-
摘要:
经历多年勘探,顺北地区走滑断裂带陆续取得了油气突破,形成北部油藏、南部凝析气藏、东部过渡到干气藏的油气类型和相态分布格局。因此,从整体油气分布讨论其天然气成因机制、来源和热成熟度,对下一步超深层油气勘探持续推进具有重要参考意义。通过系统采集不同断裂带天然气样品、对顺北地区天然气地球化学特征进行了详细剖析。研究结果表明:除断裂带局部存在较强的热化学硫酸盐还原作用(TSR)改造外,顺北地区天然气总体受TSR改造较小。顺北1号和5号带北段和中段天然气主要为来自干酪根初次裂解的原油伴生气,而5号带南段和4号带天然气主要为早期干酪根裂解气(油伴生气)与晚期原油裂解气的混合。顺北12号带天然气则为深部高温原油裂解气成因,原油裂解级别达到湿气裂解。研究区天然气主要来自下寒武统玉尔吐斯组烃源岩,生气母质具有底栖藻类或者底栖藻类和浮游藻类混源特征。最终,建立了针对玉尔吐斯组烃源岩生烃过程甲烷碳同位素热成熟度回归方程。研究结果可为下一步超深层天然气成因、来源和热成熟度分析提供重要参考。
Abstract:Objective After years of exploration, significant oil and gas breakthroughs have been achieved in the strike-slip fault zones in the northeast of the Shunbei area, leading to the formation of hydrocarbon types and phase distribution patterns characterized by oil reservoirs in the north, condensate gas reservoirs in the south, and dry gas reservoirs in the east. Therefore, it is crucial to discuss the genesis mechanism, source, and thermal maturation of the gas from the perspective of overall oil and gas distribution to further advance ultra-deep oil and gas exploration.
Methods This study systematically collects gas samples from different fault zones to analyze the geochemical characteristics of natural gas in the Shunbei area. The geochemical characteristics of natural gas are analyzed in detail to understand its genesis and thermal maturation.
Results The results indicate that natural gas in the Shunbei area is minimally affected by TSR, with some parts of the fault zones showing strong modification by thermal-chemical sulfate reduction (TSR). The natural gases in the No. 1 fault zone and in the northern and middle sections of the No. 5 fault zone are primarily crude oil-associated gases from primary kerogen cracking. In contrast, the natural gases in the southern section of the No. 5 fault zone and the No. 4 fault zone are mainly mixtures of early kerogen cracking gas (oil-associated gas) and late crude oil cracking gas. The natural gas in the Shunbei No. 12 fault zone originates from deeper, high-temperature crude oil cracking gas, with crude oil cracking having reached the wet gas stage. The natural gases in the study area predominantly come from the source rocks of the Lower Cambrian Yurtus Formation, and the parent material of these gases is characterized by benthic algae or a mixed source of benthic algae and planktonic algae. Finally, a regression equation for thermal maturity calculation based on the carbon isotope of methane is established during the process of hydrocarbon generation in the source rocks of the Yurtus Formation.
Conclusion The research findings provide important insights into the origin, source, and thermal maturity of ultra-deep gas, offering valuable references for future studies on hydrocarbon generation in the Shunbei area.
-
Key words:
- Shuntuoguole Lower Uplift /
- oil cracking /
- natural gas /
- thermal maturity /
- Yurtus Formation
-
图 4 δ13C2−δ13C3和C2/C3图板识别天然气成因(图版据文献[24])
Figure 4. Origin identification of natural gas in the Shunbei area using δ13C2−δ13C3 and C2/C3
图 5 ln(C1/C2)和ln(C2/C3)图板识别天然气成因(据文献[23]修改)
Figure 5. Origin identification of natural gas in the Shunbei area using ln(C1/C2) and ln(C2/C3)
表 1 塔里木盆地顺北地区不同断裂带天然气组分含量及烃类气体碳同位素组分数据表
Table 1. Chemical and isotopic compositions of natural gases from different fault zones in the Shunbei area, Tarim Basin
井号 深度/m(斜深) 层位 ρ(H2S)/(mg·m−3) 组分摩尔分数xB/% 干燥系数 δ13CPDB/‰ N2 CO2 C1 C2 C3 iC4 nC4 iC5 nC5 C1 C2 C3 iC4 nC4 SHB1-3CX 7274 ~7389.51 O2yj 8901 3.9 1.9 86.8 4.7 1.7 0.4 0.5 0.1 0.1 0.92 −47.0 −32.1 −33.9 −34.6 −33.9 SHB1 CX 7269.54 ~7320 O2yj 21329 1.6 11.0 84.2 2.4 0.4 0.0 0.1 0.97 −44.7 −33.1 −30.8 −31.3 −29.8 SHB1-8H 7415.50 ~7844.78 O2yj 1466 1.8 10.4 74.1 7.8 3.4 0.6 0.9 0.2 0.2 0.85 −47.2 −33.8 −31.2 −31.9 −30.7 SHB1-1H 7458 ~7613.05 O2yj 12390 1.5 2.7 82.9 7.6 3.4 0.7 0.9 0.2 0.1 0.87 −46.4 −36.1 −36.0 −39.4 −35.0 SHB1-4H 7459 ~8255.51 O2yj 9689 2.2 2.3 80.4 9.0 4.0 0.7 1.0 0.2 0.2 0.84 −47.0 −33.8 −31.6 −35.2 −29.4 SHB1-14 7589 ~7710 O2yj 14768 4.7 2.1 76.3 10.9 4.0 0.6 0.9 0.2 0.2 0.82 −48.9 −36.2 −34.1 −36.1 −33.5 SHB4-10H 7499 ~8261 O2yj − 4.1 2.6 85.4 4.8 1.8 0.5 0.5 0.2 0.1 0.91 −45.0 −34.6 −33.6 −32.5 −32.2 SHB44X 7493.49 ~8261.69 O2yj 17662 0.5 6.6 80.6 7.3 2.7 0.5 1.1 0.2 0.3 0.87 −45.7 −33.7 −30.9 −32.0 −30.7 SHB43X 7558 ~7995 O3q+O2yj+O1-2y 6546 0.2 7.9 83.3 5.7 2.0 0.4 0.6 0.0 0.0 0.91 −47.0 −33.4 −29.6 −30.4 −28.7 SHB4-9H 7600 ~8110.17 O2yj+O1-2y 28089 0.6 1.5 89.7 4.2 1.5 0.4 1.0 0.4 0.6 0.92 −47.1 −33.2 −30.3 −31.5 −30.6 SHB4-6H 7571.75 ~8356.02 O2yj+O1-2y − 3.9 4.7 82.8 4.8 1.9 0.6 0.7 0.3 0.2 0.91 −46.9 −34.5 −32.1 −33.0 −31.3 SHB45X 7664 ~8845 O2yj+O1-2y 3967 0.2 7.4 82.7 5.0 2.0 0.5 1.1 0.4 0.6 0.90 −47.0 −33.0 −29.4 −30.8 −29.1 SHB4-4H 7551.02 ~8587.04 O2yj+O1-2y 9397 0.2 11.3 80.9 4.4 1.4 0.4 0.8 0.3 0.4 0.91 −47.5 −32.6 −28.4 −29.9 −27.9 SHB4-2H 7551.02 ~8587.04 O2yj+O1-2y 17057 0.1 11.2 82.9 3.3 1.0 0.3 0.6 0.2 0.4 0.93 −47.6 −31.3 −26.5 −27.8 −26.4 SHB4 7777 ~7950 O2yj+O1-2y 58372 1.9 9.0 86.2 1.9 0.5 0.1 0.2 0.0 0.0 0.97 −44.2 −29.9 −27.5 −26.2 −26.5 SHB4-12H 7603.2 ~8080 O2yj+O1-2y − 5.5 5.3 85.5 2.5 0.6 0.2 0.2 0.1 0.0 0.96 −47.1 −32.7 −29.7 −30.7 −28.7 SHB4-3H 7386 ~8179.64 O2yj+O1-2y 18967 0.2 11.6 84.8 2.5 0.6 0.1 0.2 0.0 0.0 0.96 −46.9 −33.5 −28.9 −30.4 −28.1 SHB4-1H 7094 ~8036.61 O2yj − 0.4 16.2 77.7 3.5 1.1 0.2 0.5 0.1 0.2 0.93 −47.4 −34.4 −29.8 −31.9 −30.1 SHB4-1H 7094 ~8036.61 O2yj − 2.1 13.8 69.4 5.5 3.4 1.4 2.0 1.2 1.1 0.83 −48.4 −36.3 −31.3 −32.6 −31.3 SHS1X 7278 ~8090.93 O2yj+O1-2y 1313 3.5 3.5 90.3 1.7 0.5 0.2 0.2 0.1 0.0 0.97 −44.4 −31.3 −29.0 −29.9 −28.0 SHB5 7315 ~7950.06 O2yj+O1-2y 115 5.8 8.1 54.5 18.0 9.4 1.1 2.2 0.4 0.5 0.63 −48.9 −39.3 −35.6 −34.6 −33.4 SHB5-1X 7553.64 ~7871 O2yj+O1-2y 1286 9.4 2.3 59.5 16.1 8.3 1.2 2.2 0.4 0.4 0.67 −50.1 −39.4 −36.1 −35.8 −34.6 SHB51X 7753.64 ~7876 O2yj 144 3.3 2.1 71.0 14.6 6.1 0.9 1.4 0.3 0.3 0.75 −49.6 −35.0 −32.5 −33.1 −31.8 SHB5-10 7639 ~8143 O2yj+O1-2y 1400 5.5 2.4 77.8 9.6 3.1 0.5 0.8 0.2 0.2 0.85 −50.9 −36.4 −34.2 −34.8 −33.1 SHB5-9 7648 ~7839 O2yj+O1-2y 16532 0.0 47.8 47.6 3.0 0.8 0.1 0.3 0.1 0.1 0.91 −49.4 −34.3 −31.7 −32.1 −31.7 SHB53X 7740 ~8342 O2yj 1850 5.0 6.5 74.5 7.9 3.1 0.7 1.4 0.4 0.5 0.84 −47.7 −33.4 −31.7 −31.4 −30.4 SHB55XC 8020 ~8697 O2yj 21955 0.9 19.0 74.4 3.6 1.0 0.2 0.5 0.1 0.2 0.93 −47.3 −32.1 −29.3 −31.2 −29.2 SHB53-6 7847 ~8458.24 O2yj+O1-2y − 65.8 1.5 30.5 1.6 0.3 0.1 0.1 0.0 0.1 0.93 −47.7 −31.1 −28.6 −29.7 −28.9 SHB56X 7756 ~9300 O2yj+O1-2y 151448 1.6 19.6 78.0 0.2 0.0 0.0 0.0 0.0 0.0 1.00 −45.6 −26.3 − − − SHB61X 7726.77 ~8543.51 O2yj+O1-2y 2527 3.9 1.8 79.0 7.8 3.9 1.3 1.5 0.5 0.3 0.84 −45.9 −33.3 −31.1 −33.0 −30.6 SHB6X 7950 ~8132.2 O2yj+O1-2y 1135 1.3 1.6 90.7 4.0 1.2 0.3 0.5 0.2 0.2 0.93 −44.5 − − − − SHB84X 8400 ~9195 O2yj+O1-2y 7562 1.7 2.1 86.6 5.8 2.1 0.5 0.6 0.2 0.1 0.90 − − − − − SHB83X 7726.77 ~8543.51 O2yj+O1-2y 8332 1.2 1.9 87.6 5.2 2.3 0.6 0.8 0.2 0.2 0.90 − − − − − SHB802X 7827.4 ~8396.55 O2yj+O1-2y 6647 5.3 2.0 87.6 3.2 1.1 0.3 0.3 0.1 0.1 0.95 −42.1 −33.2 −32.0 −32.5 −30.7 SHB8X 7737.5 ~8396 O2yj+O1-2y 335 3.8 2.2 88.5 3.7 1.1 0.3 0.2 0.1 0.0 0.94 −42.4 −33.6 −31.7 −32.4 −31.7 SHB801X 7691 ~9145 O2yj+O1-2y 1465 1.7 5.6 84.8 5.1 1.4 0.5 0.5 0.2 0.2 0.92 − − − − − SHB803X 7659 ~8110 O2yj+O1-2y 3303 2.1 3.1 88.2 3.9 1.1 0.4 0.5 0.2 0.2 0.93 − − − − − SHB82X 7617 ~8262 O2yj+O1-2y 3900 1.3 2.5 88.6 4.6 1.3 0.4 0.5 0.2 0.2 0.92 − − − − − SHB81X 7466 ~8308 O2yj+O1-2y 16350 0.4 4.2 93.0 1.5 0.4 0.2 0.2 0.1 0.1 0.98 − − − − − SHB122X 7527.76 ~8287 O2yj+O1-2y 127 4.5 9.5 85.3 0.6 0.0 0.0 0.0 0.0 0.0 0.99 −41.4 − − − − SHB12X 7289.68 ~8520 O2yj+O1-2y 227 3.5 9.1 87.1 0.2 0.0 0.0 0.0 0.0 0.0 1.00 −41.4 − − − − 注:O2yj. 中奥陶统−间房组;O1-2y. 中−下奥陶统鹰山组 表 2 顺北地区典型干酪根裂解气伴生原油热成熟度计算
Table 2. thermal maturity calculations of crude oil associated with kerogen-cracking gas in Shunbei area
井号 Roc1/% Roc2/% Roc3/% 均值Ro/% δ13C1,PDB/% SHB1-3 1.04 1.07 1.14 1.08 −47.0 SHB1-4H 1.15 1.05 1.16 1.12 −47.0 SHB53X 0.95 1.13 1.14 1.07 −47.7 SHB5-1X 0.85 0.80 0.93 0.86 −50.1 SHB4-10 1.54 1.40 1.31 1.42 −45.0 SHB44X 1.23 1.23 1.20 1.22 −45.7 SHB45X 1.23 1.19 1.14 1.19 −47.0 SHB61X 1.21 1.29 1.19 1.23 −45.9 注明:Roc1=0.6*MPI1+0.4 (Ro<1.35%)[65],MPI1(甲基菲指数1)=1.5(2-MP+3-MP)/(P+1-MP+9-MP),P为菲,MP为甲基菲;Roc2= 0.5946 lnMPR+0.9728 [66],MPR=(2-MP+3-MP)/(1-MP+9-MP);Roc3=0.99lgMPR'+0.94[65],MPR'=(2-MP)/(1-MP) -
[1] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. doi: 10.3969/j.issn.1672-7703.2016.03.004QI L X. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2016.03.004 [2] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. doi: 10.11743/ogg20170501JIAO F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. (in Chinese with English abstract doi: 10.11743/ogg20170501 [3] 云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52. doi: 10.3969/j.issn.1672-7703.2021.03.004YUN L. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2021.03.004 [4] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111. doi: 10.3969/j.issn.1672-7703.2020.01.010QI L X. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2020.01.010 [5] 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17. doi: 10.11698/PED.2022.01.01MA Y S, CAI X Y, YUN L, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17. (in Chinese with English abstract doi: 10.11698/PED.2022.01.01 [6] 唐大卿, 陈红汉, 耿锋, 等. 板内小位移走滑断裂特征解析: 以塔里木、四川及鄂尔多斯盆地为例[J]. 地球科学, 2023, 48(6): 2067-2086.TANG D Q, CHEN H H, GENG F, et al. Characteristics of intraplate small-displacement strike-slip faults: A case study of Tarim, Sichuan and Ordos Basins[J]. Earth Science, 2023, 48(6): 2067-2086. (in Chinese with English abstract [7] 田方磊, 何登发, 陈槚俊, 等. 塔里木盆地顺北5号走滑断裂带北−中段构造特征与多期构造叠加演化时−空序列[J]. 地球科学, 2023, 48(6): 2117-2135.TIAN F L, HE D F, CHEN J J, et al. Northern and central segments of Shunbei No. 5 strike-slip fault zone in Tarim Basin: Structural characteristics and spatio-temporal evolution process[J]. Earth Science, 2023, 48(6): 2117-2135. (in Chinese with English abstract [8] NI Z Y, WANG T G, LI M J, et al. Natural gas characteristics, fluid evolution, and gas charging time of the Ordovician reservoirs in the Shuntuoguole region, Tarim Basin, NW China[J]. Geological Journal, 2018, 53(3): 947-959. doi: 10.1002/gj.2936 [9] 王铁冠, 宋到福, 李美俊, 等. 塔里木盆地顺南−古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762. doi: 10.11743/ogg20140602WANG T G, SONG D F, LI M J, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762. (in Chinese with English abstract doi: 10.11743/ogg20140602 [10] LIU Q Y, JIN Z J, LI H L, et al. Geochemistry characteristics and genetic types of natural gas in central part of the Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2018, 89: 91-105. doi: 10.1016/j.marpetgeo.2017.05.002 [11] LIU H, YANG Y W, CHENG B, et al. Nature of the Lower-Middle Ordovician reservoir bitumen in the Shunnan area, Tarim Basin, northwestern China[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109966. doi: 10.1016/j.petrol.2021.109966 [12] ZHOU X X, LYU X X, ZHU G Y, et al. Origin and formation of deep and superdeep strata gas from Gucheng-Shunnan block of the Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 177: 361-373. doi: 10.1016/j.petrol.2019.02.059 [13] MA A L, HE Z L, YUN L, et al. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China[J]. Journal of Natural Gas Geoscience, 2021, 6(5): 289-300. doi: 10.1016/j.jnggs.2021.09.004 [14] 马安来, 何治亮, 云露, 等. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7): 1047-1060.MA A L, HE Z L, YUN L, et al. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the North Shuntuoguole area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2021, 32(7): 1047-1060. (in Chinese with English abstract [15] 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. doi: 10.11743/ogg20140606YUN L, CAO Z C. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797. (in Chinese with English abstract doi: 10.11743/ogg20140606 [16] CHEN Z H, CHAI Z, CHENG B, et al. Geochemistry of high-maturity crude oil and gas from deep reservoirs and their geological significance: A case study on Shuntuoguole low uplift, Tarim Basin, western China[J]. AAPG Bulletin, 2021, 105(1): 65-107. doi: 10.1306/07072019015 [17] JIA Z J, HOU D J, ZHU X X, et al. Organic geochemistry of Ordovician ultra-deep natural gas in the north Shuntuoguole area, Tarim Basin, NW China: Insights into genetic types, maturity, and sources[J]. Frontiers in Earth Science, 2023, 11: 1083030. doi: 10.3389/feart.2023.1083030 [18] 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262.MA A L, QI L X. Geochemical characteristics and phase behavior of the Ordovician ultra-deep reservoir fluid, No. 4 fault, northern Shuntuoguole, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 247-262. (in Chinese with English abstract [19] 吴鲜, 李丹, 韩俊, 等. 塔里木盆地顺托果勒北部地区超深层现今地温场特征[J]. 石油学报, 2022, 43(1): 29-40. doi: 10.7623/syxb202201003WU X, LI D, HAN J, et al. Characteristics of present ultra-deep geothermal field in the northern Shuntuoguole low uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2022, 43(1): 29-40. (in Chinese with English abstract doi: 10.7623/syxb202201003 [20] SCHOELL M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225-2238. [21] SCHOELL M. Multiple origins of methane in the earth[J]. Chemical Geology, 1988, 71(1/2/3): 1-10. [22] SACKETT W M, NAKAPARKSIN S, DALRYMPLE D. Carbon isotope effects in methane production by thermal cracking: Advances in Organic Geochemistry[M]. [S. l.]: Pergamon, 1970: 37-53. [23] PRINZHOFER A A, HUC A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases[J]. Chemical Geology, 1995, 126(3/4): 281-290. [24] LORANT F, PRINZHOFER A, BEHAR F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147(3/4): 249-264. [25] BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54. doi: 10.1016/0012-821X(76)90095-9 [26] CLAYPOOL DUDLEY D RICE GEORGE E. Generation, accumulation, and resource potential of biogenic gas[J]. AAPG Bulletin, 1981, 65(1): 5-25. [27] HILL R J, TANG Y C, KAPLAN I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672. doi: 10.1016/S0146-6380(03)00173-6 [28] TIAN H, XIAO X M, WILKINS R W T, et al. Genetic origins of marine gases in the Tazhong area of the Tarim Basin, NW China: Implications from the pyrolysis of marine kerogens and crude oil[J]. International Journal of Coal Geology, 2010, 82(1/2): 17-26. [29] 樊奇, 樊太亮, 李清平, 等. 塔里木盆地寒武系膏盐岩沉积特征与发育模式[J]. 石油实验地质, 2021, 43(2): 217-226. doi: 10.11781/sysydz202102217FAN Q, FAN T L, LI Q P, et al. Sedimentary characteristics and development model of Cambrian gypsum-salt rocks, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 217-226. (in Chinese with English abstract doi: 10.11781/sysydz202102217 [30] 徐振平, 陈书平, 罗彩明, 等. 塔里木盆地中寒武统膏盐岩分布及封闭性评价[J]. 中国石油勘探, 2023, 28(5): 54-67. doi: 10.3969/j.issn.1672-7703.2023.05.005XU Z P, CHEN S P, LUO C M, et al. Distribution and sealing capacity evaluation of gypsum-salt rocks in the Middle Cambrian in Tarim Basin[J]. China Petroleum Exploration, 2023, 28(5): 54-67. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2023.05.005 [31] CAI C F, HU W S, WORDEN R H. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in central Tarim[J]. Marine and Petroleum Geology, 2001, 18(6): 729-741. doi: 10.1016/S0264-8172(01)00028-9 [32] LIU Q Y, WORDEN R H, JIN Z J, et al. TSR versus non-TSR processes and their impact on gas geochemistry and carbon stable isotopes in Carboniferous, Permian and Lower Triassic marine carbonate gas reservoirs in the eastern Sichuan Basin, China[J]. Geochimica et Cosmochimica Acta, 2013, 100: 96-115. doi: 10.1016/j.gca.2012.09.039 [33] JENDEN P D, TITLEY P A, WORDEN R H. Enrichment of nitrogen and 13C of methane in natural gases from the Khuff Formation, Saudi Arabia, caused by thermochemical sulfate reduction[J]. Organic Geochemistry, 2015, 82: 54-68. doi: 10.1016/j.orggeochem.2015.02.008 [34] 贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.JIA C Z, ZHANG S C. The formation of marine ultra-deep petroleum in China[J]. Acta Geologica Sinica, 2023, 97(9): 2775-2801. (in Chinese with English abstract [35] 王清华. 塔里木盆地富满油田凝析气藏成因[J]. 石油勘探与开发, 2023, 50(6): 1128-1139. doi: 10.11698/PED.20230301WANG Q H. Origin of gas condensate reservoir in Fuman oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139. (in Chinese with English abstract doi: 10.11698/PED.20230301 [36] ROONEY M A, CLAYPOOL G E, CHUNG H M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3/4): 219-232. [37] HAO F, GUO T L, ZHU Y M, et al. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92(5): 611-637. doi: 10.1306/01210807090 [38] PING H W, CHEN H H, ZHU J Z, et al. Origin, source, mixing, and thermal maturity of natural gases in the Panyu lower uplift and the Baiyun Depression, Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2018, 102(11): 2171-2200. doi: 10.1306/04121817160 [39] FABER E. Zur isotopengeochemie gasförmiger Kohlenwasserstoffe[J]. Erdöl, Erdgas, Kohle, 1987, 103(5): 210-218. [40] CLAYTON C. Carbon isotope fractionation during natural gas generation from kerogen[J]. Marine and Petroleum Geology, 1991, 8(2): 232-240. doi: 10.1016/0264-8172(91)90010-X [41] BERNER U, FABER E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry, 1996, 24(10/11): 947-955. [42] HUANG D F, LIU B Q, WANG T D, et al. Genetic types of natural gases and their maturity discrimination in the east of Tarim Basin[J]. Science China (Earth Sciences), 1996, 39(6): 659-669.HUANG D F, LIU B Q, WANG T D, et al. Genetic types of natural gases and their maturity discrimination in the east of Tarim Basin[J]. Science China (Earth Sciences), 1996, 39(6): 659-669. [43] JENDEN P D, KAPLAN I R. Origin of natural gas in Sacramento Basin, California[J]. AAPG Bulletin, 1989, 73(4): 431-453. [44] BERNER U. Entwicklung und anwendung empirischer modelle für die kohlenstoffisotopenvariationen in mischungen thermogener erdgase [D]: TU Clausthal: FRG, 1989. [45] CRAMER B, FABER E, GERLING P, et al. Reaction kinetics of stable carbon isotopes in natural GasInsights from dry, open system pyrolysis experiments[J]. Energy & Fuels, 2001, 15(3): 517-532. [46] 戴金星, 戚厚发. 我国煤成烃气的δ13C-Ro关系[J]. 科学通报, 1989, 34(9): 690-692. doi: 10.1360/csb1989-34-9-690DAI J X, QI H F. δ13C-Ro relation of coal-derived hydrocarbon gas in China[J]. Chinese Science Bulletin, 1989, 34(9): 690-692. (in Chinese) doi: 10.1360/csb1989-34-9-690 [47] WAPLES D W, TORNHEIM L. Mathematical models for petroleum-forming processes: Carbon isotope fractionation[J]. Geochimica et Cosmochimica Acta, 1978, 42(5): 467-472. doi: 10.1016/0016-7037(78)90196-5 [48] JAMES A T. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components (1)[J]. AAPG Bulletin, 1990, 74(9): 1441-1458. [49] GUO L G, XIAO X M, TIAN H, et al. Distinguishing gases derived from oil cracking and kerogen maturation: Insights from laboratory pyrolysis experiments[J]. Organic Geochemistry, 2009, 40(10): 1074-1084. doi: 10.1016/j.orggeochem.2009.07.007 [50] JAMESAT. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components[J]. AAPG Bulletin, 1983, 67(7): 1176-1191. [51] ANDRESEN B, THRONDSEN T, RÅHEIM A, et al. A comparison of pyrolysis products with models for natural gas generation[J]. Chemical Geology, 1995, 126(3/4): 261-280. [52] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001GU Y, HUANG J W, JIA C S, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. (in Chinese with English abstract doi: 10.11781/sysydz202001001 [53] 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72. doi: 10.3969/j.issn.1672-7703.2020.02.007YANG H J, CHEN Y Q, TIAN J, et al. Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. (in Chinese with English abstract doi: 10.3969/j.issn.1672-7703.2020.02.007 [54] 罗明霞, 曹自成, 徐勤琪, 等. 塔里木盆地塔河油田塔深5井震旦系原油地球化学特征及地质意义[J]. 地质科技通报, 2024, 43(1): 135-149.LUO M X, CAO Z C, XU Q Q, et al. Geochemical characteristics and geological significance of Sinian crude oil from Well Tashen 5, Tahe oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 135-149. (in Chinese with English abstract [55] ZHU G Y, CHEN F R, WANG M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151. doi: 10.1306/03141817183 [56] 胡广, 刘文汇, 罗厚勇, 等. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例[J]. 矿物岩石地球化学通报, 2019, 38(5): 902-913.HU G, LIU W H, LUO H Y, et al. The impaction of original organism assemblages in source rocks on the kerogen carbon isotopic compositions: A case study of the Early Paleozoic source rocks in the Tarim Basin, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 902-913. (in Chinese with English abstract [57] 杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682.YANG H J, YU S, ZHANG H Z, et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of Well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic system in the Tarim Basin[J]. Geochimica, 2020, 49(6): 666-682. (in Chinese with English abstract [58] DENG Q, WANG H Z, WEI Z W, et al. Different accumulation mechanisms of organic matter in Cambrian sedimentary successions in the western and northeastern margins of the Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2021, 207: 104660. doi: 10.1016/j.jseaes.2020.104660 [59] 陈强路, 储呈林, 杨鑫, 等. 塔里木盆地寒武系沉积模式与烃源岩发育[J]. 石油实验地质, 2015, 37(6): 689-695. doi: 10.11781/sysydz201506689CHEN Q L, CHU C L, YANG X, et al. Sedimentary model and development of the Cambrian source rocks in the Tarim Basin, NW China[J]. Petroleum Geology & Experiment, 2015, 37(6): 689-695. (in Chinese with English abstract doi: 10.11781/sysydz201506689 [60] 杨海军, 蔡振忠, 李勇, 等. 塔里木盆地富满地区吐木休克组烃源岩有机地球化学特征及其油气勘探意义[J]. 地质科技通报, 2024, 43(3): 81-93.YANG H J, CAI Z Z, LI Y, et al. Organic geochemical characters of source rock and significance for exploration of the Tumuxiuke Formation in Fuman area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 81-93. (in Chinese with English abstract [61] 马安来, 李慧莉, 李杰豪, 等. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.MA A L, LI H L, LI J H, et al. The geochemical characteristics of Middle-Upper Ordovician source rocks in Keping outcrops profiles and marine oil-source correlation, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2020, 31(1): 47-60. (in Chinese with English abstract [62] BERNER U, FABER E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes[J]. Organic Geochemistry, 1988, 13(1/2/3): 67-72. [63] SHEN P, XU Y C. Isotopic compositional characteristics of terrigenous natural gases in China[J]. Chinese Journal of Geochemistry, 1993, 12(1): 14-24. doi: 10.1007/BF02869041 [64] 黄第藩, 赵孟军, 刘宝泉, 等. 塔里木盆地东部天然气的成因类型及其成熟度判识[J]. 中国科学(地球科学), 1996, 26(4): 365-372.HUANG D F, ZHAO M J, LIU B Q, et al. Genetic types and maturity identification of natural gas in eastern Tarim Basin[J]. Science in China (Earth Sciences), 1996, 26(4): 365-372. (in Chinese) [65] RADKE M, LEYTHAEUSER D, TEICHMÜLLER M. Relationship between rank and composition of aromatic hydrocarbons for coals of different origins[J]. Organic Geochemistry, 1984, 15(6): 423-430. doi: 10.1016/0146-6380(84)90065-2 [66] 陈琰, 包建平, 刘昭茜, 等. 甲基菲指数及甲基菲比值与有机质热演化关系: 以柴达木盆地北缘地区为例[J]. 石油勘探与开发, 2010, 37(4): 508-512.CHEN Y, BAO J P, LIU Z Q, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example[J]. Petroleum Exploration and Development, 2010, 37(4): 508-512. (in Chinese with English abstract -