留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环作用下砂岩的动态冲击特性试验研究

孙峤 孙路平 叶泽晖 王泽成 李栋伟

孙峤,孙路平,叶泽晖,等. 冻融循环作用下砂岩的动态冲击特性试验研究[J]. 地质科技通报,2026,45(1):1-14 doi: 10.19509/j.cnki.dzkq.tb20240103
引用本文: 孙峤,孙路平,叶泽晖,等. 冻融循环作用下砂岩的动态冲击特性试验研究[J]. 地质科技通报,2026,45(1):1-14 doi: 10.19509/j.cnki.dzkq.tb20240103
SUN Qiao,SUN Luping,YE Zehui,et al. Experimental study on dynamic impact characteristics of sandstone under freeze-thaw cycles[J]. Bulletin of Geological Science and Technology,2026,45(1):1-14 doi: 10.19509/j.cnki.dzkq.tb20240103
Citation: SUN Qiao,SUN Luping,YE Zehui,et al. Experimental study on dynamic impact characteristics of sandstone under freeze-thaw cycles[J]. Bulletin of Geological Science and Technology,2026,45(1):1-14 doi: 10.19509/j.cnki.dzkq.tb20240103

冻融循环作用下砂岩的动态冲击特性试验研究

doi: 10.19509/j.cnki.dzkq.tb20240103
基金项目: 国家自然科学基金项目(42061011;41977236;42577544);江西省重点研发项目(20232BBE50025;20223BBG71W01);江西省研究生创新专项基金项目(YC2023-B209);辽宁省兴辽英才计划领军人才项目(XLYC2402027);大连大学学科交叉重点类项目(DLUXK-2024-ZD-003)
详细信息
    作者简介:

    孙峤:E-mail:81593946@qq.com

    通讯作者:

    E-mail: 2045802614@qq.com

  • 中图分类号: TU45

Experimental study on dynamic impact characteristics of sandstone under freeze-thaw cycles

More Information
  • 摘要:

    为研究冻融循环对砂岩动态力学性能和微观结构特征的影响,对冻融0,30,60,90,120次的砂岩进行了冲击速度分别为3,6,9 m/s的动态冲击压缩试验、核磁共振检测以及电镜扫描。结果表明,冻融砂岩的动态冲击破坏模式整体上为粉碎破坏,随着冻融循环次数和冲击速度的增加,砂岩的破碎程度加大,碎块尺度减小,碎块数量和粉末占比增多,分形维数增大。在相同冲击速度下,随着冻融循环次数的增加,砂岩的动态力学性能不断劣化;各动态力学性能指标均具有率相关效应。此外,建立了冻融砂岩的动态峰值应力指数衰减模型,证明了冲击速度可以在一定程度上补偿冻融循环的损伤劣化作用,使冻融砂岩衰减常数减小,半衰期延后。所建立的分形维数−动态强度演化方程,使得分形维数不仅能定量描述砂岩冲击破坏后的破碎程度,还能进一步预测其动态强度。随着冻融循环次数的增加,砂岩内部孔洞、裂隙尺寸扩大且数量增多,结构损伤程度加剧;基于上述结果,探究了冻融循环作用下砂岩的损伤破坏机制,发现砂岩的冻融损伤是多种因素共同作用的结果。该研究可为寒冷地区岩石工程提供相关参考。

     

  • 图 1  试样动态应力平衡校验

    Figure 1.  Dynamic stress balance verification of sample

    图 2  冻融循环温度时程曲线

    Figure 2.  Temperature time history curve of freeze-thaw cycle

    图 3  不同冲击速度下冻融砂岩试样破坏模式

    Figure 3.  Damage patterns of freeze-thawed sandstone samples at different impact velocities

    图 4  试样(DY-9-90)碎块筛分

    Figure 4.  Screening of samples (DY-9-90) fragments

    图 5  lg(Mr/Mt)–lg(r/rm)曲线

    Figure 5.  lg(Mr/Mt)–lg(r/rm) curves

    图 6  不同冲击速度下冻融砂岩试样分形维数

    Figure 6.  Fractal dimension of freeze-thawed sandstone samples at different impact velocities

    图 7  不同冲击速度下冻融砂岩试样动态应力−应变曲线

    Figure 7.  Dynamic stress-strain curves of freeze-thawed sandstone samples at different impact velocities

    图 8  不同冲击速度下冻融砂岩试样动态峰值应力

    Figure 8.  Dynamic peak stress of freeze-thawed sandstone samples at different impact velocities

    图 9  不同冲击速度下冻融砂岩衰减模型

    Figure 9.  Attenuation model of freeze-thawed sandstone at different impact velocities

    图 10  不同冲击速度下冻融砂岩试样分形维数与冻融循环次数关系拟合

    Figure 10.  The relationship between the fractal dimension and the number of freeze-thaw cycles of freeze-thawed sandstone samples at different impact velocities

    图 11  不同冲击速度下冻融砂岩试样动态峰值应变

    Figure 11.  Dynamic peak strain of freeze-thawed sandstone samples at different impact velocities

    图 12  不同冲击速度下冻融砂岩试样动态弹性模量

    Figure 12.  Dynamic elastic modulus of freeze-thawed sandstone samples at different impact velocities

    图 13  冻融砂岩试样T2谱图

    Figure 13.  T2 spectra of freeze-thawed sandstone samples

    图 14  冻融砂岩试样SEM图像

    Figure 14.  SEM image of freeze-thawed sandstone samples

    表  1  砂岩试样动态冲击压缩试验结果

    Table  1.   Results of dynamic impact compression test of sandstone samples

    试样编号 冲击速度/
    (m·s−1)
    冻融循环
    次数N/次
    动态峰值
    应力/MPa
    动态峰值
    应变/(×10−3)
    动态弹性
    模量/GPa
    DY-3-0 3 0 144.27 1.68 315.65
    DY-3-30 3 30 132.53 5.05 80.73
    DY-3-60 3 60 118.36 5.38 88.19
    DY-3-90 3 90 101.21 5.21 77.11
    DY-3-120 3 120 94.98 5.49 37.73
    DY-6-0 6 0 182.66 8.77 144.11
    DY-6-30 6 30 171.67 8.17 24.17
    DY-6-60 6 60 145.56 12.66 23.60
    DY-6-90 6 90 132.05 9.76 69.10
    DY-6-120 6 120 119.45 8.17 21.52
    DY-9-0 9 0 210.96 9.80 102.42
    DY-9-30 9 30 189.23 9.43 111.01
    DY-9-60 9 60 172.36 7.72 57.17
    DY-9-90 9 90 158.67 14.81 86.52
    DY-9-120 9 120 137.98 10.11 62.95
    注:“DY-6-30”中“DY”表示动态压缩;“6”表示冲击速度为6 m/s;“30”表示冻融循环次数N为30
    下载: 导出CSV

    表  2  lg(Mr/Mt)–lg(r/rm)曲线公式拟合及分形维数计算结果

    Table  2.   The formula fitting of lg(Mr/Mt)–lg(r/rm) curve and the calculation results of fractal dimension

    试样编号 冲击速度/(m·s−1) 冻融循环次数N 拟合曲线(相关度R2) 分形维数
    DY-3-0 3 0 y=1.1415x0.0900(0.8886) 1.8585
    DY-3-30 3 30 y=1.0932x0.0441(0.9628) 1.9068
    DY-3-60 3 60 y=1.001x0.0105(0.9549) 1.9990
    DY-3-90 3 90 y=0.9770x0.0291(0.9574) 2.0230
    DY-3-120 3 120 y=0.8937x+0.0109(0.9593) 2.1063
    DY-6-0 6 0 y=1.0662x+0.0011(0.9935) 1.9338
    DY-6-30 6 30 y=1.0353x+0.0021(0.9921) 1.9647
    DY-6-60 6 60 y=0.9043x0.0128(0.9934) 2.0957
    DY-6-90 6 90 y=0.8654x+0.0146(0.9844) 2.1346
    DY-6-120 6 120 y=0.8304x+0.0617(0.9779) 2.1696
    DY-9-0 9 0 y=0.8737x+0.0448(0.9851) 2.1263
    DY-9-30 9 30 y=0.8699x+0.0404(0.9935) 2.1301
    DY-9-60 9 60 y=0.7566x0.0111(0.9546) 2.2434
    DY-9-90 9 90 y=0.7527x+0.0289(0.9563) 2.2473
    DY-9-120 9 120 y=0.7287x+0.0391(0.9644) 2.2713
    下载: 导出CSV

    表  3  不同冲击速度下冻融砂岩试样动态峰值应力参数

    Table  3.   Parameters of dynamic peak stress of freeze-thawed sandstone samples at different impact velocities

    冲击速度/(m·s−1) σ0/MPa λ
    3 144.2665 0.0036
    6 182.6647 0.0035
    9 210.9563 0.0034
    下载: 导出CSV

    表  4  不同冲击速度下冻融砂岩试样分形维数的参数

    Table  4.   Parameters of fractal dimension of freeze-thawed sandstone samples at different impact velocities

    冲击速度/(m·s−1)a/10−3b
    32.041.8564
    62.141.9314
    91.362.1222
    下载: 导出CSV
  • [1] 中华人民共和国住房和城乡建设部. 民用建筑热工设计规范: GB50176-2016[S]. 北京: 中国建筑工业出版社, 2017.

    MINISTRY OF HOUSING AND URBAN-RURAL DEVELOPMENT OF THE PEOPLE’S REPUBLIC OF CHINA. Code for thermal design of civil building: GB50176-2016[S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [2] 薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 2020, 39(3): 445-468.

    XUE Y G, KONG F M, YANG W M, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. (in Chinese with English abstract
    [3] QI C Q, LI Q P, MA X F, et al. Deterioration of fresh sandstone caused by experimental freeze-thaw weathering[J]. Cold Regions Science and Technology, 2023, 214: 103956. doi: 10.1016/j.coldregions.2023.103956
    [4] 陈国庆, 万亿, 孙祥, 等. 不同温差冻融后砂岩蠕变特性及分数阶损伤模型研究[J]. 岩石力学与工程学报, 2021, 40(10): 1962-1975.

    CHEN G Q, WAN Y, SUN X, et al. Research on creep behaviors and fractional order damage model of sandstone subjected to freeze-thaw cycles in different temperature ranges[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 1962-1975. (in Chinese with English abstract
    [5] 蒋婷婷, 潘华利, 艾一帆, 等. 冻融循环及含水率对冰碛土力学特性影响[J]. 地质科技通报, 2024, 43(2): 238-252.

    JIANG T T, PAN H L, AI Y F, et al. Effect of freeze-thaw cycles and water content on the mechanical properties of moraine soil[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 238-252. (in Chinese with English abstract
    [6] 李俊, 张伟丽, 陈宗武, 等. 冻融循环对MICP加固土性能的影响[J]. 地质科技通报, 2025, 44(1): 175-184.

    LI J, ZHANG W L, CHEN Z W, et al. Effect of freeze-thaw cycles on the properties of MICP-treated soil[J]. Bulletin of Geological Science and Technology, 2025, 44(1): 175-184. (in Chinese with English abstract
    [7] 李志刚, 叶宏林, 刘伟, 等. 干湿循环作用下云母石英片岩抗压性能劣化规律及机理[J]. 地质科技通报, 2023, 42(5): 36-42.

    LI Z G, YE H L, LIU W, et al. Degradation law and mechanism of the compressive strength of mica quartz schist under dry-wet cycles[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 36-42. (in Chinese with English abstract
    [8] ZHANG H M, MENG X Z, YANG G S. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure[J]. Cold Regions Science and Technology, 2020, 174: 103056. doi: 10.1016/j.coldregions.2020.103056
    [9] WENG L, WU Z J, LIU Q S. Dynamic mechanical properties of dry and water-saturated siltstones under sub-zero temperatures[J]. Rock Mechanics and Rock Engineering, 2020, 53(10): 4381-4401. doi: 10.1007/s00603-019-02039-5
    [10] LIU C J, DENG H W, ZHAO H T, et al. Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test[J]. Cold Regions Science and Technology, 2018, 155: 327-332. doi: 10.1016/j.coldregions.2018.08.022
    [11] 陆翔, 周伟, 才庆祥, 等. 冻融循环下泥岩力学特性及细观破裂机理研究[J]. 采矿与安全工程学报, 2021, 38(4): 819-829.

    LU X, ZHOU W, CAI Q X, et al. Mechanical properties and meso fracture mechanism of mudstone under freeze-thaw cycle[J]. Journal of Mining & Safety Engineering, 2021, 38(4): 819-829. (in Chinese with English abstract
    [12] 郑广辉, 许金余, 王鹏, 等. 冻融循环作用下层理砂岩物理特性及劣化模型[J]. 岩土力学, 2019, 40(2): 632-641.

    ZHENG G H, XU J Y, WANG P, et al. Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling[J]. Rock and Soil Mechanics, 2019, 40(2): 632-641. (in Chinese with English abstract
    [13] ESLAMI J, WALBERT C, BEAUCOUR A L, et al. Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2018, 162: 420-429. doi: 10.1016/j.conbuildmat.2017.12.031
    [14] CHEN L, WU P, CHEN Y L, et al. Experimental study on physical-mechanical properties and fracture behaviors of saturated yellow sandstone considering coupling effect of freeze-thaw and specimen inclination[J]. Sustainability, 2020, 12(3): 1029. doi: 10.3390/su12031029
    [15] 刘向峰, 郭子钰, 王来贵, 等. 冻融循环作用下石窟砂岩物理力学性质损伤规律研究[J]. 实验力学, 2020, 35(5): 943-954.

    LIU X F, GUO Z Y, WANG L G, et al. Experimental study on physical and mechanical property damage of grotto sandstone in freeze-thaw cycle[J]. Journal of Experimental Mechanics, 2020, 35(5): 943-954. (in Chinese with English abstract
    [16] 杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(3): 545-555.

    YANG H R, LIU P, SUN B, et al. Study on damage mechanisms of the microstructure of sandy conglomerate at Maijishan grottoes under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 545-555. (in Chinese with English abstract).
    [17] 刘杰, 张瀚, 王瑞红, 等. 冻融循环作用下砂岩层进式损伤劣化规律研究[J]. 岩土力学, 2021, 42(5): 1381-1394.

    LIU J, ZHANG H, WANG R H, et al. Investigation of progressive damage and deterioration of sandstone under freezing-thawing cycle[J]. Rock and Soil Mechanics, 2021, 42(5): 1381-1394. (in Chinese with English abstract
    [18] 秦庆词, 李克钢, 李明亮, 等. 基于核磁共振技术的白云岩微观损伤致劣机制研究[J]. 岩石力学与工程学报, 2022, 41(S1): 2944-2954.

    QIN Q C, LI K G, LI M L, et al. Study on the deterioration mechanism of dolomite microscopic damage based on NMR technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2944-2954. (in Chinese with English abstract
    [19] LI J L, KAUNDA R B, ZHOU K P. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology, 2018, 154: 133-141. doi: 10.1016/j.coldregions.2018.06.015
    [20] HOU C, JIN X G, HE J, et al. Experimental studies on the pore structure and mechanical properties of anhydrite rock under freeze-thaw cycles[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 781-797. doi: 10.1016/j.jrmge.2021.10.005
    [21] 刘慧, 蔺江昊, 杨更社, 等. 冻融循环作用下砂岩受拉损伤特性的声发射试验[J]. 采矿与安全工程学报, 2021, 38(4): 830-839.

    LIU H, LIN J H, YANG G S, et al. Acoustic emission test on tensile damage characteristics of sandstone under freeze-thaw cycle[J]. Journal of Mining & Safety Engineering, 2021, 38(4): 830-839. (in Chinese with English abstract
    [22] 宋彦琦, 马宏发, 刘济琛, 等. 冻融灰岩单轴声发射损伤特性试验研究[J]. 岩石力学与工程学报, 2022, 41(S1): 2603-2614.

    SONG Y Q, MA H F, LIU J C, et al. Experimental investigation on the damage characteristics of freeze-thaw limestone by the uniaxial compression and acoustic emission monitoring tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2603-2614. (in Chinese with English abstract
    [23] LI K S, LI M T, ZHANG D, et al. Effect of moisture content on bursting liability of sandstone due to freeze-thaw action[J]. Shock and Vibration, 2020, 2020(1): 8832528.
    [24] 张亮, 牛富俊, 刘明浩, 等. 冻融损伤与围压对层状岩石强度各向异性的影响[J]. 冰川冻土, 2022, 44(2): 366-375.

    ZHANG L, NIU F J, LIU M H, et al. Effects of freeze-thaw damage and confining pressure on anisotropy strength of bedded rock[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 366-375. (in Chinese with English abstract
    [25] FU H L, ZHANG J B, HUANG Z, et al. A statistical model for predicting the triaxial compressive strength of transversely isotropic rocks subjected to freeze–thaw cycling[J]. Cold Regions Science and Technology, 2018, 145: 237-248. doi: 10.1016/j.coldregions.2017.11.003
    [26] 刘德俊, 浦海, 沙子恒, 等. 冻融循环条件下砂岩动态拉伸力学特性试验研究[J]. 煤炭科学技术, 2022, 50(8): 60-67.

    LIU D J, PU H, SHA Z H, et al. Experimental study on dynamic tensile mechanical properties of sandstone under freeze-thaw cycles[J]. Coal Science and Technology, 2022, 50(8): 60-67. (in Chinese with English abstract
    [27] 张阳阳, 黄伟. 冻融循环后红砂岩静动态劈裂拉伸性能对比分析[J]. 煤炭科学技术, 2023, 51(3): 94-99.

    ZHANG Y Y, HUANG W. Comparative analysis of static and dynamic split tensile properties of red sandstone after freeze-thaw cycles[J]. Coal Science and Technology, 2023, 51(3): 94-99. (in Chinese with English abstract
    [28] CHANG S, XU J Y, BAI E L, et al. Static and dynamic mechanical properties and deterioration of bedding sandstone subjected to freeze–thaw cycles: Considering bedding structure effect[J]. Scientific Reports, 2020, 10: 12790. doi: 10.1038/s41598-020-69270-x
    [29] LI Y B, ZHAI Y, MENG F D, et al. Study on the influence of freeze–thaw weathering on the mechanical properties of Huashan granite strength[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4741-4753. doi: 10.1007/s00603-021-02497-w
    [30] LIU C J, WANG D G, WANG Z X, et al. Dynamic splitting tensile test of granite under freeze-thaw weathering[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106411. doi: 10.1016/j.soildyn.2020.106411
    [31] 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究[J]. 矿业研究与开发, 2022, 42(8): 139-145.

    YIN Y B. Study on dynamic compression characteristics of freeze-thaw damaged marble under different strain rates[J]. Mining Research and Development, 2022, 42(8): 139-145. (in Chinese with English abstract
    [32] 杨国梁, 尚卓, 邹泽华, 等. 冻融循环下砂岩的动态劈裂特性与应变演变机理[J]. 矿业科学学报, 2024, 9(2): 199-208.

    YANG G L, SHANG Z, ZOU Z H, et al. Study on dynamic splitting and evolution mechanism of sandstone under freeze-thaw cycle[J]. Journal of Mining Science and Technology, 2024, 9(2): 199-208. (in Chinese with English abstract
    [33] NIU C Y, ZHU Z M, ZHOU L, et al. Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2021, 191: 103328. doi: 10.1016/j.coldregions.2021.103328
    [34] ZHAI Y, MENG F D, LI Y B, et al. Research on dynamic compression failure characteristics and damage constitutive model of sandstone after freeze–thaw cycles[J]. Engineering Failure Analysis, 2022, 140: 106577. doi: 10.1016/j.engfailanal.2022.106577
    [35] 刘志义, 甘德清, 甘泽. 微波照射后磁铁矿石动力学性能及破碎特征研究[J]. 岩石力学与工程学报, 2021, 40(1): 126-136.

    LIU Z Y, GAN D Q, GAN Z. Experimental research on the dynamic mechanical properties and breakage behaviors of magnetite caused by microwave irradiation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 126-136. (in Chinese with English abstract
    [36] 申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782.

    SHEN Y J, YANG G S, RONG T L, et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782. (in Chinese with English abstract
    [37] 张慧梅, 陈世官, 王磊, 等. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征[J]. 岩土工程学报, 2022, 44(4): 622-631.

    ZHANG H M, CHEN S G, WANG L, et al. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622-631. (in Chinese with English abstract
    [38] MUTLUTÜRK M, ALTINDAG R, TÜRK G. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 237-244.
    [39] 殷英政, 李志国. 我国代表城市混凝土冻融循环次数探讨[J]. 低温建筑技术, 2015, 37(11): 12-15. YIN Y Z, LI Z G. Discussion on freeze-thaw cycles of concrete in representative cities in China[J]. Low Temperature Architecture Technology, 2015, 37(11): 12-15. (in Chinese
    [40] 李夕兵, 宫凤强, 高科, 等. 一维动静组合加载下岩石冲击破坏试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 251-260.

    LI X B, GONG F Q, GAO K, et al. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251-260. (in Chinese with English abstract
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  352
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 录用日期:  2024-05-21
  • 修回日期:  2024-05-15
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回