留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近30年吐鲁番盆地坎儿井年径流量变化特征

余孝营 徐伟伟 周金龙 赵鹏博 杜明亮 丁启振

余孝营,徐伟伟,周金龙,等. 近30年吐鲁番盆地坎儿井年径流量变化特征[J]. 地质科技通报,2025,44(6):259-269 doi: 10.19509/j.cnki.dzkq.tb20240094
引用本文: 余孝营,徐伟伟,周金龙,等. 近30年吐鲁番盆地坎儿井年径流量变化特征[J]. 地质科技通报,2025,44(6):259-269 doi: 10.19509/j.cnki.dzkq.tb20240094
YU Xiaoying,XU Weiwei,ZHOU Jinlong,et al. Characteristics of changes in annual runoff volume of karez in the Turpan Basin over the past 30 years[J]. Bulletin of Geological Science and Technology,2025,44(6):259-269 doi: 10.19509/j.cnki.dzkq.tb20240094
Citation: YU Xiaoying,XU Weiwei,ZHOU Jinlong,et al. Characteristics of changes in annual runoff volume of karez in the Turpan Basin over the past 30 years[J]. Bulletin of Geological Science and Technology,2025,44(6):259-269 doi: 10.19509/j.cnki.dzkq.tb20240094

近30年吐鲁番盆地坎儿井年径流量变化特征

doi: 10.19509/j.cnki.dzkq.tb20240094
基金项目: 国家科技基础资源调查专项项目(2021xjkk1000);吐鲁番市重点研发专项项目(202308)
详细信息
    作者简介:

    余孝营:E-mail:yuxiaoying426@qq.com

    通讯作者:

    E-mail:zjzhoujl@163.com

  • 中图分类号: S274

Characteristics of changes in annual runoff volume of karez in the Turpan Basin over the past 30 years

More Information
  • 摘要:

    坎儿井是吐鲁番盆地重要的水利设施。为了缓解坎儿井日趋减少的现状,查明近30 a坎儿井年径流量的变化特征,对于农业灌溉、文化遗产保护和旅游发展等具有重要意义。依托1990−2022年研究区域内坎儿井13 a不连续的年径流量数据,同时考虑逐年机电井开采量和地表水源供水量,运用SPSS 20软件进行了深入的统计分析,对缺失的数据进行了科学插补,并通过趋势分析法和突变分析法确定了三者的变化曲线和突变年份。结果表明:1949−2023年吐鲁番盆地坎儿井数量由1084条减少至169条(减少速率为16条/a),同时流量由16.11 m3/s下降至3.6 m3/s;坎儿井年径流量与机电井开采量、地表水源供水量、灌溉面积和降水量之间的相关性系数依次为−0.890,−0.149,−0.660,0.764;通过构建坎儿井年径流量与机电井开采量、地表水源供水量间的关系模型,实测值与预测值的平均相对误差仅为1.8%,有效解决了数据缺失的问题;此外,研究区机电井开采量、地表水源供水量整体呈现波动上升态势,坎儿井年径流量发生上升突变时间为2006年,突变原因可能与政府实施坎儿井的保护条例有关。鉴于坎儿井所具有的重要文化价值和工程价值,未来需加大力度保护坎儿井,以促进吐鲁番盆地水资源的可持续利用和高质量发展。

     

  • 图 1  坎儿井纵剖面示意图

    Figure 1.  Schematic diagram of the longitudinal section of karez

    图 2  坎儿井鸟瞰图

    Figure 2.  Aerial view of karez

    图 3  吐鲁番盆地有水坎儿井的数量和流量变化

    Figure 3.  Number and flow rate of flowing karez in the Turpan Basin

    图 4  近70 a吐鲁番盆地机电井与坎儿井数量演变趋势

    Figure 4.  Trends in the evolution of the number of electro-mechanical wells and karez in the Turpan Basin over the last 70 years

    图 5  1990−2022年坎儿井年径流量的插补折线图

    Figure 5.  Interpolated time series of annual runoff volume of karez in 1990−2022

    图 6  吐鲁番盆地机电井开采量、地表水源供水量和坎儿井年径流量的变化趋势(a)及其累计距平曲线(b)

    Figure 6.  Trends (a) and cumulative departure curves (b) of the exploitation electro-mechanical wells, water supply from surface water sources and annual runoff of karez in the Turpan Basin

    图 7  吐鲁番盆地机电井开采量(a)、地表水源供水量(b)和坎儿井年径流量(c)M-K统计曲线

    UF. 统计变量,即标准正态分布统计量;UB. 逆序值

    Figure 7.  Mann–Kendall (M-K) statistical curves of the exploitation of electro-mechanical wells (a), water supply from surface water sources (b) and annual runoff of karez (c) in the Turpan Basin

    表  1  2022年吐鲁番盆地各行业用水量

    Table  1.   Water consumption of various industries in the Turpan Basin in 2022

    农业 工业 生活 生态 共计
    用水量/亿m3 9.79 0.53 0.51 0.82 11.65
    占比/% 84.0 4.6 4.4 7.0 100.0
    下载: 导出CSV

    表  2  2003、2014和2023年吐鲁番盆地坎儿井的数量和流量

    Table  2.   Number and flow rate of karez in the Turpan Basin in 2003, 2014 and 2023

    县(市) 坎儿井总数/条 有水坎儿井/条 干涸坎儿井/条 可恢复/条 年径流量/104 m3
    2003年 2014年 2023年 2003年 2014年 2023年 2003年 2014年 2023年 2023年 2003年 2014年 2023年
    高昌区 513 517 517 252 115 89 259 402 418 10 11980.53 4452.88 5512.00
    鄯善县 399 401 401 103 72 57 296 329 335 9 5004.61 5944.54 5004.61
    托克逊县 78 79 79 49 27 23 29 52 54 2 857.24 1094.30 857.24
    合计 990 997 997 404 214 169 584 783 807 21 17842.38 11491.72 11373.85
    注:数据来自吐鲁番市水利科学研究所2023年8月的《吐鲁番市坎儿井调查报告》
    下载: 导出CSV

    表  3  吐鲁番盆地机电井与坎儿井数量演变相关性

    Table  3.   Correlation between the evolution in the numbers of electro-mechanical wells and karez in the Turpan Basin

    机电井数量 坎儿井数量
    机电井数量 Pearson 相关性 1 −0.973
    显著性(双侧) 0.148
    数量N/个 22 3
    坎儿井数量 Pearson 相关性 1
    显著性(双侧)
    数量N/个 19
    下载: 导出CSV

    表  4  坎儿井年径流量与各因素之间的相关关系矩阵

    Table  4.   Correlations matrix between annual runoff volume of karez and influencing factors

    项目 坎儿井年径
    流量
    机电井
    开采量
    地表水源
    供水量
    灌溉面积 降水量
    坎儿井年径流量 1
    机电井开采量 −0.890** 1
    地表水源供水量 −0.149 0.021 1
    灌溉面积 −0.660* 0.618* 0.054 1
    降水量 0.764** −0.704 −0.225 −0.562 1
    注:** 在 0.01 水平(双侧)上显著相关;* 在 0.05 水平(双侧)上显著相关
    下载: 导出CSV

    表  5  坎儿井年径流量的实测值、预测值以及相对误差

    Table  5.   Measured and predicted annual runoff volume of karez and relative errors

    年份 实测值y/(108 m3·a−1) 预测值y1/(108 m3·a−1) 预测值y4/(108 m3·a−1) 预测值y5/(108 m3·a−1) 相对误差a1/% 相对误差a4/% 相对误差a5/%
    1990 2.8760 2.6586 2.6963 2.6775 −7.6 −6.2 −6.9
    1992 2.3652 2.5946 2.6338 2.6142 9.7 11.4 10.5
    1998 2.4598 2.4488 2.4586 2.4537 −0.4 0.0 −0.2
    2000 2.4600 2.6035 2.5654 2.5844 5.8 4.3 5.1
    2003 2.3190 1.9363 1.8785 1.9074 −16.5 −19.0 −17.7
    2004 2.0624 1.9336 1.8724 1.9030 −6.2 −9.2 −7.7
    2005 1.9931 2.0839 2.0270 2.0554 4.6 1.7 3.1
    2006 1.8543 1.6952 1.6569 1.6760 −8.6 −10.6 −9.6
    2007 1.6556 1.3764 1.4337 1.4050 −16.9 −13.4 −15.1
    2008 1.5800 1.5614 1.5625 1.5619 −1.2 −1.1 −1.1
    2009 1.3466 1.7042 1.6615 1.6829 26.6 23.4 25.0
    2014 1.1490 1.4185 1.3486 1.3836 23.5 17.4 20.4
    2021 1.2200 1.3554 1.5320 1.4437 11.1 25.6 18.3
    下载: 导出CSV

    表  6  坎儿井年径流量回归分析统计

    Table  6.   Regression analysis statistics of annual runoff volume of karez

    流量预测值 y1 y4 y5
    R20.82300.80700.8150
    回归方程y1=−0.23 x1−0.34x2+4.93y4=−0.24(x1+x2)+4.52y5=(y1+y4)/2
    平均相对
    误差/%
    1.91.91.8
    下载: 导出CSV
  • [1] 邢义川, 张爱军, 王力, 等. 坎儿井地下水资源涵养与保护措施研究[J]. 中国水利水电科学研究院学报, 2016, 14(2): 129-137.

    XING Y C, ZHANG A J, WANG L, et al. Study on underground water resources conservation and protection measures for Karez[J]. Journal of China Institute of Water Resources and Hydropower Research, 2016, 14(2): 129-137. (in Chinese with English abstract
    [2] 黄文房, 阚耀平. 新疆坎儿井的历史、现状和今后发展[J]. 干旱区地理, 1990, 13(3): 33-37.

    HUANG W F, KAN Y P. Xinjiang karez and it history, presence and future[J]. Arid Land Geography, 1990, 13(3): 33-37. (in Chinese with English abstract
    [3] 古丽夏提·哈力克, 艾里西尔·库尔班. 吐鲁番盆地坎儿井现状及衰败的影响因素分析[J]. 安徽农业科学, 2017, 45(11): 207-209+253.

    GULIXIATI H, ALISHIR K. Analysis on the present status of karez in Turpan Depression and the influencing factors to its decline[J]. Journal of Anhui Agricultural Sciences, 2017, 45(11): 207-209. (in Chinese with English abstract
    [4] 盛玉香, 韦东, 吴彬, 等. 坎儿井衰减与地下水补排系统响应关系[J]. 灌溉排水学报, 2016, 35(3): 86-90.

    SHENG Y X, WEI D, WU B, et al. Response relationship between karez decreasing and variation of groundwater recharge and discharge[J]. Journal of Irrigation and Drainage, 2016, 35(3): 86-90. (in Chinese with English abstract
    [5] 关东海, 张胜江, 吾甫尔·努尔丁. 新疆坎儿井水资源保护与可持续利用研究[J]. 水资源保护, 2008, 24(5): 94-98.

    GUANG D H, ZHANG S J, GOFUR N. Protection and sustainable utilization of water resources in Xinjiang karezes[J]. Water Resources Protection, 2008, 24(5): 94-98 (in Chinese with English abstract
    [6] 张锦辉, 耿曙萍. 哈密地区坎儿井动态监测分析及其保护对策[J]. 地下水, 2009, 31(5): 37-39.

    ZHANG J H, GENG S P. Dynamic monitor analysis and protection countermeasure on karez in Hami area[J]. Ground Water, 2009, 31(5): 37-39. (in Chinese with English abstract
    [7] 爱斯卡尔·买买提. 吐鲁番地区坎儿井的保护与利用[D]. 西安: 长安大学, 2010.

    AISIKAR M. Protection and utilization of karez in Turpan[D]. Xi'an: Changan University, 2010. (in Chinese with English abstract
    [8] JOMEHPOUR M. Qanat irrigation systems as important and ingenious agricultural heritage: Case study of the qanats of Kashan, Iran[J]. International Journal of Environmental Studies, 2009, 66(3): 297-315. doi: 10.1080/00207230902752629
    [9] AN P, CHEN H, SUN B W, et al. A minimally invasive method for reinforcing the karez tunnel in Turpan based on the high mole ratio potassium silicate[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 138. doi: 10.1007/s10064-022-02633-y
    [10] YOUSEFIAN N, SHAHNOUSHI FOROUSHANI N, FIROZZARE A, et al. Prioritizing the effects of sustainable development of reviving the qanat in Fariman-Torbat Jam Plain: The eastern of Iran[J]. Groundwater for Sustainable Development, 2025, 28: 101365. doi: 10.1016/j.gsd.2024.101365
    [11] 杨贝贝, 阿不都沙拉木·加拉力丁, 马桂, 等. 吐鲁番市坎儿井空间分布格局的影响因子探析[J]. 中国农村水利水电, 2017, (12): 198-203.

    YANG B B, ABUDUSHALAMU J, MA G, et al. An analysis of the influencing factors of spatial distribution pattern of karez in Turpan City[J]. China Rural Water and Hydropower, 2017(12): 198-203. (in Chinese with English abstract
    [12] 吴彬, 杜明亮, 杨鹏年, 等. 近60年鄯善县地下水补排量演变与坎儿井流量衰减关系[J]. 农业工程学报, 2016, 32(16): 102-108.

    WU B, DU M L, YANG P N, et al. Relationship between groundwater recharge, discharge evolution and karez flow attenuation in Shanshan County in nearly 60 years[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 102-108. (in Chinese with English abstract
    [13] LI Q, GUO H D, LUO L, et al. Impact analysis of land use and land cover change on karez in Turpan Basin of China[J]. Remote Sensing, 2023, 15(8): 2146. doi: 10.3390/rs15082146
    [14] MAGHREBI M, NOORI R, SADEGH M, et al. Anthropogenic decline of ancient, sustainable water systems: Qanats[J]. Groundwater, 2023, 61(1): 139-146. doi: 10.1111/gwat.13248
    [15] SAMANI S, VADIATI M, KISI O, et al. Qanat discharge prediction using a comparative analysis of machine learning methods[J]. Earth Science Informatics, 2024, 17(5): 4597-4618. doi: 10.1007/s12145-024-01409-0
    [16] 李玥宏. 水资源约束下的乡土聚落景观营造策略研究: 以新疆乡土聚落为例[D]. 西安: 西安建筑科技大学, 2011.

    LI Y H. Research on creation strategy of vernacular settlement landscape in the perspective of water resource under the constraints: Case study of vemacular settlement in Xinjiang[D]. Xi'an: Xi'an University of Architecture and Technology, 2011. (in Chinese with English abstract
    [17] 邓铭江. 干旱区坎儿井与山前凹陷地下水库[J]. 水科学进展, 2010, 21(6): 748-756.

    DENG M J. Kariz wells in arid land and mountain-front depressed ground reservoir[J]. Advances in Water Science, 2010, 21(6): 748-756. (in Chinese with English abstract
    [18] 唐蕴, 王研, 唐克旺. 吐鲁番市浅层地下水功能区划分[J]. 水资源保护, 2017, 33(2): 16-21.

    TANG Y, WANG Y, TANG K W. Functional division of shallow groundwater in Turpan City[J]. Water Resources Protection, 2017, 33(2): 16-21. (in Chinese with English abstract
    [19] 白凡, 周金龙, 曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428.

    BAI F, ZHOU J L, ZENG Y Y. Hydrochemical characteristics and quality of groundwater in the plains of the Turpan Basin[J]. Arid Zone Research, 2022, 39(2): 419-428. (in Chinese with English abstract
    [20] 商佐. 吐鲁番盆地地下水动态特征及控制性水位分析[D]. 北京: 中国地质大学(北京), 2020.

    SHANG Z. Dynamic characteristics of groundwater and analysis of controlling water level in Turpan Basin[D]. Beijing: China University of Geosciences (Beijing), 2020. (in Chinese with English abstract
    [21] 日孜万古力·艾山. 新疆吐鲁番坎儿井饮用水水质分析及其微生物多样性研究[D]. 乌鲁木齐: 新疆师范大学, 2021.

    HASAN R. Analysis of drinking water quality and microbial diversity in karejing, Turpan, Xinjiang[D]. Urumqi: Xinjiang Normal University, 2021. (in Chinese with English abstract
    [22] 王毅萍, 周金龙, 郭晓静. 新疆坎儿井现状及其发展[J]. 地下水, 2008, 30(6): 49-52.

    WANG Y P, ZHOU J L, GUO X J. Present situation and its development of the kaner well in the Xinjiang[J]. Ground Water, 2008, 30(6): 49-52. (in Chinese with English abstract
    [23] FANG S F, PEI H, LIU Z H, et al. Water resources assessment and regional virtual water potential in the Turpan Basin, China[J]. Water Resources Management, 2010, 24(13): 3321-3332. doi: 10.1007/s11269-010-9608-x
    [24] 拜建军, 徐伟伟, 李春艳. 吐鲁番地区水权改革做法及成效[J]. 中国水利, 2016(4): 17-19.

    BAI J J, XU W W, LI C Y. Practice and achievement of water rights system reformation in promoting sustainable utilization of water resources in Turpan Prefecture[J]. China Water Resources, 2016(4): 17-19. (in Chinese with English abstract
    [25] 肖丽萍. 生态文明建设视域下的新疆坎儿井保护对策研究[D]. 北京: 北京林业大学, 2019.

    XIAO L P. Study on the protection of karez in Xinjiang from the perspective of ecological civilization construction[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract
    [26] 新疆坎儿井研究会. 新疆坎儿井研究论文集[C]. 乌鲁木齐: 新疆人民出版社, 2015.

    Karez Research Association in Xinjiang. Proceedings of the Xinjiang Karez Study[C]. Urumqi: Xinjiang People's Publishing House, 2015.
    [27] 孙静, 唐蕴, 王宇博. 河北省广平县浅层地下水水位控制指标研究[J]. 河北工程大学学报(自然科学版), 2021, 38(4): 86-93.

    SUN J, TANG Y, WANG Y B. Research on the control index of shallow groundwater level in Guangping County of Hebei Province[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021, 38(4): 86-93. (in Chinese with English abstract
    [28] 葛石冰, 宋晓君, 陈润, 等. 近30年天山北坡改进型遥感生态指数时空变化及其驱动因素[J]. 生态与农村环境学报, 2024, 40(7): 865-876.

    GE S B, SONG X J, CHEN R, et al. The spatiotemporal changes and driving factors of ERSEI on the northern slope of Tianshan Mountains in the past 30 years[J]. Journal of Ecology and Rural Environment, 2024, 40(7): 865-876. (in Chinese with English abstract
    [29] 田小靖, 赵广举, 穆兴民, 等. 水文序列突变点识别方法比较研究[J]. 泥沙研究, 2019, 44(2): 33-40.

    TIAN X J, ZHAO G J, MU X M, et al. Comparison study on hydrological time series change-point testing methods[J]. Journal of Sediment Research, 2019, 44(2): 33-40. (in Chinese with English abstract
    [30] 张宇, 吴计生, 刘洪超, 等. 西辽河流域典型河流径流变化趋势及突变分析[J]. 中国水土保持, 2023(8): 43-47.

    ZHANG Y, WU J S, LIU H C, et al. Variation trends and abrupt changes of runoff in typical rivers of Xiliao River Basin[J]. Soil and Water Conservation in China, 2023(8): 43-47. (in Chinese with English abstract
    [31] 彭豪, 张金棚, 陈希. 沂河径流变化趋势的Mann-Kendall分析[J]. 治淮, 2024(12): 4-5.

    PENG H, ZHANG J P, CHEN X. Mann-Kendall analysis of runoff variation trend in Yi River[J]. Harnessing the Huaihe River, 2024(12): 4-5. (in Chinese with English abstract
    [32] 曹进军, 马海华. 气候和土地利用变化对石羊河流域自然径流的影响[J]. 中国农业气象, 2024, 45(11): 1290-1301.

    CAO J J, MA H H. Climate and land use change effect on natural runoff in Shiyang River Basin[J]. Chinese Journal of Agrometeorology, 2024, 45(11): 1290-1301. (in Chinese with English abstract
    [33] 周长乐, 种法政, 闫林, 等. 新疆石城子河流域径流量变化规律研究[J]. 水利科学与寒区工程, 2024, 7(12): 70-78.

    ZHOU C L, ZHONG F Z, YAN L, et al. Study on the variation law and forecast of runoff in Shichengzi River Basin of Xinjiang[J]. Hydro Science and Cold Zone Engineering, 2024, 7(12): 70-78. (in Chinese with English abstract
    [34] 李群, 徐红剑, 杨金, 等. 基于Pearson卡方检验算法评价指标优选的波密-墨脱地区泥石流易发性评价[J]. 地质科技通报, 2025, 44(4): 316-329.

    LI Q, XU H J, YANG J, et al. Evaluation of debris flow susceptibility in Bomi-Motuo area using Pearson Chi-square test algorithm based indicator optimization[J]. Bulletin of Geological Science and Technology, 2025, 44(4): 316-329. (in Chinese with English abstract
    [35] 汪泉娟, 孙敬锋, 杨英杰, 等. 克里金方法与深度学习方法用于浅层地下水位估计的对比研究: 以深汕特别合作区为例[J]. 地质科技通报, 2024, 43(4): 291-301.

    WANG Q J, SUN J F, YANG Y J, et al. A comparative study of Kriging and deep learning methods for shallow groundwater level estimation: A case study of the Shenzhen-Shanwei Special Cooperation Zone[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 291-301. (in Chinese with English abstract
    [36] SEDGHI M M, ZHAN H B. On the discharge variation of a qanat in an alluvial fan aquifer[J]. Journal of Hydrology, 2022, 610: 127922. doi: 10.1016/j.jhydrol.2022.127922
    [37] 刘玉姣, 戴恒, 李跃东, 等. 层级制全局敏感性分析方法及其在地下水模型中的应用[J]. 地质科技通报, 2024, 43(5): 216-224.

    LIU Y J, DAI H, LI Y D, et al. Method of hierarchical global sensitivity analysis and its application in groundwater models[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 216-224. (in Chinese with English abstract
    [38] SAMANI S, VADIATI M, DELKASH M, et al. A hybrid wavelet–machine learning model for qanat water flow prediction[J]. Acta Geophysica, 2023, 71(4): 1895-1913.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  533
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-15
  • 录用日期:  2024-08-18
  • 修回日期:  2024-08-09
  • 网络出版日期:  2024-08-18

目录

    /

    返回文章
    返回