU)
    100,200,
    300
    0 18.25 0.8
    0.2 18.25 0.8
    0.4 18.25 0.8
    0.6 18.25 0.8
    下载: 导出CSV

    表  4  各围压下不同纤维掺量改良土的最大主应力差

    Table  4.   Maximum major principal stress difference of improved soil with different fiber contents under different confining pressures

    围压/kPa 纤维掺量0 纤维掺量0.2% 纤维掺量0.4% 纤维掺量0.6%
    100 205.8 215.3 245.9 214.0
    200 286.0 321.4 327.3 307.8
    300 394.2 408.7 422.8 400.1
    下载: 导出CSV

    表  5  玄武岩纤维改良土强度指标

    Table  5.   Strength indices of basalt fiber-improved soil

    纤维掺量/% $ C $/kPa $ \varphi $/(°) $ C' $/kPa $ \varphi ' $/(°)
    0 36.4 18.7 35.0 18.0
    0.2 44.4 19.0 42.9 18.6
    0.4 56.5 17.9 55.0 17.8
    0.6 43.2 18.5 42.2 17.4
      注:C. 黏聚力;φ. 内摩擦角;C'. 有效黏聚力;φ'. 有效内摩擦角
    下载: 导出CSV

    表  6  强度改良系数

    Table  6.   Strength improvement coefficients

    纤维掺量/% 围压/kPa
    100 200 300
    0 1 1 1
    0.2 1.05 1.12 1.04
    0.4 1.19 1.14 1.07
    0.6 1.04 1.08 1.02
    下载: 导出CSV
  • [1] ZHANG C, WANG W, ZHU Z D, et al. Mechanical behaviors and damage model of expansive soil admixed with composite materials[J]. Arabian Journal of Geosciences, 2021, 14(15): 1439. doi: 10.1007/s12517-021-07865-y
    [2] 廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

    LIAO S W. Expansive soil and railway engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
    [3] 郝建斌, 李耕春, 刘志云, 等. 干湿循环作用下剑麻纤维加筋膨胀土的抗裂作用及影响因素[J]. 湖南大学学报(自然科学版), 2024, 51(1): 147-158. doi: 10.16339/j.cnki.hdxbzkb.2024014

    HAO J B, LI G C, LIU Z Y, et al. Anti-cracking mechanism of sisal fiber-reinforced expansive soil under dry-wet cycle and its influencing factors[J]. Journal of Hunan University (Natural Sciences), 2024, 51(1): 147-158. (in Chinese with English abstract doi: 10.16339/j.cnki.hdxbzkb.2024014
    [4] 雷胜友, 丁万涛. 加筋纤维抑制膨胀土膨胀性的试验[J]. 岩土工程学报, 2005, 27(4): 482-485. doi: 10.3321/j.issn:1000-4548.2005.04.024

    LEI S Y, DING W T. Experiment on restraining expansibility of expansive soil with reinforced fiber[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 482-485. (in Chinese with English abstract doi: 10.3321/j.issn:1000-4548.2005.04.024
    [5] DIAMBRA A, IBRAIM E, MUIR WOOD D, et al. Fibre reinforced sands: Experiments and modelling[J]. Geotextiles and Geomembranes, 2010, 28(3): 238-250. doi: 10.1016/j.geotexmem.2009.09.010
    [6] 李丽华, 万畅, 刘永莉, 等. 玻璃纤维加筋砂土剪切强度特性研究[J]. 武汉大学学报(工学版), 2017, 50(1): 102-106. doi: 10.14188/j.1671-8844.2017-01-015

    LI L H, WAN C, LIU Y L, et al. Shear strength characteristics of glass fiber reinforced sandy soil[J]. Engineering Journal of Wuhan University, 2017, 50(1): 102-106. (in Chinese with English abstract doi: 10.14188/j.1671-8844.2017-01-015
    [7] WANG Y X, GUO P P, REN W X, et al. Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement[J]. International Journal of Geomechanics, 2017, 17(11): 04017101. doi: 10.1061/(ASCE)GM.1943-5622.0000998
    [8] NAMJOO A M, SOLTANI F, TOUFIGH V. Effects of moisture on the mechanical behavior of sand-geogrid: An experimental investigation[J]. International Journal of Geosynthetics and Ground Engineering, 2021, 7(1): 5. doi: 10.1007/s40891-020-00243-w
    [9] 宋飞, 石磊, 樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报, 2024, 43(1): 184-193. doi: 10.19509/j.cnki.dzkq.tb20220428

    SONG F, SHI L, FAN M Z. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184-193. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220428
    [10] 张家俊, 龚壁卫, 胡波, 等. 干湿循环作用下膨胀土裂隙演化规律试验研究[J]. 岩土力学, 2011, 32(9): 2729-2734. doi: 10.3969/j.issn.1000-7598.2011.09.028

    ZHANG J J, GONG B W, HU B, et al. Study of evolution law of fissures of expansive clay under wetting and drying cycles[J]. Rock and Soil Mechanics, 2011, 32(9): 2729-2734. (in Chinese with English abstract doi: 10.3969/j.issn.1000-7598.2011.09.028
    [11] 马鸿发, 刘清秉, 李靖. 掺砂率与干密度对膨润土收缩特性影响[J]. 地质科技通报, 2023, 42(6): 76-85. doi: 10.19509/j.cnki.dzkq.tb20220099

    MA H F, LIU Q B, LI J. Effect of shrinkage characteristics of bentonite with different sand mixing rates and dry densities[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 76-85. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20220099
    [12] 黄晓虎, 易武, 黄海峰, 等. 优势流入渗与坡体变形关系研究及应用[J]. 岩土力学, 2020, 41(4): 1396-1403. doi: 10.16285/j.rsm.2019.0704

    HUANG X H, YI W, HUANG H F, et al. Study and application of the relationship between preferential flow penetration and slope deformation[J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403. (in Chinese with English abstract doi: 10.16285/j.rsm.2019.0704
    [13] 宋琨, 陈伦怡, 刘艺梁, 等. 降雨诱发深层老滑坡复活变形的动态作用机制[J]. 地球科学, 2022, 47(10): 3665-3676.

    SONG K, CHEN L Y, LIU Y L, et al. Dynamic mechanism of rain infiltration in deep-seated landslide reactivate deformation[J]. Earth Science, 2022, 47(10): 3665-3676. (in Chinese with English abstract
    [14] QI Y Z, WANG Z Z, XU H Q, et al. Instability analysis of a low-angle low-expansive soil slope under seasonal wet-dry cycles and river-level variations[J]. Advances in Civil Engineering, 2020, 2020(1): 3479575. doi: 10.1155/2020/3479575
    [15] ZHAO G T, ZOU W L, HAN Z, et al. Evolution of soil-water and shrinkage characteristics of an expansive clay during freeze-thaw and drying-wetting cycles[J]. Cold Regions Science and Technology, 2021, 186: 103275. doi: 10.1016/j.coldregions.2021.103275
    [16] ZHOU Z H, BAI Y, WU Y T, et al. Multiscale study on the microstructural evolution and macromechanical deterioration of expansive soil under dry-wet cycles[J]. Journal of Mechanics, 2022, 38: 610-620. doi: 10.1093/jom/ufac048
    [17] HUANG Z, SUN H Y, DAI Y M, et al. A study on the shear strength and dry-wet cracking behaviour of waste fibre-reinforced expansive soil[J]. Case Studies in Construction Materials, 2022, 16: e01142. doi: 10.1016/j.cscm.2022.e01142
    [18] 张丹, 许强, 郭莹. 玄武岩纤维加筋膨胀土的强度与干缩变形特性试验[J]. 东南大学学报(自然科学版), 2012, 42(5): 975-980. doi: 10.3969/j.issn.1001-0505.2012.05.032

    ZHANG D, XU Q, GUO Y. Experiments on strength and shrinkage of expansive soil with basalt fiber reinforcement[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(5): 975-980. (in Chinese with English abstract doi: 10.3969/j.issn.1001-0505.2012.05.032
    [19] 韩春鹏, 田家忆, 张建, 等. 干湿循环下纤维加筋膨胀土裂隙特性分析[J]. 吉林大学学报(工学版), 2019, 49(2): 392-400. doi: 10.13229/j.cnki.jdxbgxb20180019

    HAN C P, TIAN J Y, ZHANG J, et al. Analysis of crack characteristics of fiber-reinforced expansive soil under wetting-drying cycle[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 392-400. (in Chinese with English abstract doi: 10.13229/j.cnki.jdxbgxb20180019
    [20] 郝建斌, 张焕, 李耕春, 等. 粉煤灰-剑麻纤维复合改良膨胀土强度及裂隙发育特性[J]. 铁道科学与工程学报, 2022, 19(9): 2620-2628. doi: 10.19713/j.cnki.43-1423/u.T20211117

    HAO J B, ZHANG H, LI G C, et al. Strength and cracking characteristics of expansive soil improved by fly ash and sisal fiber[J]. Journal of Railway Science and Engineering, 2022, 19(9): 2620-2628. (in Chinese with English abstract doi: 10.19713/j.cnki.43-1423/u.T20211117
    [21] 朱锐, 王燕杰, 黄英豪, 等. 木质素纤维改良膨胀土的冻融特性及微观机理[J]. 农业工程学报, 2024, 40(2): 263-272. doi: 10.11975/j.issn.1002-6819.202309194

    ZHU R, WANG Y J, HUANG Y H, et al. Freeze-thawing characteristics and microscopic mechanism of expansive soil treated with lignin fibers[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(2): 263-272. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.202309194
    [22] 苏玲霞, 雷云, 刘旭, 等. 干湿循环下纤维改良膨胀土裂隙特性研究[J]. 非金属矿, 2023, 46(6): 32-35. doi: 10.3969/j.issn.1000-8098.2023.06.008

    SU L X, LEI Y, LIU X, et al. Study on the fracture characteristics of fiber-amended swelling soil under dry and wet cycles[J]. Non-Metallic Mines, 2023, 46(6): 32-35. (in Chinese with English abstract doi: 10.3969/j.issn.1000-8098.2023.06.008
    [23] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123−2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123−2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [24] 中华人民共和国住房和城乡建设部. 膨胀土地区建筑技术规范: GB 50112−2013[S]. 北京: 中国建筑工业出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building in expansive soil regions: GB 50112−2013[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)
    [25] 毛正君, 耿咪咪, 毕银丽, 等. 紫花苜蓿-黄土复合体抗剪强度时间效应研究[J]. 煤炭科学技术, 2023, 51(11): 234-247. doi: 10.13199/j.cnki.cst.2022-2230

    MAO Z J, GENG M M, BI Y L, et al. Study on the time effect of shear strength of alfalfa-loess composite[J]. Coal Science and Technology, 2023, 51(11): 234-247. (in Chinese with English abstract doi: 10.13199/j.cnki.cst.2022-2230
    [26] 张鹏宇, 朱喜文, 田苏茂, 等. 宜昌蒸发站2010-2021年土壤墒情变化规律分析[J]. 水资源研究, 2023, 12(2): 190-197. doi: 10.12677/JWRR.2023.122022

    ZHANG P Y, ZHU X W, TIAN S M, et al. Law analysis of soil moisture change in Yichang evaporation station from 2010 to 2021[J]. Journal of Water Resources Research, 2023, 12(2): 190-197. (in Chinese with English abstract doi: 10.12677/JWRR.2023.122022
    [27] LIU C, TANG C S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80.
    [28] 尤波, 徐洪钟, 董金梅. 玄武岩纤维加筋膨胀土三轴试验研究[J]. 防灾减灾工程学报, 2015, 35(4): 503-507. doi: 10.13409/j.cnki.jdpme.2015.04.015

    YOU B, XU H Z, DONG J M. Triaxial tests of expansive soil reinforced with basalt fibe[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(4): 503-507. (in Chinese with English abstract doi: 10.13409/j.cnki.jdpme.2015.04.015
    [29] 庄心善, 余晓彦. 石灰-玄武岩纤维改性膨胀土强度特性的试验研究[J]. 土木工程学报, 2015, 48(增刊1): 166-170.

    ZHUANG X S, YU X Y. Experimental study on strength characteristics of expansive soil modified by lime-basalt fiber[J]. China Civil Engineering Journal, 2015, 48(S1): 166-170. (in Chinese with English abstract
    [30] 徐洪钟, 彭轶群, 赵志鹏, 等. 短切玄武岩纤维加筋膨胀土的试验研究[J]. 建筑科学, 2012, 28(9): 44-47. doi: 10.3969/j.issn.1002-8528.2012.09.010

    XU H Z, PENG Y Q, ZHAO Z P, et al. Experimental study on short basalt fiber reinforced expansive soil[J]. Building Science, 2012, 28(9): 44-47. (in Chinese with English abstract doi: 10.3969/j.issn.1002-8528.2012.09.010
    [31] 王协群, 郭敏, 胡波. 土工格栅加筋膨胀土的三轴试验研究[J]. 岩土力学, 2011, 32(6): 1649-1653. doi: 10.3969/j.issn.1000-7598.2011.06.009

    WANG X Q, GUO M, HU B. Triaxial testing study of expansive soil reinforced with geogrid[J]. Rock and Soil Mechanics, 2011, 32(6): 1649-1653. (in Chinese with English abstract doi: 10.3969/j.issn.1000-7598.2011.06.009
    [32] 顾欣, 徐洪钟. 干湿循环作用下纤维加筋膨胀土的裂隙及强度特性研究[J]. 南京工业大学学报(自然科学版), 2016, 38(3): 81-86. doi: 10.3969/j.issn.1671-7627.2016.03.014

    GU X, XU H Z. Study on crack properties of fiber-reinforced expansive soil under condition of wetting-drying circle[J]. Journal of Nanjing Tech University (Natural Science Edition), 2016, 38(3): 81-86. (in Chinese with English abstract doi: 10.3969/j.issn.1671-7627.2016.03.014
    [33] 宋成林, 张大亮, 王迎超, 等. 基于主客观赋权和功效系数法的膨胀土胀缩性评价[J]. 地质科技通报, 2024, 43(6): 136-143. doi: 10.19509/j.cnki.dzkq.tb20240074

    SONG C L, ZHANG D L, WANG Y C, et al. Evaluation of swelling-shrinkage of expansive soil based on subjective and objective weighting and efficiency coefficient methods[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 136-143. (in Chinese with English abstract doi: 10.19509/j.cnki.dzkq.tb20240074
    [34] TANG C S, CHENG Q, LENG T, et al. Effects of wetting-drying cycles and desiccation cracks on mechanical behavior of an unsaturated soil[J]. Catena, 2020, 194: 104721. doi: 10.1016/j.catena.2020.104721
    [35] TIAN B G, CHENG Q, TANG C S, et al. Healing behaviour of desiccation cracks in a clayey soil subjected to different wetting rates[J]. Engineering Geology, 2023, 313: 106973. doi: 10.1016/j.enggeo.2022.106973
    [36] 郭永春, 刘家志, 尤安俊, 等. 基于颗粒堆积模型的膨胀土结构膨胀机制[J]. 工程地质学报, 2025, 33(1): 58-65. doi: 10.13544/j.cnki.jeg.2022-0356

    GUO Y C, LIU J Z, YOU A J, et al. Expansion mechanism of expansive soil structure based on particle packing model[J]. Journal of Engineering Geology, 2025, 33(1): 58-65. (in Chinese with English abstract doi: 10.13544/j.cnki.jeg.2022-0356
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  42
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 录用日期:  2024-09-20
  • 修回日期:  2024-07-30
  • 网络出版日期:  2025-12-17

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部