留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江汉平原双层结构包气带渗透系数不确定性对氨氮运移的影响

喻静 裴洪军 汪丙国

喻静,裴洪军,汪丙国. 江汉平原双层结构包气带渗透系数不确定性对氨氮运移的影响[J]. 地质科技通报,2025,44(6):249-258 doi: 10.19509/j.cnki.dzkq.tb20230722
引用本文: 喻静,裴洪军,汪丙国. 江汉平原双层结构包气带渗透系数不确定性对氨氮运移的影响[J]. 地质科技通报,2025,44(6):249-258 doi: 10.19509/j.cnki.dzkq.tb20230722
YU Jing,PEI Hongjun,WANG Bingguo. Influence of saturated hydraulic conductivity uncertainty on ammonium-nitrogen transport in the double-layer vadose zone of the Jianghan Plain[J]. Bulletin of Geological Science and Technology,2025,44(6):249-258 doi: 10.19509/j.cnki.dzkq.tb20230722
Citation: YU Jing,PEI Hongjun,WANG Bingguo. Influence of saturated hydraulic conductivity uncertainty on ammonium-nitrogen transport in the double-layer vadose zone of the Jianghan Plain[J]. Bulletin of Geological Science and Technology,2025,44(6):249-258 doi: 10.19509/j.cnki.dzkq.tb20230722

江汉平原双层结构包气带渗透系数不确定性对氨氮运移的影响

doi: 10.19509/j.cnki.dzkq.tb20230722
基金项目: 国家自然科学基金项目(41772268);国家重点研发计划项目子课题(2022YFC3702401)
详细信息
    作者简介:

    喻静:E-mail:yujing9000@163.com

    通讯作者:

    E-mail:bgwang@cug.edu.cn

  • 中图分类号: P641

Influence of saturated hydraulic conductivity uncertainty on ammonium-nitrogen transport in the double-layer vadose zone of the Jianghan Plain

More Information
  • 摘要:

    为探究双层结构包气带饱和渗透系数不确定性对溶质运移的影响,采用数值模拟方法开展了江汉平原典型双层结构包气带饱和渗透系数不确定性对氨氮运移影响的随机模拟。结果表明,考虑上层土壤饱和渗透系数不确定性时,“上粗下细”型岩性结构的氨氮锋面运移深度、质量浓度峰值和质量浓度峰值深度及其变化幅度均大于“上细下粗”型。考虑下层土壤饱和渗透系数不确定性时,氨氮锋面运移深度、运移质量浓度峰值和质量浓度峰值深度3种指标在“上粗下细”型岩性结构中受饱和渗透系数不确定性影响均较小,而在“上细下粗”型岩性结构中受到的影响相对较大。对比上层和下层土壤饱和渗透系数不确定性的模拟结果可知,砂壤土饱和渗透系数不确定性对氨氮质量浓度峰值及其深度的影响均大于粉砂壤土。由此推论:双层结构包气带中,粗质土壤的饱和渗透系数不确定性对溶质运移的影响更大。研究结果可为江汉平原地区开展包气带溶质运移研究提供方法参考,为江汉平原地下水氨氮污染防治工作提供科学依据。

     

  • 图 1  模拟结束时(第60 d)氨氮的质量浓度分布

    Figure 1.  Distribution of ammonium-nitrogen (NH4+-N) concentration at the end of simulation (Day 60)

    图 2  上层土壤饱和渗透系数(Ks)不确定性条件下模拟的氨氮锋面运移深度与Ks的关系图(SL-SiL. “上粗下细”型;SiL-SL. “上细下粗”型;Ks. 饱和渗透系数;下同)

    Figure 2.  Relationship between simulated ammonium-nitrogen front migration depth and saturated hydraulic conductivity (Ks) under the uncertainty of upper soil Ks

    图 3  上层土壤饱和渗透系数(Ks)不确定性条件下模拟第60 d的氨氮运移质量浓度峰值(a)和质量浓度峰值深度(b)与Ks的关系图

    Figure 3.  Relationships between peak ammonium-nitrogen concentration (a) and depth of peak ammonium-nitrogen concentration (b) and saturated hydraulic conductivity (Ks) on Day 60 of simulation under the uncertainty of upper soil Ks

    图 4  上层土壤饱和渗透系数(Ks)不确定条件下的模拟第 60 d 氨氮质量浓度峰值(a)和质量浓度峰值深度(b)箱形图

    IQR. 四分位距,表示数据中间50 %的分布范围,即从25%(Q1,下四分位)到75%(Q3,上四分位),1.5IQR. 上须通常取Q3+1.5×IQRQ3+1.5×IQR内的最大值,下须通常取Q1−1.5×IQRQ1−1.5×IQR 内的最小值, 超出这个范围的点会被认为是离群值,下同

    Figure 4.  Box plots of peak ammonium-nitrogen concentration (a) and depth of peak ammonium-nitrogen concentration (b) on Day 60 of simulation under the uncertainty of upper soil saturated hydraulic conductivity (Ks)

    图 5  下层土壤饱和渗透系数(Ks)不确定性条件下模拟的氨氮锋面运移深度与Ks的关系图

    Figure 5.  Relationship between simulated ammonium-nitrogen front migration depth and saturated hydraulic conductivity (Ks) under the uncertainty of lower soil Ks

    图 6  下层土壤饱和渗透系数(Ks)不确定性条件下模拟第 60 d 的氨氮质量浓度峰值(a)和质量浓度峰值深度(b)与 Ks 的关系图

    Figure 6.  Relationships between peak ammonium-nitrogen concentration (a) and depth of peak ammonium-nitrogen concentration (b) and saturated hydraulic conductivity (Ks) on Day 60 of simulation under the uncertainty of lower soil Ks

    图 7  下层土壤饱和渗透系数(Ks)不确定性条件下的模拟第 60 d 氨氮质量浓度峰值(a)和质量浓度峰值深度(b)箱形图

    Figure 7.  Box plots of peak ammonium-nitrogen concentration (a) and depth of peak ammonium-nitrogen concentration (b) on Day 60 of simulation under the uncertainty of lower soil saturated hydraulic conductivity (Ks)

    表  1  2种岩性土壤饱和渗透系数随机数的描述性统计

    Table  1.   Descriptive statistics of random number of saturated hydraulic conductivity for two lithologic soils

    岩性 随机数/组 饱和渗透系数Ks/(cm·d−1) 变异系数CV/%
    最大值 最小值 平均值 标准差
    砂壤土 148 259.07 0.5614 15.70 29.89 190.38
    粉砂壤土 148 155.50 0.0046 4.07 13.74 337.59
    注:变异系数(CV)=标准差/平均值
    下载: 导出CSV

    表  2  土壤水力参数

    Table  2.   Soil hydraulic parameters

    岩性 饱和含水率
    $ \theta_{\mathrm{s}} $/(cm3·cm−3)
    残余含水率
    $ \theta_{\mathrm{r}} $/(cm3·cm−3)
    经验参数
    α/cm−1
    经验参数
    n
    经验参数
    l
    砂壤土 0.41 0.065 0.075 1.89 0.5
    粉砂壤土 0.45 0.067 0.02 1.23 0.5
    下载: 导出CSV

    表  3  溶质运移参数

    Table  3.   Solute transport parameters

    岩性 纵向弥散度
    DL[21]/cm
    吸附等温
    系数Kd[22]/
    (cm3·mg−1)
    自由水中分子
    扩散系数Dw[23]/
    (cm2·d−1)
    溶解相一级
    速率常数
    Sinkwater1[24]
    固相一级
    速率常数
    Sinksolid1[24]
    粉砂壤土 7.4 0.030 4 0.2 0.005
    砂壤土 15.6 0.015 4 0.1 0.005
    下载: 导出CSV
  • [1] 吉恒莹, 邵明安, 贾小旭. 水质对层状土壤入渗过程的影响[J]. 农业机械学报, 2016, 47(7): 183-188.

    JI H Y, SHAO M A, JIA X X. Effects of water quality on infiltration of layered soils[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 183-188. (in Chinese with English abstract
    [2] 黄小琴, 张一冰, 张勃, 等. 非灌期层状结构包气带含水率特征[J]. 中国农村水利水电, 2023(6): 222-225.

    HUANG X Q, ZHANG Y B, ZHANG B, et al. Characteristics of water content for the vadose zone with stratified structures in the non-irrigation period[J]. China Rural Water and Hydropower, 2023(6): 222-225. (in Chinese with English abstract
    [3] 王士军, 田路遥, 刘丙霞. 地下水浅埋区层状土壤结构对包气带硝态氮累积和淋失的影响[J]. 中国生态农业学报(中英文), 2023, 31(1): 125-135.

    WANG S J, TIAN L Y, LIU B X. Effects of layered soil on the accumulation and leaching of nitrate-nitrogen in shallow groundwater regions[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 125-135. (in Chinese with English abstract
    [4] 向峥宇, 潘欢迎, 邓斌, 等. 基于蒸发法和联合测定仪测定土壤水分特征曲线和非饱和渗透系数的试验研究[J]. 地质科技通报, 2023, 42(4): 210-217.

    XIANG Z Y, PAN H Y, DENG B, et al. Experimental study of the soil water characteristic curve and unsaturated permeability coefficient based on the evaporation method and combined measuring instrument[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 210-217. (in Chinese with English abstract
    [5] 刘天奇, 汪丙国, 张钧帅, 等. 江汉平原土壤饱和渗透系数变化规律及影响因素[J]. 地球科学, 2021, 46(2): 671-682.

    LIU T Q, WANG B G, ZHANG J S, et al. Variation law and influencing factors of soil saturated hydraulic conductivity in Jianghan Plain[J]. Earth Science, 2021, 46(2): 671-682. (in Chinese with English abstract
    [6] KHALEDIAN M, SHABANPOUR M, ALINIA H. Saturated hydraulic conductivity variation in a small garden under drip irrigation[J]. Geosystem Engineering, 2016, 19(6): 266-274. doi: 10.1080/12269328.2016.1188030
    [7] 张抒, 唐辉明, 刘晓, 等. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征[J]. 地球科学, 2018, 43(2): 622-634.

    ZHANG S, TANG H M, LIU X, et al. Seepage and instability characteristics of slope based on spatial variation structure of saturated hydraulic conductivity[J]. Earth Science, 2018, 43(2): 622-634. (in Chinese with English abstract
    [8] 雷坚, 陈朝晖, 黄景华. 饱和渗透系数空间变异性对边坡稳定性的影响[J]. 武汉大学学报(工学版), 2016, 49(6): 831-837.

    LEI J, CHEN Z H, HUANG J H. Effects of spatial variability of saturated permeability on slope stability[J]. Engineering Journal of Wuhan University, 2016, 49(6): 831-837. (in Chinese with English abstract
    [9] 施小清, 吴吉春, 吴剑锋, 等. 多个相关随机参数的空间变异性对溶质运移的影响[J]. 水科学进展, 2012, 23(4): 509-515.

    SHI X Q, WU J C, WU J F, et al. Effects of the heterogeneity of multiple correlated random parameters on solute transport[J]. Advances in Water Science, 2012, 23(4): 509-515. (in Chinese with English abstract
    [10] 李世峰, 白顺果, 王月影, 等. 非饱和土壤渗透系数空间不确定性对溶质运移的影响[J]. 环境工程学报, 2015, 9(3): 1471-1476.

    LI S F, BAI S G, WANG Y Y, et al. Effect of spatial uncertainty of unsaturated zone permeability coefficient on solute transport[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1471-1476. (in Chinese with English abstract
    [11] ZHU H, ZHANG L M, ZHANG L L, et al. Two-dimensional probabilistic infiltration analysis with a spatially varying permeability function[J]. Computers and Geotechnics, 2013, 48: 249-259. doi: 10.1016/j.compgeo.2012.07.010
    [12] ZHANG N, LI L, JIANG H, et al. Study on variation rule of permeability coefficient in unsaturated zone along the Weihe River in the intertidal area[J]. IOP Conference Series (Earth and Environmental Science), 2018, 208(1): 012020.
    [13] 陈梦迪, 姜振蛟, 霍晨琛. 考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析[J]. 水文地质工程地质, 2023, 50(2): 63-72.

    CHEN M D, JIANG Z J, HUO C C. Stochastic modeling of in situ sandstone-type uranium leaching in response to uncertain and heterogeneous hydraulic conductivity[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 63-72. (in Chinese with English abstract
    [14] 纪文贵, 罗跃, 刘金辉, 等. 考虑渗透系数不确定性的地浸过程溶浸范围随机模拟[J]. 原子能科学技术, 2023, 57(6): 1099-1110.

    JI W G, LUO Y, LIU J H, et al. Stochastic simulation of leaching range in in situ leaching process considering uncertainty of permeability coefficient[J]. Atomic Energy Science and Technology, 2023, 57(6): 1099-1110. (in Chinese with English abstract
    [15] MAHARJAN A K, KAMEI T, AMATYA I M, et al. Ammonium-nitrogen (NH4+-N) removal from groundwater by a dropping nitrification reactor: Characterization of NH4+-N transformation and bacterial community in the reactor[J]. Water, 2020, 12(2): 599. doi: 10.3390/w12020599
    [16] SU F M, WU J H, WANG D, et al. Moisture movement, soil salt migration, and nitrogen transformation under different irrigation conditions: Field experimental research[J]. Chemosphere, 2022, 300: 134569. doi: 10.1016/j.chemosphere.2022.134569
    [17] 李侃, 巨能攀. 基于蒙特卡洛方法的边坡可靠性评价[J]. 中国地质灾害与防治学报, 2014, 25(1): 23-27.

    LI K, JU N P. Integrated application of Monte-Carlo simulation for landslide reliability analysis[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(1): 23-27. (in Chinese with English abstract
    [18] 徐亚宁, 卢文喜, 王梓博, 等. 考虑参数和边界条件不确定性的地下水污染随机模拟[J]. 中国环境科学, 2022, 42(7): 3244-3253.

    XU Y N, LU W X, WANG Z B, et al. Stochastic simulation of groundwater pollution considering uncertainty of parameters and boundary conditions[J]. China Environmental Science, 2022, 42(7): 3244-3253. (in Chinese with English abstract
    [19] ŠIMŮNEK J, VAN GENUCHTEN M T, ŠEJNA M. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal, 2008, 7(2): 587-600. doi: 10.2136/vzj2007.0077
    [20] MATTEAU J P, GUMIERE S J, GALLICHAND J, et al. Coupling of a nitrate production model with HYDRUS to predict nitrate leaching[J]. Agricultural Water Management, 2019, 213: 616-626. doi: 10.1016/j.agwat.2018.10.013
    [21] 王飞. 松散岩类孔隙介质水动力弥散规律及其空间尺度效应研究[D]. 成都: 西南交通大学, 2015.

    WANG F. A study on the hydrodynamic diffusion and scale effect of loose rock mass pore media[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese with English abstract
    [22] 刘成. 利用HYDRUS-1D模型模拟节水灌溉稻田水氮运移特征[D]. 北京: 中国地质大学(北京) , 2019.

    LIU C. Simulation of water and nitrogen transport in a water-saving irrigated paddy field with HYDRUS-1D model[D]. Beijing: China University of Geosciences(Beijing), 2019. (in Chinese with English abstract
    [23] 郝芳华, 孙雯, 曾阿妍, 等. HYDRUS-1D模型对河套灌区不同灌施情景下氮素迁移的模拟[J]. 环境科学学报, 2008, 28(5): 853-858.

    HAO F H, SUN W, ZENG A Y, et al. Simulation of N transfer under different irrigation and fertilization scenarios in the Hetao irrigation area using HYDRUS-1D model[J]. Acta Scientiae Circumstantiae, 2008, 28(5): 853-858. (in Chinese with English abstract
    [24] 杜青青, 尹芝华, 左锐, 等. 某污染场地氨氮迁移过程模拟研究[J]. 中国环境科学, 2017, 37(12): 4585-4595. doi: 10.3969/j.issn.1000-6923.2017.12.023

    DU Q Q, YIN Z H, ZUO R, et al. Migration process simulation of ammonia nitrogen in contaminated site[J]. China Environmental Science, 2017, 37(12): 4585-4595. (in Chinese with English abstract doi: 10.3969/j.issn.1000-6923.2017.12.023
    [25] 许尊秋, 毛晓敏, 陈帅. 层状土层序排列对水分运移影响的室内土槽试验[J]. 中国农村水利水电, 2016(8): 59-62. doi: 10.3969/j.issn.1007-2284.2016.08.015

    XU Z Q, MAO X M, CHEN S. Tank experiment on the influence of the sequence alignment on water movement in multi-layered soil[J]. China Rural Water and Hydropower, 2016(8): 59-62. (in Chinese with English abstract doi: 10.3969/j.issn.1007-2284.2016.08.015
    [26] 王强民, 赵明, 彭鸿杰, 等. 旱区不同层状结构土壤的水分运移过程与模拟[J]. 水文地质工程地质, 2023, 50(4): 84-94.

    WANG Q M, ZHAO M, PENG H J, et al. Water transport process and simulation of layered soils with different configurations in an arid region[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 84-94. (in Chinese with English abstract
    [27] CHAE B G, LEE J H, PARK H J, et al. A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration[J]. Natural Hazards and Earth System Sciences, 2015, 15(8): 1835-1849. doi: 10.5194/nhess-15-1835-2015
    [28] BATSILAS I, ANGELAKI A, CHALKIDIS I. Hydrodynamics of the vadose zone of a layered soil column[J]. Water, 2023, 15(2): 221. doi: 10.3390/w15020221
    [29] WEITZMAN J N, BROOKS J R, COMPTON J E, et al. Deep soil nitrogen storage slows nitrate leaching through the vadose zone[J]. Agriculture, Ecosystems & Environment, 2022, 332: 107949.
    [30] 马蒙蒙. 层状土壤中水流和溶质运移特征及数值模拟[D]. 山东青岛: 青岛大学, 2020.

    MA M M. Migration characteristics and numerical simulation of water and solute in layered soil[D]. Qingdao Shandong: Qingdao University, 2020. (in Chinese with English abstract
    [31] 王国梁, 梁修雨. 考虑河床渗透性影响的基流退水过程解析模型[J]. 地质科技通报, 2023, 42(4): 201-209.

    WANG G L, LIANG X Y. An analytical model for baseflow recession considering riverbank permeability[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 201-209. (in Chinese with English abstract
    [32] 崔浩浩, 张光辉, 张亚哲, 等. 层状非均质包气带渗透性特征及其对降水入渗的影响[J]. 干旱地区农业研究, 2020, 38(3): 1-9. doi: 10.7606/j.issn.1000-7601.2020.03.01

    CUI H H, ZHANG G H, ZHANG Y Z, et al. Permeability characteristics of layered-heterogeneous vadose zone and influence on precipitation infiltration[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 1-9. (in Chinese with English abstract doi: 10.7606/j.issn.1000-7601.2020.03.01
    [33] AKBARIYEH S, BARTELT-HUNT S, SNOW D, et al. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux[J]. Journal of Contaminant Hydrology, 2018, 211: 15-25. doi: 10.1016/j.jconhyd.2018.02.005
    [34] 朱雅宁. 氨氮在弱透水层中的渗透迁移规律研究[D]. 长春: 吉林大学, 2011.

    ZHU Y N. Study on permeation and migration law of ammonia nitrogen in the aquitard[D]. Changchun: Jilin University, 2011. (in Chinese with English abstract
    [35] 侯珺, 周金龙, 曾妍妍, 等. 石河子地区地下水“三氮” 空间分布特征及影响因素分析[J]. 水资源与水工程学报, 2018, 29(1): 1-8. doi: 10.11705/j.issn.1672-643X.2018.01.01

    HOU J, ZHOU J L, ZENG Y Y, et al. Analysis of spatial distribution characteristics and influence factors of ammonia-N, nitrate-N and nitrite-N in groundwater in Shihezi area[J]. Journal of Water Resources and Water Engineering, 2018, 29(1): 1-8. (in Chinese with English abstract doi: 10.11705/j.issn.1672-643X.2018.01.01
    [36] 李睿冉, 刘思岐, 刘旭, 等. 基于LAWSTAC模型的植物生长条件下层状土壤水盐运移的数值模拟[J]. 节水灌溉, 2023(9): 48-56. doi: 10.12396/jsgg.2022176

    LI R R, LIU S Q, LIU X, et al. Numerical simulation of water and salt transport in subsoil under plant growth conditions based on LAWSTAC model[J]. Water Saving Irrigation, 2023(9): 48-56. (in Chinese with English abstract doi: 10.12396/jsgg.2022176
    [37] SCHERGER L E, ZANELLO V, LAFONT D, et al. Modeling ammoniacal nitrogen fate in an alkaline soil: Degradation and leachate potentiality[J]. Environmental Modeling & Assessment, 2023, 28(6): 1023-1035.
    [38] 高靖勋, 冯洪川, 祝晓彬, 等. 层状非均质结构包气带入渗过程单相流与两相流数值模拟对比研究[J]. 水文地质工程地质, 2022, 49(2): 24-32.

    GAO J X, FENG H C, ZHU X B, et al. A comparative numerical simulation study of single-phase flow and water-gas two-phase flow infiltration process in the vadose zone with the layered heterogeneous structure[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 24-32. (in Chinese with English abstract
    [39] 商放泽, 杨培岭, 任树梅. 水氮量对层状包气带土壤氮素迁移累积的影响分析[J]. 农业机械学报, 2013, 44(10): 112-121. doi: 10.6041/j.issn.1000-1298.2013.10.019

    SHANG F Z, YANG P L, REN S M. Effects of nitrogen fertilizer application and irrigation level on soil nitrogen leaching and accumulation in deep soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 112-121. (in Chinese with English abstract doi: 10.6041/j.issn.1000-1298.2013.10.019
    [40] WU S, JENG D S. Numerical modeling of solute transport in deformable unsaturated layered soil[J]. Water Science and Engineering, 2017, 10(3): 184-196. doi: 10.1016/j.wse.2017.09.001
    [41] JIA X X, ZHU Y J, HUANG L M, et al. Mineral N stock and nitrate accumulation in the 50 to 200 m profile on the Loess Plateau[J]. Science of the Total Environment, 2018, 633: 999-1006. doi: 10.1016/j.scitotenv.2018.03.249
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  114
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 录用日期:  2024-05-06
  • 修回日期:  2024-04-29
  • 网络出版日期:  2025-10-17

目录

    /

    返回文章
    返回