留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融循环作用下土工格室加筋粗粒土大型三轴试验

钟博 宋玲 雷兵兵 陈建刚 刘杰

钟博,宋玲,雷兵兵,等. 冻融循环作用下土工格室加筋粗粒土大型三轴试验[J]. 地质科技通报,2025,44(6):189-198 doi: 10.19509/j.cnki.dzkq.tb20240096
引用本文: 钟博,宋玲,雷兵兵,等. 冻融循环作用下土工格室加筋粗粒土大型三轴试验[J]. 地质科技通报,2025,44(6):189-198 doi: 10.19509/j.cnki.dzkq.tb20240096
ZHONG Bo,SONG Ling,LEI Bingbing,et al. Large-scale triaxial test analysis on geocell-reinforced effect of coarse-grained soil under freeze-thaw cycles[J]. Bulletin of Geological Science and Technology,2025,44(6):189-198 doi: 10.19509/j.cnki.dzkq.tb20240096
Citation: ZHONG Bo,SONG Ling,LEI Bingbing,et al. Large-scale triaxial test analysis on geocell-reinforced effect of coarse-grained soil under freeze-thaw cycles[J]. Bulletin of Geological Science and Technology,2025,44(6):189-198 doi: 10.19509/j.cnki.dzkq.tb20240096

冻融循环作用下土工格室加筋粗粒土大型三轴试验

doi: 10.19509/j.cnki.dzkq.tb20240096
基金项目: 新疆维吾尔自治区交通运输厅2022 年度交通运输行业科技项目(2022-ZD-005);新疆交通规划勘察设计研究院有限公司科技研发项目(KY2020060801)
详细信息
    作者简介:

    钟博:E-mail:Wilbur1998zb@163.com

    通讯作者:

    E-mail:xjsdsl0514@163.com

  • 中图分类号: TU43

Large-scale triaxial test analysis on geocell-reinforced effect of coarse-grained soil under freeze-thaw cycles

More Information
  • 摘要:

    以粗粒土填料在高寒山区的应用为研究背景,分析了冻融循环条件下土工格室加筋粗粒土的加筋效果,开展了土工格室未加筋粗粒土、土工格室加筋粗粒土冻融循环试验和大型三轴不固结不排水压缩试验。试验数据分析表明:①相比于土工格室未加筋土,土工格室加筋效果在应变大于2%时比较显著;②随着冻融循环次数的增加,相比于土工格室未加筋粗粒土,土工格室加筋粗粒土的剪切强度、弹性模量、黏聚力整体均呈现降低的趋势,且降低趋势较大,但两者的内摩擦角相差较小,差值最大为2.08°;③引入加筋效果系数,表征冻融循环次数对土工格室加筋土体强度的影响。分析结果发现,随着冻融循环次数的增加(在15次以内),土工格室加筋效果呈现降低趋势,但仍表现出一定的加筋效果。

     

  • 图 1  大型三轴试验仪

    Figure 1.  Large scale triaxial apparatus

    图 2  冻融试验机

    Figure 2.  Freeze-thaw testing machine

    图 3  土料颗粒级配曲线(Cu. 均匀系数;Cc. 曲率系数)

    Figure 3.  Particle grading curve of the coarse-grained soil

    图 4  土工格室(a)及素土试样筒(b)

    Figure 4.  Geocell (a) and specimen tube of coarse-grained soil (b)

    图 5  土工格室拉伸应力−应变曲线

    Figure 5.  Tensile stress-strain curves of geocell

    图 6  格室土试样筒(a)及制备完成的试样(b)

    Figure 6.  Specimen tube of geocell reinforced coarse-grained soil (a) and prepared specimen (b)

    图 7  冻融时间曲线(a)及不同冻融循环次数、不同围压下的格室土和素土应力−应变曲线(b~h)(ε0. 为假设应力−应变曲线重合所对应的应变值)

    Figure 7.  Freezing and thawing time curves (a) and stress-strain curves of reinforced and unreinforced soils under different freeze-thaw cycles and confining pressures (b-h)

    图 8  不同围压下0,5,15次冻融循环的格室土和素土应力−应变曲线

    Figure 8.  Stress-strain curves of reinforced and unreinforced soils under 0, 5, 15 freeze-thaw cycles and varying confining pressures

    图 9  格室土和素土剪切强度与冻融循环次数关系

    Figure 9.  Relationship between freeze-thaw cycles and shear strength of reinforced and unreinforced soils

    图 10  强度加筋效果系数Rσ与冻融循环次数、围压关系

    Figure 10.  Relationship between reinforced effect coefficient Rσ and freeze-thaw cycles and confining pressures

    图 11  三轴试验破坏后的格室土(a)和素土(b)试样

    Figure 11.  Damaged specimens for reinforced (a) and unreinforced (b) coarse-grained soils after triaxial shearing

    图 12  格室土和素土的弹性模量与冻融循环次数的关系

    Figure 12.  Relationship between elastic modulus and freeze-thaw cycles of reinforced and unreinforced coarse-grained soils

    图 13  格室土和素土的弹性模量衰减系数与冻融循环次数的关系

    Figure 13.  Relationship between elastic modulus attenuation coefficient and freeze-thaw cycles of reinforced and unreinforced coarse-grained soils

    图 14  格室土和素土的内摩擦角(a)、黏聚力(b)与冻融循环次数关系

    Figure 14.  Relationship between internal friction (a), cohesion (b) and freeze-thaw cycles of reinforced and unreinforced coarse-grained soils

    表  1  土样的基本物理指标

    Table  1.   Physical properties of the coarse-grained soil specimen

    最大干密度/(g·cm−3) 最优含水率/% 塑限/% 液限/% 塑性指数
    2.25 7.57 13.55 21.98 8.43
    下载: 导出CSV
  • [1] 国家发展改革委, 交通运输部. 国家发展改革委 交通运输部关于印发《国家公路网规划》的通知 [EB/OL]. (2022-07-04)https://www.gov.cn/zhengce/zhengceku/2022-07/12/content_5700633.htm.

    National Development and Reform Commission, ministry of Transport of the People's Republic of China. Notice of the National Development and Reform Commission and the Ministry of Transport on Printing and Distributing the National Highway Network Plan [EB/OL]. (2022-07-04) https://www.gov.cn/zhengce/zhengceku/2022-07/12/content_5700633.htm. (in Chinese)
    [2] 晏长根, 顾良军, 杨晓华, 等. 土工格室加筋黄土的三轴剪切性能[J]. 中国公路学报, 2017, 30(10): 17-24.

    YAN C G, GU L J, YANG X H, et al. Triaxial shear property of geocell-reinforced loess[J]. China Journal of Highway and Transport, 2017, 30(10): 17-24. (in Chinese with English abstract
    [3] 李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报(工学版), 2019, 52(4): 311-316.

    LI L H, WEN B, HU Z, et al. Study on reinforced shear behavior of construction waste filler and geosynthetics[J]. Engineering Journal of Wuhan University, 2019, 52(4): 311-316. (in Chinese with English abstract
    [4] MOGHADDAS TAFRESHI S N, DAWSON A R. Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement[J]. Geotextiles and Geomembranes, 2010, 28(1): 72-84. doi: 10.1016/j.geotexmem.2009.09.003
    [5] 何忠明, 刘正夫, 向达. 基于路堤粗粒土填料力学特性的改进邓肯−张模型[J]. 中国公路学报, 2023, 36(1): 37-46.

    HE Z M, LIU Z F, XIANG D. Improved Duncan-Zhang model based on mechanical properties of coarse-grained soil filling of embankment[J]. China Journal of Highway and Transport, 2023, 36(1): 37-46. (in Chinese with English abstract
    [6] 陈生水. 高土石坝变形破坏过程预测理论和防控技术创新[J]. 岩土工程学报, 2022, 44(7): 1211-1219.

    CHEN S S. Innovations in prediction theories and prevention technologies for deformation-induced failure process of high earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1211-1219. (in Chinese with English abstract
    [7] 杨利, 张树茂, 杨青坡, 等. 土工格室加筋粗粒土加筋效果分析[J]. 水利与建筑工程学报, 2013, 11(6): 125-128.

    YANG L, ZHANG S M, YANG Q P, et al. Analysis on reinforcing effect of geocell-reinforced coarse-grained soil[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(6): 125-128. (in Chinese with English abstract
    [8] 王志杰, 齐逸飞, 杨广庆, 等. 土工格室加筋碎石复合体大型三轴试验研究[J]. 铁道学报, 2023, 45(9): 161-169.

    WANG Z J, QI Y F, YANG G Q, et al. Experimental investigations of large-scale triaxial tests on geocell reinforced gravel composites[J]. Journal of the China Railway Society, 2023, 45(9): 161-169. (in Chinese with English abstract
    [9] 齐逸飞. 土工格室加筋碎石复合体静动三轴试验研究[D]. 石家庄: 石家庄铁道大学, 2023.

    QI Y F. Experimental study on static and dynamic triaxial tests of geocell reinforced granular soil[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023. (in Chinese with English abstract
    [10] 李丽华, 康浩然, 张鑫, 等. 加筋土石混合体动力特性[J]. 吉林大学学报(工学版), 2024, 54(10): 2897-2907.

    LI L H, KANG H R, ZHANG X, et al. Dynamic characteristics of reinforced soil-rock mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10): 2897-2907. (in Chinese with English abstract
    [11] INDRARATNA B, BIABANI M M, NIMBALKAR S. Behavior of geocell-reinforced subballast subjected to cyclic loading in plane-strain condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 04014081. doi: 10.1061/(ASCE)GT.1943-5606.0001199
    [12] 王世立. 桥头过渡段路基差异沉降土工格室加筋处治方法研究[D]. 武汉: 武汉理工大学, 2020.

    WANG S L. Study on the geocell reinforced treatment method of differential settlement at bridge approach embankment[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese with English abstract
    [13] DASH S K, SHIVADAS A S. Performance improvement of railway ballast using geocells[J]. Indian Geotechnical Journal, 2012, 42(3): 186-193. doi: 10.1007/s40098-012-0017-3
    [14] TAVAKOLI MEHRJARDI G, MOTARJEMI F. Interfacial properties of geocell-reinforced granular soils[J]. Geotextiles and Geomembranes, 2018, 46(4): 384-395. doi: 10.1016/j.geotexmem.2018.03.002
    [15] 赵明华, 陈炳初, 尹平保, 等. 土工格室碎石基层+刚性路面承载特性模型试验研究[J]. 岩土工程学报, 2012, 34(4): 577-581.

    ZHAO M H, CHEN B C, YIN P B, et al. Model tests on bearing capacity characteristics of geocell gravel base and rigid pavement[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 577-581. (in Chinese with English abstract
    [16] 高昂, 张孟喜, 朱华超, 等. 循环荷载及静载下土工格室加筋路堤模型试验研究[J]. 岩土力学, 2016, 37(7): 1921-1928.

    GAO A, ZHANG M X, ZHU H C, et al. Model tests on geocell-reinforced embankment under cyclic and static loadings[J]. Rock and Soil Mechanics, 2016, 37(7): 1921-1928. (in Chinese with English abstract
    [17] 侯娟, 张孟喜, 韩晓, 等. 单个高强土工格室作用机理的有限元分析[J]. 岩土工程学报, 2015, 37(增刊1): 26-30.

    HOU J, ZHANG M X, HAN X, et al. Mechanism of a high-strength geocell using FEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 26-30. (in Chinese with English abstract
    [18] 边学成, 宋广, 陈云敏. Pasternak地基中土工格室加筋体的受力变形分析[J]. 工程力学, 2012, 29(5): 147-155.

    BIAN X C, SONG G, CHEN Y M. Deformation behaviors of geocell reinforcement in Pasternak ground[J]. Engineering Mechanics, 2012, 29(5): 147-155. (in Chinese with English abstract
    [19] SONG F, JIN Y T, LIU H B, et al. Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition[J]. Geotextiles and Geomembranes, 2020, 48(6): 886-896.
    [20] MENGELT M, EDIL T B, BENSON C H. Resilient modulus and plastic deformation of soil confined in a geocell[J]. Geosynthetics International, 2006, 13(5): 195-205. doi: 10.1680/gein.2006.13.5.195
    [21] 汪恩良, 徐学燕. 低温条件下塑料土工格栅拉伸特性的试验研究[J]. 岩土力学, 2008, 29(6): 1507-1511.

    WANG E L, XU X Y. Experimental study on tensile characteristics of plastic geogrid under low temperature[J]. Rock and Soil Mechanics, 2008, 29(6): 1507-1511. (in Chinese with English abstract
    [22] 陈榕, 王喜强, 郝冬雪, 等. 季节性冻土中土工格栅加筋特性试验研究[J]. 岩土工程学报, 2019, 41(6): 1101-1107.

    CHEN R, WANG X Q, HAO D X, et al. Experimental investigation on reinforced characteristics of geogrids in seasonal frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1101-1107. (in Chinese with English abstract
    [23] 魏静, 许兆义, 包黎明, 等. 青藏铁路多年冻土区土工格室护坡试验研究[J]. 岩石力学与工程学报, 2006, 25(增刊1): 3168-3173.

    WEI J, XU Z Y, BAO L M, et al. Experimental study on embankment slope protection with geocell in permafrost regions of Qinghai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3168-3173. (in Chinese with English abstract
    [24] 中华人民共和国交通运输部. 公路土工试验规程: JTG3430-2020[S]. 北京: 人民交通出版社, 2020.

    Ministry of Transport of the People's Republic of China. Test methods of soils for highway engineering: JTG3430-2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [25] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123-2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123-2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [26] 邴慧, 何平. 冻融循环对含盐土物理力学性质影响的试验研究[J]. 岩土工程学报, 2009, 31(12): 1958-1962.

    BING H, HE P. Influence of freeze-thaw cycles on physical and mechanical properties of salty soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1958-1962. (in Chinese with English abstract
    [27] 张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报(自然科学版), 2012, 32(3): 11-16.

    ZHANG S S, YANG X H. Large shear test on coarse saline soil with freeze-thaw cycle[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(3): 11-16. (in Chinese with English abstract
    [28] 侯鑫, 马巍, 李国玉, 等. 冻融循环对硅酸钠固化黄土力学性质的影响[J]. 冰川冻土, 2018, 40(1): 86-93.

    HOU X, MA W, LI G Y, et al. Effects of freezing-thawing cycles on mechanical properties of loess solidified by sodium silicate[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 86-93. (in Chinese with English abstract
    [29] 卜建清, 王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报, 2015, 37(4): 608-614.

    BU J Q, WANG T L. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. (in Chinese with English abstract
    [30] 穆彦虎, 陈涛, 陈国良, 等. 冻融循环对黏质粗粒土抗剪强度影响的试验研究[J]. 防灾减灾工程学报, 2019, 39(3): 375-386.

    MU Y H, CHEN T, CHEN G L, et al. Experimental study on effect of cyclic freeze-thaw on shear behaviors of clayey coarse-grained soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(3): 375-386. (in Chinese with English abstract
    [31] 孟亚, 徐超, 贾斌, 等. 含水率和冻融循环对筋土界面剪切特性的影响[J]. 中南大学学报(自然科学版), 2024, 55(2): 586-594.

    MENG Y, XU C, JIA B, et al. Influence of water contents and freeze-thaw cycles on shear behavior of geogrid-soil interface[J]. Journal of Central South University (Science and Technology), 2024, 55(2): 586-594. (in Chinese with English abstract
    [32] 徐望国, 张家生, 贺建清. 加筋软岩粗粒土路堤填料大型三轴试验研究[J]. 岩石力学与工程学报, 2010, 29(3): 535-541.

    XU W G, ZHANG J S, HE J Q. Research on large-scale triaxial tests on reinforced soft rock composed of coarse-grained soil as embankment fillings[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 535-541. (in Chinese with English abstract
    [33] 宋飞, 石磊, 樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报, 2024, 43(1): 184-193.

    SONG F, SHI L, FAN M Z. Stress-strain response of geocell-reinforced normally consolidated silty clay[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184-193. (in Chinese with English abstract
    [34] LEE W, BOHRA N C, ALTSCHAEFFL A G, et al. Resilient modulus of cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2): 131-136. doi: 10.1061/(ASCE)1090-0241(1997)123:2(131)
    [35] 蔡正银, 朱洵, 张晨, 等. 高寒区膨胀土渠道边坡性能演变规律[J]. 中南大学学报(自然科学版), 2022, 53(1): 21-50.

    CAI Z Y, ZHU X, ZHANG C, et al. Performance evolution of expansive soil canal slope in high cold region[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 21-50. (in Chinese with English abstract
    [36] 朱洵, 蔡正银, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土力学特性及损伤演化规律研究[J]. 岩石力学与工程学报, 2019, 38(6): 1233-1241.

    ZHU X, CAI Z Y, HUANG Y H, et al. Research on mechanical properties and damage evolution law of expensive soils under the cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1233-1241. (in Chinese with English abstract
    [37] 阮波, 张向京, 彭意. Excel规划求解三轴试验抗剪强度指标[J]. 铁道科学与工程学报, 2009, 6(5): 57-60.

    RUAN B, ZHANG X J, PENG Y. Programming solver tools of Excel evaluate shear strength parameters from results of triaxial tests[J]. Journal of Railway Science and Engineering, 2009, 6(5): 57-60. (in Chinese with English abstract
    [38] BATHURST R J, KARPURAPU R. Large-scale triaxial compression testing of geocell-reinforced granular soils[J]. Geotechnical Testing Journal, 1993, 16(3): 296-303. doi: 10.1520/GTJ10050J
    [39] 宋飞, 刘杰. 土工格室加筋土等效强度与等效刚度计算方法[M]. 北京: 中国水利水电出版社, 2020.

    SONG F, LIU J. Calculation method of equivalent strength and equivalent stiffness of geocell reinforced soil[M]. Beijing: China Water & Power Press, 2020. (in Chinese)
    [40] RAJAGOPAL K, KRISHNASWAMY N R, MADHAVI LATHA G. Behaviour of sand confined with single and multiple geocells[J]. Geotextiles and Geomembranes, 1999, 17(3): 171-184. doi: 10.1016/S0266-1144(98)00034-X
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  96
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 录用日期:  2024-06-26
  • 修回日期:  2024-05-21
  • 网络出版日期:  2025-10-20

目录

    /

    返回文章
    返回