留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TOPMODEL和MODFLOW-CFP模型的管道型岩溶水系统数值模拟

王思琪 潘毅 万军伟 赵恒 陈庆玲 童紫茹 林宇航

王思琪,潘毅,万军伟,等. 基于TOPMODEL和MODFLOW-CFP模型的管道型岩溶水系统数值模拟[J]. 地质科技通报,2026,45(1):258-271 doi: 10.19509/j.cnki.dzkq.tb20240101
引用本文: 王思琪,潘毅,万军伟,等. 基于TOPMODEL和MODFLOW-CFP模型的管道型岩溶水系统数值模拟[J]. 地质科技通报,2026,45(1):258-271 doi: 10.19509/j.cnki.dzkq.tb20240101
WANG Siqi,PAN Yi,WAN Junwei,et al. Numerical simulation of conduit-type karst groundwater system based on TOPMODEL and MODFLOW-CFP[J]. Bulletin of Geological Science and Technology,2026,45(1):258-271 doi: 10.19509/j.cnki.dzkq.tb20240101
Citation: WANG Siqi,PAN Yi,WAN Junwei,et al. Numerical simulation of conduit-type karst groundwater system based on TOPMODEL and MODFLOW-CFP[J]. Bulletin of Geological Science and Technology,2026,45(1):258-271 doi: 10.19509/j.cnki.dzkq.tb20240101

基于TOPMODEL和MODFLOW-CFP模型的管道型岩溶水系统数值模拟

doi: 10.19509/j.cnki.dzkq.tb20240101
基金项目: 中国地质调查局清江流域水文地质与水资源调查项目(清江流域水文地质与水资源调查评价)
详细信息
    作者简介:

    王思琪:E-mail:412892736@qq.com

    通讯作者:

    E-mail:Wanjw@cug.edu.cn

  • 中图分类号: P641.134

Numerical simulation of conduit-type karst groundwater system based on TOPMODEL and MODFLOW-CFP

More Information
  • 摘要:

    非岩溶区外源水是西南岩溶地下水系统较常见的补给来源,外源水的快速、集中补给方式使岩溶地下水系统的水循环表现出独特的响应,这种特殊补给方式的岩溶水系统调查、监测和数值模拟方法尚不够完善。为探究外源水补给型岩溶水系统数值模拟技术方法,以湖北省恩施市甘溪渔泉洞岩溶水系统为研究对象,在岩溶水系统含水介质特征、补给方式调查、地下水示踪试验以及高分辨率降雨−地表−地下径流的动态监测等工作基础上,采用MODFLOW-CFP数值模型刻画岩溶裂隙与管道双重介质特征,并针对岩溶管道入口处非岩溶区外源水集中灌入式补给的特点,采用地表水模型TOPMODEL来定量刻画非岩溶区外源水的产汇流过程,将其作为MODFLOW-CFP模型中岩溶管道入口的流量边界条件,实现地表−地下水模型的耦合,从而提高MODFLOW-CFP对外源水刻画的精度。研究结果表明:利用TOPMODEL和MODFLOW-CFP模型模拟甘溪渔泉洞暗河出口流量,与实测值对比峰值相对误差在0.7%~19.7%,峰现时差在3 h内,相关系数R2为0.93,纳什效率系数NSE为0.86。对模型的正确性进行检验,检验期模拟得到的暗河出口流量与实测值对比峰值相对误差在1.1%~2.5%,峰现时差在2 h内,相关系数R2为0.91,纳什效率系数NSE为0.77,有较好的拟合精度。本研究构建的TOPMODEL和MODFLOW-CFP耦合模型在外源水补给型岩溶水系统降雨−水文响应过程模拟上有着推广价值。

     

  • 图 1  研究区综合水文地质平面图

    O1. 下奥陶统;O2+3. 中上奥陶统;S+D. 志留−泥盆系;P1. 下二叠统;P2. 上二叠统;T1d. 下三叠统大冶组;T1j. 下三叠统嘉陵江组;T2b1. 中三叠统巴东组一段;T2b2. 中三叠统巴东组二段;T2b3. 中三叠统巴东组三段;K. 白垩系;下同

    Figure 1.  Comprehensive hydrogeological map of the study area

    图 2  技术框架图

    Figure 2.  Technical framework of this study

    图 3  甘溪渔泉洞暗河出口梯形渠断面示意图(b. 渠宽;H.渠道水层厚度;下同)

    Figure 3.  Schematic diagram of the trapezoidal channel cross-section at the outlet of the underground river of Ganxi Yuquan Cave karst groundwater system

    图 4  水田坝伏流入口前复式堰断面示意图

    B1. 小矩形堰堰宽;B2. 大矩形堰堰宽;P1. 第一级堰上游坎高;P2. 第二级堰上游坎高;h. 堰前水深;H1. 小矩形堰堰深

    Figure 4.  Schematic cross-section of the compound weir section at the vadose inlet of Shuitianba

    图 5  甘溪渔泉洞暗河出口(a)及水田坝伏流入口(b)降雨量−流量图

    Figure 5.  Rainfall-discharge hydrograph at the outlet of the underground river (a) and the vadose inlet of Shuitianba (b) of the GanxiYuquan Cave karst groundwater system

    图 6  模型边界范围示意图

    Figure 6.  Schematic diagram of the model domain and boundaries

    图 7  外源水流域数字高程模型DEM(a)及地形指数(b)

    Figure 7.  DEM of the external water catchment (a) and topographic index map (b)

    图 8  岩溶水流域网格剖分

    Figure 8.  Model grid of the karst catchment

    图 9  蒸发量与降雨量数据图

    Figure 9.  Time series of rainfall and evaporation

    图 10  甘溪渔泉洞伏流入口流量模拟值与实测值对比图

    Figure 10.  Comparison of simulated and measured flow at the vadose inlet of GanxiYuquan Cave karst groundwater system

    图 11  降雨入渗系数(a)及多孔介质参数(b)分区图

    Figure 11.  Zonation map of rainfall infiltration coefficient (a) and porous-media parameters (b)

    图 12  示踪试验浓度曲线

    Figure 12.  Sodium fluorescein concentration over time

    图 13  甘溪渔泉洞暗河出口流量模拟值与实测值对比图

    Figure 13.  Comparison of simulated and measured flow at the outlet of the underground river of GanxiYuquan Cave karst groundwater system

    图 14  检验期模拟流量值与实测值对比

    Figure 14.  Comparison of simulated and measured flow during the validation period

    表  1  TOPMODEL模型参数

    Table  1.   Parameters of the TOPMODEL

    参数 Q0 T0 M Td SR0 SRmax CHV RV XK0 HF DTH
    单位 m/h m2/h m h m m m/h m/h m/h m %
    取值 0.0002 1.5 0.04 1 0 0.05 3600 3600 1 0.1 10
      注:参数含义见正文
    下载: 导出CSV
  • [1] HARTMANN A, KRALIK M, HUMER F, et al. Identification of a karst system’s intrinsic hydrodynamic parameters: Upscaling from single springs to the whole aquifer[J]. Environmental Earth Sciences, 2012, 65(8): 2377-2389. doi: 10.1007/s12665-011-1033-9
    [2] JUKIĆ D, DENIĆ-JUKIĆ V. Groundwater balance estimation in karst by using a conceptual rainfall-runoff model[J]. Journal of Hydrology, 2009, 373(3/4): 302-315.
    [3] ROZOS E, KOUTSOYIANNIS D. A multicell karstic aquifer model with alternative flow equations[J]. Journal of Hydrology, 2006, 325(1/2/3/4): 340-355.
    [4] RONAYNE M J. Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix[J]. Advances in Water Resources, 2013, 56: 27-34. doi: 10.1016/j.advwatres.2013.03.002
    [5] WORTHINGTON S R H. Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA)[J]. Hydrogeology Journal, 2009, 17(7): 1665-1678. doi: 10.1007/s10040-009-0489-0
    [6] 赵良杰, 夏日元, 杨杨, 等. 基于MODFLOW的岩溶管道水流模拟方法探讨与应用[J]. 中国岩溶, 2017, 36(3): 346-351.

    ZHAO L J, XIA R Y, YANG Y, et al. Discussion and application of simulation methods for karst conduit flow based on MODFLOW[J]. Carsologica Sinica, 2017, 36(3): 346-351. (in Chinese with English abstract
    [7] 周志浩, 罗明明, 陈静, 等. 集中补给条件对岩溶地下河水文过程及污染响应的影响[J]. 地质科技通报, 2025, 44(3): 324-333.

    ZHOU Z H, LUO M M, CHEN J, et al. Effects of concentrated recharge conditions on hydrological processes and pollution responses of karst underground rivers[J]. Bulletin of Geological Science and Technology, 2025, 44(3): 324-333. (in Chinese with English abstract
    [8] LIEDL R, SAUTER M, HÜCKINGHAUS D, et al. Simulation of the development of karst aquifers using a coupled continuum pipe flow model[J]. Water Resources Research, 2003, 39(3): 1057.
    [9] 陈崇希. 岩溶管道−裂隙−孔隙三重空隙介质地下水流模型及模拟方法研究[J]. 地球科学, 1995, 20(4): 361-366.

    CHEN C X. Groundwater flow model and simulation method in triple media of karstic tube-fissure-pore[J]. Earth Science, 1995, 20(4): 361-366. (in Chinese with English abstract
    [10] SHOEMAKER W B, KUNIANSKY E L, BIRK S , et al . Documentation of a conduit flow process (CFP) for MODFLOW-2005 [M]. USGS : Techniques and Methods , 2007: 33-39.
    [11] REIMANN T, HILL M E. MODFLOW-CFP: A new conduit flow process for MODFLOW-2005[J]. Groundwater, 2009, 47(3): 321-325. doi: 10.1111/j.1745-6584.2009.00561.x
    [12] 谭家华. MODFLOW-CFP软件在岩溶水系统数值模拟应用中的若干关键问题[J]. 中国岩溶, 2023, 42(4): 636-647.

    TAN J H. Several key issues in the application of MODFLOW-CFP software to the numerical simulation of karst water systems[J]. Carsologica Sinica, 2023, 42(4): 636-647. (in Chinese with English abstract
    [13] 刘道涵, 徐俊杰, 齐信, 等. 基于高密度电法的城市岩溶地下水通道三维电性成像[J]. 中国岩溶, 2023, 42(6): 1331-1338.

    LIU D H, XU J J, QI X, et al. Three-dimensional electrical imaging of urban karst groundwater channels based on electrical resistivity tomography[J]. Carsologica Sinica, 2023, 42(6): 1331-1338. (in Chinese with English abstract
    [14] XU Z X, HU B X, DAVIS H, et al. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2[J]. Journal of Contaminant Hydrology, 2015, 182: 131-145. doi: 10.1016/j.jconhyd.2015.09.003
    [15] XU Z X, HU B X. Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system[J]. Water Resources Research, 2017, 53(1): 688-711. doi: 10.1002/2016WR018758
    [16] 覃夏南, 姜光辉, 夏源. 考虑非饱和带作用及管道流的岩溶泉流量模拟[J]. 桂林理工大学学报, 2019, 39(3): 622-627.

    QIN X N, JIANG G H, XIA Y. Karst spring flow simulation considering the effects of unsaturated zone and pipe flow[J]. Journal of Guilin University of Technology, 2019, 39(3): 622-627. (in Chinese with English abstract
    [17] 焦友军, 潘晓东, 曾洁, 等. 岩溶管道结构影响泉流量变化的数值模拟研究[J]. 中国岩溶, 2017, 36(5): 736-742.

    JIAO Y J, PAN X D, ZENG J, et al. Numerical modeling of the influence of karst-conduit structure on variation of spring flow[J]. Carsologica Sinica, 2017, 36(5): 736-742. (in Chinese with English abstract
    [18] 赵良杰, 夏日元, 杨杨, 等. 基于CFP的岩溶管道流数值模拟研究: 以桂林寨底地下河子系统为例[J]. 地球学报, 2018, 39(2): 225-232.

    ZHAO L J, XIA R Y, YANG Y, et al. Research on numerical simulation of karst conduit media based on CFP: A case study of Zhaidi karst underground river subsystem of Guilin[J]. Acta Geoscientica Sinica, 2018, 39(2): 225-232. (in Chinese with English abstract
    [19] 杨杨, 赵良杰, 苏春田, 等. 基于CFP的岩溶管道流溶质运移数值模拟研究[J]. 水文地质工程地质, 2019, 46(4): 51-57.

    YANG Y, ZHAO L J, SU C T, et al. A study of the solute transport model for karst conduits based on CFP[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 51-57. (in Chinese with English abstract
    [20] 党志文, 邵景力, 崔亚莉, 等. 基于MODFLOW-CFP的贵州大井流域岩溶地下水数值模拟[J]. 中国岩溶, 2023, 42(2): 266-276.

    DANG Z W, SHAO J L, CUI Y L, et al. Numerical simulation of karst groundwater in Dajing basin of Guizhou Province based on MODFLOW-CFP[J]. Carsologica Sinica, 2023, 42(2): 266-276. (in Chinese with English abstract
    [21] 常勇. 裂隙−管道二元结构的岩溶泉水文过程分析与模拟[D]. 南京: 南京大学, 2015.

    CHANG Y. Analysis and simulation of the hydrological process of the karst aquifer with fracture-conduit dual structure[D]. Nanjing: Nanjing University, 2015. (in Chinese with English abstract
    [22] 肖竞, 万军伟, 成建梅, 等. MODFLOW-CFPv2模型在岩溶隧道突涌水及对地下水环境影响中的应用: 以云南鹤庆锰矿沟岩溶水系统为例[J]. 地质科技通报, 2024, 43(3): 301-310.

    XIAO J, WAN J W, CHENG J M, et al. Application of MODFLOW-CFPv2 model in karst tunnel water inrush and its impact on groundwater environment: Example of the Mengkuanggou karst water system in Heqing County, Yunnan Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 301-310. (in Chinese with English abstract
    [23] 杨郑秋, 杨杨, 邵景力, 等. 基于MODFLOW-CFP的岩溶水模型降雨非线性入渗补给研究: 以湖南省香花岭地区为例[J]. 中国岩溶, 2019, 38(5): 691-695.

    YANG Z Q, YANG Y, SHAO J L, et al. Study on non-linear rainfall infiltration recharge of numerical karst water model based on MODFLOW-CFP: A case study of Xianghualing area, Hunan Province[J]. Carsologica Sinica, 2019, 38(5): 691-695. (in Chinese with English abstract
    [24] 常威. 复杂岩溶水系统识别及其在隧道涌水量预测的应用研究: 以张吉怀高铁大青山隧道为例[D]. 武汉: 中国地质大学(武汉), 2021.

    CHANG W. Study on the identification of complex karst water system and its application in tunnel water disaster prediction: Take the Daqing Mountain tunnel of the Zhangjiajie-Jishou-Huaihua High-Speed Railway as an example[D]. Wuhan: China University of Geosciences (Wuhan), 2021. (in Chinese with English abstract
    [25] 杨晓洲. 基于TOPMODEL模型的安墩水流域洪水模拟研究[D]. 郑州: 华北水利水电大学, 2023.

    YANG X Z. TOPMODEL-based flood simulation study of Andun basin[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2023. (in Chinese with English abstract
    [26] 李振亚, 黄国新, 肖凤林, 等. 基于TOPMODEL的分布式水文模型在中小流域的应用研究[J]. 江西水利科技, 2020, 46(5): 374-381.

    LI Z Y, HUANG G X, XIAO F L, et al. Application of distributed hydrological model based on TOPMODEL in small and medium-sized river basins[J]. Jiangxi Hydraulic Science & Technology, 2020, 46(5): 374-381. (in Chinese with English abstract
    [27] 索立涛, 万军伟, 卢学伟. TOPMODEL模型在岩溶地区的改进与应用[J]. 中国岩溶, 2007, 26(1): 67-70.

    SUO L T, WAN J W, LU X W. Improvement and application of TOPMODEL in karst region[J]. Carsologica Sinica, 2007, 26(1): 67-70. (in Chinese with English abstract
    [28] 熊立华, 郭生练. 分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004.

    XIONG L H, GUO S L. Distributed watershed hydrological model[M]. Beijing: China Water & Power Press, 2004. (in Chinese)
    [29] 罗明明, 尹德超, 张亮, 等. 南方岩溶含水系统结构识别方法初探[J]. 中国岩溶, 2015, 34(6): 543-550.

    LUO M M, YIN D C, ZHANG L, et al. Identifying methods of karst aquifer system structure in South China[J]. Carsologica Sinica, 2015, 34(6): 543-550. (in Chinese with English abstract
    [30] 康凤新, 郑婷婷, 冯亚伟, 等. 北方岩溶区降水入渗补给系数及补给机制: 以羊庄岩溶水系统为例[J]. 地质科技通报, 2024, 43(2): 268-282.

    KANG F X, ZHENG T T, FENG Y W, et al. Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China: A case study of Yangzhuang karst water system[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 268-282. (in Chinese with English abstract
    [31] 尹德超, 罗明明, 张亮, 等. 基于流量衰减分析的次降水入渗补给系数计算方法[J]. 水文地质工程地质, 2016, 43(3): 11-16.

    YIN D C, LUO M M, ZHANG L, et al. Methods of calculating recharge coefficient of precipitation event based on spring recession analyses[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 11-16. (in Chinese with English abstract
    [32] 杨闪. 基于放水试验和示踪试验的岩溶通道研究[J]. 现代矿业, 2023, 39(8): 47-50.

    YANG S. Study on karst channel based on water discharge test and tracer test[J]. Modern Mining, 2023, 39(8): 47-50. (in Chinese with English abstract
    [33] 陈亚洲, 董维红. 利用示踪试验时间−浓度曲线分析岩溶管道结构特征[J]. 水文地质工程地质, 2022, 49(1): 41-47.

    CHEN Y Z, DONG W H. Analysis of structural characteristics of karst conduit by timeconcentration curve of tracer test[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 41-47. (in Chinese with English abstract
    [34] 於开炳, 安祥龙, 汤罗圣, 等. 外源补给型岩溶管道系统特征及隧道涌水条件研究: 以利咸高速楼门隧道为例[J]. 安全与环境工程, 2023, 30(3): 100-108.

    YU K B, AN X L, TANG L S, et al. Characteristics of external recharge karst pipeline system and water inflow condition: Taking Loumen tunnel in Lixian expressway as an example[J]. Safety and Environmental Engineering, 2023, 30(3): 100-108. (in Chinese with English abstract
    [35] 王泽君, 周宏, 齐凌轩, 等. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例[J]. 地球科学, 2020, 45(12): 4512-4523.

    WANG Z J, ZHOU H, QI L X, et al. Method for characterizing structure and hydrological response in karst water systems: A case study in Y-M system in Three Gorges area[J]. Earth Science, 2020, 45(12): 4512-4523. (in Chinese with English abstract
    [36] 李兴男, 金江跃, 降亚楠. 地下水数值模型结构不确定性对模拟结果的影响分析[J]. 排灌机械工程学报, 2021, 39(2): 179-185.

    LI X N, JIN J Y, JIANG Y N. Analysis of groundwater numerical model structural uncertainty on simulation results[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(2): 179-185. (in Chinese with English abstract
    [37] 陆文, 陆垂裕, 何鑫, 等. 处理地下水模型单元疏干−湿润的两种算法对比研究[J]. 水文地质工程地质, 2024, 51(5): 22-34.

    LU W, LU C Y, HE X, et al. Comparative study on two drying-rewetting algorithms of groundwater model cells[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 22-34. (in Chinese with English abstract
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  117
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 录用日期:  2024-06-24
  • 修回日期:  2024-06-06
  • 网络出版日期:  2025-12-04

目录

    /

    返回文章
    返回

    温馨提示:近日,有不明身份人员冒充本刊编辑部或编委会给作者发送邮件,以论文质量核查等为由,要求作者添加微信。请作者提高警惕,认准编辑部官方邮箱、电话和QQ群,注意甄别虚假信息,谨防上当受骗。如有疑问,可及时联系编辑部核实。

     《地质科技通报》编辑部