Geochemistry, zircon U-Pb age and Lu-Hf isotopic characteristics of Mesozoic granites in Daliuhang, Jiaodong area and their tectonic significance
-
摘要:
为了确定胶东大柳行地区中生代花岗岩岩石类型、成岩时代及其形成构造背景,探讨其与金矿成矿的关系,选取位于胶东栖霞−蓬莱金成矿带北部的中生代燕山期玲珑型花岗岩(齐家沟二长花岗岩)和郭家岭型花岗岩(崮寺店二长花岗岩),开展了地球化学、锆石U-Pb定年及Lu-Hf同位素研究。结果表明,齐家沟二长花岗岩锆石U-Pb年龄为(172.8±1.5) Ma,锆石的
ε Hf(t )值为−27.7~−20.3。崮寺店二长花岗岩锆石U-Pb年龄为(127.3±0.8) Ma,锆石的ε Hf(t )值为−15.7~−13.4,其花岗岩的87Sr/86Sr比值为0.710704 ~0.711223 ,ε Nd (t )变化范围为−16.8~−11.3。齐家沟二长花岗岩源区为古老下地壳,主要为华北克拉通下地壳,岩浆源区可能混入了扬子克拉通地壳的成分。崮寺店二长花岗岩是由下地壳镁铁质岩石部分熔融作用形成的,在形成过程中有幔源成分的加入,成岩构造背景为伸展状态,这可能是由于太平洋板块的俯冲后撤导致的。崮寺店二长花岗岩的上述特征与胶东早白垩世金矿成矿特征具有较高的协调性,暗示崮寺店二长花岗岩可能与该区金矿成矿有关。Abstract:Objective To determine the rock type, age and tectonic setting of Mesozoic granites in Daliuhang, Jiaodong area, and to explore the relationship between the granite and gold mineralization,
Methods the Mesozoic Yanshanian Linglong-type granites (Qijiagou monzonitic granite) and Guojialing-type granites (Gusidian monzonitic granite), which were located in the north of Qixia-Penglai gold metallogenic belt in eastern Jiaodong area, are selected to analyze whole-rock geochemistry, U-Pb dating and Lu-Hf isotope of zircon.
Results The results show that the U-Pb age of the zircon from Qijiagou monzonite is (172.8±1.5) Ma, with the
ε Hf(t ) values of the zircon ranging from −27.7 to −20.3. The zircon U-Pb age of Gusidian monzonitic granite is (127.3±0.8) Ma, with theε Hf(t ) values of zircon ranging from −15.7 to −13.4. The 87Sr/86Sr ratio of Gusidian monzonitic granite is0.710704 −0.711223 , with theε Nd (t ) values ranging from −16.8 to −11.3.Conclusion The Qijiagou monzonitic granite is derived from the ancient lower crust, which is mainly from the North China Craton lower crust. The magma source of Qijiagou monzonitic granite may be mixed with the Yangtze Craton crust. The Gusidian monzonitic granite forms by partial melting of mafic rocks of lower crust, with mantle components added in the process. The diagenetic tectonic background was extensional, which may be caused by the subduction and retreatment of the Pacific plate. The Gusidian monzonitic granites have high coordination with the characteristics of Early Cretaceous gold mineralization in Jiaodong area, suggesting a genetic link between this granite and local gold mineralization in this area.
-
Key words:
- Jiaodong Daliuhang area /
- Mesozoic /
- granite /
- gold deposit /
- tectonic setting
-
1. 第四系;2. 白垩系;3. 古元古界和新元古界;4. 含榴辉岩的新元古代花岗质片麻岩;5. 太古宙花岗−绿岩带;6. 白垩纪崂山型花岗岩;7. 白垩纪伟德山型花岗岩;8. 白垩纪郭家岭型花岗岩;9. 侏罗纪花岗岩类;10. 三叠纪花岗岩类;11. 整合/不整合地质界线;12. 断层;13. 蚀变岩型和网脉型金矿,石英脉型和硫化物石英脉型金矿,蚀变角砾岩型、蚀变砾岩型和层间滑脱拆离带型金矿;14. 采样点位置;15. 研究区域;16. 成矿小区;17. 地名;ME1. 胶西北成矿小区;ME2. 栖−蓬−福成矿小区;ME3. 牟−乳成矿小区;F1. 三山岛断裂;F2. 焦家断裂;F3. 招平断裂;F4. 西林−陡崖断裂;F5. 金牛山断裂
Figure 1. Regional geology and distribution of gold deposits in Jiaodong area
图 8 齐家沟及崮寺店花岗岩Sr/Y-w(Y)(a)、(La/Yb)N-YbN (b)图解(底图据文献[50])
Figure 8. Sr/Y-w(Y)(a)、(La/Yb)N-YbN (b) diagrams for Qijiagou and Gusidain granites
图 9 花岗岩εNd(t)-87Sr/86Sr(a)[56]和锆石εHf(t)-t(b)图解
DMM. 亏损地幔;EM1. 富集地幔1型端元;EM2. 富集地幔2型端元
Figure 9. εNd(t)-87Sr/86Sr diagram of granite (a) and εHf(t)-t diagram of zircon (b)
表 1 齐家沟、崮寺店花岗岩全岩主量元素、微量元素测试结果
Table 1. Major elements and trace elements test results of whole rock for Qijiagou and Gusidian granites
样品号 QJG-YT-2 QJG-YT-3 QJG-YT-8 LX1-D001 LX1-D002 LX1-D005-1 LX2-D007 LX2-D008 LX2-D008 LX2-D009 LX2-D010 LX2-D012 SiO2 wB/% 71.86 71.45 70.98 72.15 70.79 69.64 71.92 71.40 72.38 71.91 71.04 72.26 TiO2 0.21 0.24 0.25 0.23 0.30 0.27 0.17 0.20 0.17 0.17 0.16 0.18 Al2O3 15.04 15.02 15.36 15.00 15.12 15.52 15.14 15.02 14.78 15.22 15.72 15.36 TFe2O3 2.00 2.04 2.48 1.58 1.99 1.88 1.72 1.95 1.63 1.62 1.57 1.76 MnO 0.04 0.05 0.05 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 CaO 2.49 2.20 2.53 2.17 2.49 2.38 2.06 2.13 1.91 1.98 1.93 2.07 Na2O 3.78 3.80 3.87 4.21 4.29 4.33 3.96 3.92 3.98 3.88 3.81 3.97 K2O 3.52 3.74 3.36 3.87 3.60 3.89 3.92 3.75 3.72 4.13 4.79 3.98 MgO 0.42 0.41 0.47 0.80 1.05 0.95 0.25 0.30 0.23 0.25 0.25 0.27 P2O5 0.07 0.07 0.09 0.08 0.10 0.09 0.04 0.05 0.04 0.04 0.04 0.04 损失量 0.64 0.55 0.68 0.49 0.53 0.79 0.60 0.63 0.44 0.63 0.45 0.36 总计 100.07 99.57 100.12 100.61 100.29 99.77 99.82 99.39 99.32 99.87 99.80 100.29 Mg# 29.40 28.50 27.30 50.10 51.10 50.00 A/NK 1.50 1.46 1.53 1.35 1.38 1.37 1.41 1.43 1.40 1.40 1.37 1.42 A/CNK 1.03 1.05 1.05 0.99 0.98 0.99 1.04 1.04 1.05 1.05 1.05 1.05 Li wB/10−6 34.1 29.3 26.0 27.1 28.8 28.8 34.2 27.2 25.8 32.2 30.0 30.5 Be 1.59 1.83 1.67 2.45 2.55 2.95 2.51 2.32 2.52 2.23 2.24 2.17 Sc 1.51 0.94 2.00 2.50 3.61 3.11 1.06 0.92 0.60 0.92 0.86 0.82 V 7.51 6.77 7.72 23.50 30.10 29.60 2.60 3.19 2.87 2.35 2.34 2.76 Cr 1.45 1.28 1.56 15.40 21.50 20.60 0.72 0.64 0.62 0.67 0.55 0.37 Co 106.0 110.0 82.0 64.6 66.5 113.0 100.0 99.8 64.0 85.8 97.6 57.5 Ni 5.79 5.48 5.07 11.20 14.10 16.00 5.29 4.96 3.63 4.74 4.98 3.31 Cu 0.64 0.65 1.22 0.76 0.68 1.08 1.24 12.1 2.73 0.91 1.18 0.36 Zn 48.7 51.7 62.4 37.7 46.7 46.6 69.2 74.1 69.1 62.9 55.8 62.5 Ga 19.3 20.5 20.9 22.2 22.7 24.1 23.5 22.2 23.2 22.3 22.0 22.5 Rb 107 145 109 104 92.3 107 149 152 157 154 172 154 Sr 642 558 608 960 1016 1040 561 596 536 611 599 585 Y 6.58 7.80 7.57 5.74 6.83 6.67 8.70 10.30 9.57 7.76 9.83 8.79 Zr 143 150 133 125 122 129 170 167 155 152 160 144 Nb 9.00 12.20 13.30 4.61 5.20 5.49 21.80 19.40 19.20 15.90 16.80 17.10 Sn 1.66 1.18 1.45 0.77 0.99 0.86 1.47 1.73 1.59 1.59 1.54 1.50 Cs 1.30 1.75 1.21 2.49 1.64 2.55 2.20 3.09 3.42 2.64 2.61 2.56 Ba 1318 1579 1340 1242 1400 1577 1604 1802 1549 1832 2210 1652 La 28.8 35.5 34.8 27.5 36.6 35.7 43.7 46.1 37.7 45.5 45.3 41.5 Ce 51.6 64.0 62.2 50.7 66.9 64.3 75.3 79.1 65.5 78.8 78.4 71.1 Pr 5.22 6.49 6.23 5.42 7.18 6.76 7.65 8.01 6.71 7.86 7.79 7.24 Nd 19.0 23.5 22.4 20.1 26.3 25.0 25.6 26.5 22.2 26.1 25.4 24.3 Sm 3.13 3.71 3.36 3.09 3.85 3.94 3.81 3.88 3.29 3.77 3.60 3.62 Eu 0.91 1.03 0.98 0.80 1.03 1.01 0.99 1.06 0.91 1.06 1.04 1.02 Gd 2.07 2.60 2.32 2.09 2.48 2.52 2.69 2.96 2.60 2.59 2.66 2.62 Tb 0.25 0.30 0.27 0.25 0.28 0.28 0.33 0.36 0.37 0.34 0.36 0.32 Dy 1.27 1.60 1.42 1.15 1.32 1.29 1.62 1.80 1.79 1.52 1.79 1.60 Ho 0.24 0.28 0.25 0.18 0.23 0.23 0.26 0.32 0.27 0.24 0.28 0.24 Er 0.60 0.67 0.64 0.49 0.59 0.58 0.62 0.82 0.69 0.58 0.78 0.62 Tm 0.091 0.100 0.094 0.077 0.088 0.080 0.086 0.100 0.093 0.074 0.089 0.081 Yb 0.54 0.47 0.53 0.47 0.60 0.53 0.47 0.62 0.49 0.45 0.57 0.51 Lu 0.088 0.090 0.096 0.067 0.076 0.080 0.069 0.087 0.087 0.058 0.082 0.065 Hf 4.25 4.35 3.71 3.68 3.53 3.75 4.85 4.60 4.78 4.19 4.36 4.12 Ta 0.90 0.98 0.75 0.47 0.52 0.60 1.62 1.66 1.18 1.22 1.44 1.24 Tl 0.64 0.89 0.76 0.63 0.55 0.67 0.86 0.88 0.94 0.90 0.97 0.89 Pb wB/10−6 29.3 30.5 27.7 39.7 35.3 42.3 37.6 36.8 38.8 36.5 42.2 38.4 Th 6.52 7.87 7.39 8.13 11.20 10.60 9.01 9.31 8.92 9.31 8.78 8.78 U 1.58 1.79 1.58 1.32 3.80 2.66 2.44 3.18 1.69 1.43 2.39 1.44 Eu/Eu* 1.03 0.96 1.02 0.91 0.95 0.91 0.90 0.92 0.92 0.98 0.98 0.97 Sr/Y 97.54 71.49 80.38 167.23 148.61 156.00 64.48 57.86 56.01 78.74 60.94 66.55 (La/Yb)N 38.49 53.76 46.86 42.12 43.90 48.72 66.69 53.33 55.19 72.53 57.01 58.37 (Gd/Yb)N 3.17 4.58 3.62 3.68 3.42 3.93 4.73 3.95 4.39 4.76 3.86 4.25 表 2 角闪石电子探针分析数据
Table 2. Electron microprobe analytical data of hornblende
wB/% 序号 K2O CaO TiO2 F Al2O3 Na2O MgO SiO2 FeO MnO Cr2O3 NiO 总计 1 1.26 11.51 0.78 0.32 9.04 1.45 9.89 43.45 18.71 0.48 0.02 0 96.74 2 1.25 11.64 0.73 0.35 8.96 1.52 9.91 43.29 18.83 0.46 0.04 0 96.82 3 1.26 11.61 0.71 0.37 8.96 1.34 9.90 43.92 18.82 0.51 0.04 0 97.28 4 1.19 11.59 0.74 0.35 8.85 1.53 10.13 43.98 18.49 0.43 0.01 0.02 97.14 5 1.25 11.90 0.67 0.35 9.00 1.45 10.10 43.77 18.59 0.47 0.07 0 97.46 6 1.31 11.90 0.30 0.42 9.63 1.70 9.85 42.89 19.54 0.51 0.10 0 97.98 7 1.28 11.85 0.28 0.42 9.57 1.50 9.69 43.35 19.44 0.46 0.04 0.05 97.76 8 1.51 11.56 0.43 0.39 10.19 1.64 9.38 42.55 19.63 0.46 0.08 0.05 97.69 9 1.47 11.69 0.43 0.44 10.38 1.65 9.36 42.50 19.54 0.48 0.06 0.07 97.86 10 1.44 11.53 0.41 0.40 10.24 1.53 9.40 42.99 19.65 0.48 0.09 0.05 98.04 11 1.35 11.60 0.66 0.39 9.58 1.69 9.49 42.96 18.65 0.50 0.22 0 96.94 12 1.29 11.58 0.68 0.40 9.29 1.59 9.87 43.59 18.67 0.45 0.23 0 97.47 13 1.29 11.64 0.66 0.36 9.70 1.51 9.53 42.80 18.89 0.48 0.26 0 96.98 14 1.13 11.44 0.69 0.33 9.68 1.80 9.58 43.17 19.18 0.49 0.21 0 97.55 15 1.15 11.68 0.64 0.39 9.66 1.61 9.86 43.41 18.75 0.47 0.22 0.06 97.73 16 1.34 11.54 0.75 0.41 9.78 1.61 9.59 43.06 18.87 0.52 0.23 0.07 97.59 17 1.31 11.60 0.71 0.34 9.90 1.64 9.42 42.69 19.18 0.46 0.21 0.01 97.32 18 1.43 11.75 0.64 0.38 9.86 1.43 9.53 42.68 19.29 0.50 0.26 0.03 97.61 19 1.28 11.56 0.71 0.37 9.55 1.52 9.59 43.10 18.62 0.48 0.23 0 96.85 20 1.30 11.67 0.71 0.35 9.59 1.58 9.69 43.24 18.89 0.51 0.26 0.08 97.72 21 1.20 11.67 0.72 0.35 9.46 1.60 9.71 43.17 18.72 0.45 0.20 0.06 97.15 22 1.22 11.63 0.82 0.38 9.45 1.63 9.78 43.24 18.50 0.50 0.16 0.02 97.16 23 1.26 11.68 0.81 0.34 9.72 1.62 9.59 42.72 18.92 0.47 0.24 0 97.22 24 1.35 11.71 0.82 0.33 9.58 1.49 9.68 43.07 18.67 0.46 0.18 0.07 97.25 25 1.36 11.53 0.75 0.39 9.56 1.59 9.65 43.19 18.67 0.49 0.15 0.09 97.25 26 1.37 11.69 0.77 0.35 9.62 1.51 9.58 43.36 18.78 0.5 0.15 0.02 97.54 27 1.39 11.78 0.77 0.35 9.49 1.48 9.65 43.28 18.66 0.49 0.22 0.06 97.46 28 1.29 11.74 0.72 0.38 9.59 1.57 9.92 43.44 19.03 0.45 0.20 0.05 98.22 29 1.39 11.81 0.51 0.44 9.77 1.45 9.78 43.71 19.31 0.48 0.15 0.01 98.62 30 1.85 11.23 0.49 0.38 10.20 1.31 9.82 43.17 19.32 0.44 0.16 0 98.20 31 1.28 11.72 0.70 0.35 9.15 1.58 9.82 43.87 18.51 0.46 0.11 0 97.40 32 1.33 11.81 0.61 0.38 9.44 1.51 9.77 43.46 19.03 0.49 0.06 0.04 97.76 33 1.39 11.83 0.55 0.40 9.73 1.42 9.54 43.03 19.28 0.45 0.04 0.02 97.52 34 1.33 11.64 0.65 0.36 9.42 1.52 9.73 43.21 18.96 0.51 0.03 0.01 97.23 35 1.38 11.67 0.70 0.35 9.35 1.56 9.59 43.20 18.68 0.44 0.04 0.02 96.83 36 1.31 11.68 0.69 0.31 9.29 1.52 9.75 43.12 18.82 0.50 0.03 0 96.89 37 1.34 11.69 0.71 0.38 9.25 1.58 9.82 43.70 18.65 0.48 0.02 0.02 97.48 38 1.36 11.56 0.68 0.34 9.37 1.55 9.86 43.45 18.93 0.47 0.04 0 97.45 表 3 斜长石电子探针分析数据
Table 3. Electron microprobe analytical data of plagioclase
wB/% 序号 K2O CaO TiO2 Na2O Al2O3 SiO2 MgO MnO FeO 总计 1 0.14 3.38 0 9.61 21.99 64.01 0 0 0.09 99.23 2 0.17 3.59 0 9.58 22.26 64.07 0 0.02 0.08 99.75 3 0.13 3.52 0.01 9.55 22.42 64.17 0 0 0.06 99.86 4 0.10 3.47 0.01 9.62 21.97 64.15 0 0 0.06 99.38 5 0.53 4.90 0.01 8.72 23.28 61.34 0 0 0.07 98.84 6 0.11 5.72 0 8.27 24.04 61.21 0 0 0.04 99.40 7 0.11 4.78 0 8.91 23.24 62.20 0.01 0 0.08 99.34 8 0.31 4.20 0 8.59 22.77 60.57 0.09 0 0.12 96.64 9 0.15 4.70 0 8.98 23.12 62.27 0 0.02 0.04 99.28 10 0.13 4.55 0 9.07 23.16 62.68 0 0 0.06 99.65 11 0.21 4.77 0 9.49 22.83 61.17 0.02 0.02 0.06 98.56 12 0.13 4.62 0 9.00 23.13 62.16 0.01 0.01 0.07 99.13 13 0.17 4.40 0 8.96 23.06 61.90 0.03 0 0.08 98.60 14 0.16 4.49 0 8.98 22.98 62.31 0.01 0 0.03 98.95 15 0.15 4.74 0 8.93 23.27 62.64 0 0 0.05 99.77 16 0.22 4.71 0 8.85 23.32 62.41 0 0 0.09 99.60 17 0.16 4.32 0 9.05 22.94 63.16 0.02 0 0.09 99.74 18 0.18 4.66 0 8.95 22.99 62.34 0 0.02 0.1 99.23 19 0.16 4.72 0 8.93 23.24 62.39 0.01 0.01 0.09 99.54 20 0.23 4.72 0 8.87 23.11 62.70 0.01 0 0.05 99.68 表 4 齐家沟及崮寺店花岗岩锆石LA-ICP-MS U-Pb年龄分析结果
Table 4. LA-ICP-MS zircon U-Pb analytical results for Qijiagou and Gusidian granites
点号 Th U 同位素比值 年龄/Ma wB/10−6 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ QJGYT-1-01 187 1553 0.0496 ±0.0013 0.1863 ±0.0050 0.0268 ±0.0004 176±65 174±4 170±2 QJGYT-1-03 206 1125 0.0535 ±0.0015 0.2032 ±0.0053 0.0272 ±0.0003 350±61 188±4 173±2 QJGYT-1-04 83 853 0.0519 ±0.0015 0.1942 ±0.0053 0.0268 ±0.0003 280±65 180±4 171±2 QJGYT-1-05 143 1660 0.0506 ±0.0012 0.1925 ±0.0045 0.0272 ±0.0003 220±56 179±4 173±2 QJGYT-1-06 137 719 0.0496 ±0.0018 0.1922 ±0.0067 0.0282 ±0.0006 172±85 179±6 179±4 QJGYT-1-07 103 904 0.0537 ±0.0016 0.2113 ±0.0060 0.0283 ±0.0004 367±67 195±5 180±3 QJGYT-1-08 105 679 0.0502 ±0.0017 0.1872 ±0.0062 0.0268 ±0.0003 211±78 174±5 171±2 QJGYT-1-09 193 905 0.0513 ±0.0015 0.2012 ±0.0058 0.0282 ±0.0004 254±65 186±5 179±2 QJGYT-1-10 246 1538 0.0513 ±0.0013 0.1918 ±0.0047 0.0268 ±0.0003 254±57 178±4 171±2 QJGYT-1-11 153 5526 0.0504 ±0.0010 0.1937 ±0.0039 0.0276 ±0.0003 217±46 180±3 176±2 QJGYT-1-12 142 1546 0.0488 ±0.0012 0.1811 ±0.0045 0.0267 ±0.0003 200±59 169±4 170±2 QJGYT-1-13 179 1460 0.0499 ±0.0011 0.1880 ±0.004 4 0.0271 ±0.0003 191±21 175±4 172±2 QJGYT-1-14 247 1137 0.0501 ±0.0013 0.1867 ±0.0051 0.0268 ±0.0003 211±31 174±4 171±2 QJGYT-1-15 289 1288 0.0499 ±0.0013 0.1848 ±0.0047 0.0267 ±0.0003 191±59 172±4 170±2 QJGYT-1-16 356 1322 0.0497 ±0.0014 0.1906 ±0.0054 0.0277 ±0.0003 183±69 177±5 176±2 QJGYT-1-17 153 1670 0.0516 ±0.0013 0.1912 ±0.0051 0.0267 ±0.0003 333±59 178±4 170±2 QJGYT-1-18 124 1219 0.0488 ±0.0015 0.1795 ±0.0055 0.0266 ±0.0003 200±70 168±5 169±2 QJGYT-1-19 369 1615 0.0531 ±0.0014 0.1973 ±0.0057 0.0267 ±0.0003 345±61 183±5 170±2 QJGYT-1-20 173 3170 0.0551 ±0.0023 0.2130 ±0.0080 0.0283 ±0.0003 417±94 196±7 180±2 QJGYT-1-21 80 754 0.0485 ±0.0014 0.1817 ±0.0054 0.0271 ±0.0003 124±69 169±5 172±2 QJGYT-1-22 452 1631 0.049± 0.0012 0.1885 ±0.0046 0.0277 ±0.0003 146±56 175±4 176±2 LX1-D005-2-01 187 644 0.0502 ±0.0018 0.1384 ±0.0048 0.0197 ±0.0003 211±85 132±4 126±2 LX1-D005-2-02 10 23 0.0512 ±0.0079 0.16± 0.0197 0.0238 ±0.0007 254±318 151±17 152±4 LX1-D005-2-04 125 201 0.1666 ±0.0034 11.2785 ±0.2242 0.4822 ±0.0062 2524 ±342546 ±192537 ±27LX1-D005-2-05 232 726 0.0486 ±0.0015 0.138± 0.0044 0.0202 ±0.0003 128±72 131±4 129±2 LX1-D005-2-06 157 471 0.0513 ±0.0019 0.1435 ±0.0051 0.0201 ±0.0003 254±87 136±5 128±2 LX1-D005-2-07 236 402 0.05± 0.0019 0.1383 ±0.0052 0.0198 ±0.0003 195±87 132±5 126±2 LX1-D005-2-08 207 352 0.0523 ±0.0023 0.1452 ±0.0059 0.02± 0.0003 298±100 138±5 128±2 LX1-D005-2-09 190 456 0.0495 ±0.0023 0.1406 ±0.0054 0.0203 ±0.0003 172±107 134±5 129±2 LX1-D005-2-10 182 307 0.0511 ±0.0022 0.164± 0.0068 0.023± 0.0004 256±100 154±6 147±2 LX1-D005-2-11 303 644 0.0483 ±0.0017 0.1393 ±0.0047 0.0206 ±0.0003 122±82 132±4 132±2 LX1-D005-2-12 255 414 0.0482 ±0.0020.1337 ±0.0058 0.0198 ±0.0004 122±100 127±5 126±2 LX1-D005-2-13 160 305 0.0516 ±0.0023 0.1425 ±0.0060.0199 ±0.0003 265±101 135±5 127±2 LX1-D005-2-14 168 584 0.0504 ±0.0022 0.1373 ±0.0055 0.0195 ±0.0003 213±100 131±5 125±2 LX1-D005-2-15 276 606 0.0512 ±0.0017 0.1401 ±0.0045 0.0196 ±0.0003 256±78 133±4 125±2 LX1-D005-2-16 345 939 0.049± 0.0015 0.1357 ±0.0040.0197 ±0.0003 150±70 129±4 126±2 LX1-D005-2-17 220 549 0.0504 ±0.0018 0.1406 ±0.0047 0.02± 0.0003 213±86 134±4 128±2 LX1-D005-2-18 270 521 0.0502 ±0.0020.141± 0.0054 0.0201 ±0.0003 206±86 134±5 128±2 LX1-D005-2-19 212 451 0.0461 ±0.0021 0.1318 ±0.0059 0.0204 ±0.0003 400±291 126±5 130±2 注:1σ. 1倍标准偏差,下同 表 5 崮寺店花岗岩全岩Sr-Nd同位素分析结果
Table 5. Sr-Nd analytical results for Gusidian granite
送样编号 87Sr/86Sr 2σ 84Sr/86Sr 2σ 143Nd/144Nd 2σ 145Nd/144Nd 2σ 147Sm/144Nd 2σ εNd(t) T2DM T1DM GSD-1 0.710720 0.00005 0.0569 0.0002 0.511982 0.00003 0.348438 0.00002 0.104425 0.0004 −11.3 1838 1629 GSD-2 0.710726 0.00006 0.0573 0.0002 0.511756 0.00004 0.348435 0.00002 0.10778 0.0002 −15.8 2198 2003 GSD-3 0.710795 0.00005 0.0572 0.0002 0.511776 0.00005 0.348421 0.00003 0.109635 0.0002 −15.4 2169 2009 GSD-4 0.710836 0.00006 0.0575 0.0002 0.511773 0.00004 0.348446 0.00002 0.103882 0.0001 −15.4 2165 1908 GSD-5 0.711223 0.00005 0.0568 0.0002 0.511721 0.00004 0.348417 0.00003 0.130596 0.0005 −16.8 2283 2613 GSD-6 0.710739 0.00006 0.0569 0.0002 0.511759 0.00004 0.348385 0.00002 0.102936 0.0002 −15.6 2187 1912 GSD-7 0.710721 0.00006 0.0578 0.00003 0.511847 0.00004 0.348417 0.00002 0.112672 0.0002 −14.1 2061 1963 GSD-8 0.710704 0.00005 0.0578 0.00003 0.511905 0.00004 0.348402 0.00002 0.103901 0.0001 −12.8 1958 1727 GSD-9 0.710796 0.00005 0.0577 0.00003 0.511890 0.00004 0.348391 0.00002 0.107839 0.0002 −13.1 1986 1812 注:2σ. 2倍标准偏差;T2DM. 亏损地幔二阶段模式年龄;T1DM. 亏损地幔一阶段模式年龄;t. 年龄;下同 表 6 齐家沟及崮寺店花岗岩锆石Hf同位素分析结果
Table 6. Zircon Hf isotope analytical results for Qijiagou and Gusidian granites
点号 176Lu/177Hf 1σ 176Yb/177Hf 1σ 176Hf/177Hf 1σ 年龄/Ma εHf(0) εHf(t) T1DM T2DM fLu/Hf QJGYT-1-01 0.001033 0.0000021 0.033712 0.000133 0.281887 0.000015 170 −31.3 −27.7 1918 3694 −0.97 QJGYT-1-03 0.001065 0.0000059 0.035737 0.000163 0.282012 0.000013 173 −26.9 −23.2 1747 3343 −0.97 QJGYT-1-04 0.001056 0.0000037 0.033631 0.000139 0.282059 0.000013 171 −25.2 −21.6 1681 3214 −0.97 QJGYT-1-05 0.001285 0.0000176 0.043678 0.000733 0.282095 0.000012 173 −23.9 −20.3 1641 3113 −0.96 QJGYT-1-06 0.000652 0.0000045 0.020928 0.000176 0.282056 0.000016 179 −25.3 −21.5 1668 3212 −0.98 QJGYT-1-07 0.001081 0.0000051 0.035119 0.000091 0.28192 0.000016 180 −30.1 −26.3 1875 3593 −0.97 QJGYT-1-08 0.0008 0.0000023 0.026124 0.000083 0.28206 0.000012 171 −25.2 −21.5 1669 3210 −0.98 QJGYT-1-09 0.000744 0.0000033 0.024988 0.00018 0.282033 0.000013 179 −26.1 −22.3 1704 3276 −0.98 QJGYT-1-10 0.001115 0.0000059 0.036864 0.000206 0.282001 0.000028 171 −27.3 −23.6 1765 3377 −0.97 QJGYT-1-11 0.001082 0.0000067 0.035849 0.000115 0.282058 0.000021 176 −25.3 −21.5 1685 3214 −0.97 QJGYT-1-12 0.001328 0.0000023 0.042811 0.000101 0.282098 0.00002 170 −23.8 −20.3 1639 3108 −0.96 QJGYT-1-13 0.000864 0.0000064 0.028647 0.000302 0.282002 0.000014 172 −27.2 −23.6 1752 3371 −0.97 QJGYT-1-14 0.000738 0.0000024 0.023763 0.000105 0.282034 0.000013 171 −26.1 −22.4 1702 3282 −0.98 QJGYT-1-15 0.001192 0.0000072 0.035984 0.000369 0.282009 0.000017 170 −27.0 −23.4 1757 3356 −0.96 QJGYT-1-16 0.001259 0.0000049 0.040555 0.000093 0.282025 0.000017 176 −26.4 −22.7 1738 3306 −0.96 QJGYT-1-17 0.00101 0.0000026 0.033296 0.000105 0.282035 0.000019 170 −26.1 −22.4 1713 3282 −0.97 QJGYT-1-18 0.00112 0.0000023 0.032995 0.000162 0.281996 0.00002 169 −27.5 −23.9 1772 3394 −0.97 QJGYT-1-19 0.001076 0.0000034 0.032613 0.000231 0.282062 0.000016 170 −25.1 −21.5 1678 3207 −0.97 QJGYT-1-20 0.001352 0.0000113 0.03837 0.000212 0.282057 0.000012 180 −25.3 −21.5 1698 3214 −0.96 QJGYT-1-21 0.001156 0.0000101 0.036895 0.000402 0.282046 0.000018 172 −25.7 −22.0 1705 3251 −0.97 QJGYT-1-22 0.001289 0.0000048 0.044307 0.000242 0.282048 0.000026 176 −25.6 −21.9 1707 3241 −0.96 LX1-D005-2-01 0.000346 0.0000028 0.008841 0.000049 0.282295 0.000012 126 −16.9 −14.1 1328 2593 −0.99 LX1-D005-2-05 0.000474 0.0000052 0.012201 0.000152 0.282298 0.000013 129 −16.8 −14.0 1328 2583 −0.99 LX1-D005-2-06 0.000508 0.0000012 0.013008 0.000059 0.282296 0.000013 128 −16.8 −14.1 1332 2588 −0.98 LX1-D005-2-07 0.000596 0.0000031 0.015937 0.000053 0.282299 0.000013 126 −16.7 −14.0 1331 2583 −0.98 LX1-D005-2-08 0.000693 0.0000022 0.019953 0.00012 0.282313 0.000014 128 −16.2 −13.5 1315 2543 −0.98 LX1-D005-2-09 0.000531 0.000008 0.015127 0.000047 0.282298 0.000011 129 −16.8 −14.0 1330 2583 −0.98 LX1-D005-2-11 0.000405 0.0000012 0.010669 0.00008 0.28225 0.000016 132 −18.5 −15.6 1392 2714 −0.99 LX1-D005-2-12 0.000501 0.0000012 0.012471 0.000107 0.282281 0.000012 126 −17.3 −14.6 1352 2632 −0.98 LX1-D005-2-13 0.000582 0.0000017 0.016195 0.000092 0.282316 0.000012 127 −16.1 −13.4 1306 2533 −0.98 LX1-D005-2-14 0.000532 0.0000014 0.014564 0.000041 0.282314 0.000012 125 −16.2 −13.5 1307 1662 −0.98 LX1-D005-2-15 0.000495 0.0000011 0.013085 0.000098 0.282258 0.000014 125 −18.2 −15.5 1384 1764 −0.99 LX1-D005-2-16 0.000539 0.0000076 0.014522 0.000135 0.282259 0.000012 126 −18.1 −15.4 1384 1761 −0.98 LX1-D005-2-17 0.0006 0.0000018 0.015607 0.000056 0.28225 0.000016 128 −18.5 −15.7 1399 1778 −0.98 LX1-D005-2-18 0.000393 0.0000026 0.010592 0.00007 0.282305 0.000012 128 −16.5 −13.7 1315 1677 −0.99 LX1-D005-2-19 0.00064 0.0000012 0.017028 0.000055 0.282264 0.000014 130 −18.0 −15.2 1381 1752 −0.98 注:fLu/Hf. 描述岩石或矿物中Lu/Hf比值相对于球粒陨石标准化值(CHUR)的偏差参数 -
[1] 于晓卫, 王来明, 刘汉栋, 等. 胶东地区早白垩世郭家岭期花岗岩[J]. 山东国土资源, 2021, 37(9): 12-25.YU X W, WANG L M, LIU H D, et al. Study on Early Cretaceous Guojialing granite in Jiaodong area[J]. Shandong Land and Resources, 2021, 37(9): 12-25. (in Chinese with English abstract [2] 邱连贵, 任凤楼, 曹忠祥, 等. 胶东地区晚中生代岩浆活动及对大地构造的制约[J]. 大地构造与成矿学, 2008, 32(1): 117-123.QIU L G, REN F L, CAO Z X, et al. Late Mesozoic magmatic activities and their constraints on geotectonics of Jiaodong region[J]. Geotectonica et Metallogenia, 2008, 32(1): 117-123. (in Chinese with English abstract [3] 豆敬兆, 付顺, 张华锋. 胶东郭家岭岩体固结冷却轨迹与隆升剥蚀[J]. 岩石学报, 2015, 31(8): 2325-2336.DOU J Z, FU S, ZHANG H F. Consolidation and cooling paths of the Guojialing granodiorites in Jiaodong Peninsula: Implication for crustal uplift and exhumation[J]. Acta Petrologica Sinica, 2015, 31(8): 2325-2336. (in Chinese with English abstract [4] HOU M L, JIANG Y H, JIANG S Y, et al. Contrasting origins of Late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, East China: Implications for crustal thickening to delamination[J]. Geological Magazine, 2007, 144(4): 619-631. doi: 10.1017/S0016756807003494 [5] CHEN B, JAHN B M, SUZUKI K. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications[J]. Geology, 2013, 41(1): 91-94. doi: 10.1130/G33472.1 [6] SONG M C, LI S Z, SANTOSH M, et al. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton[J]. Ore Geology Reviews, 2015, 65: 612-625. doi: 10.1016/j.oregeorev.2014.06.019 [7] 阳琼艳. 胶东玲珑金矿中生代岩浆作用与金成矿动力学研究[D]. 北京: 中国地质大学(北京), 2013: 70-81.YANG Q Y. Mesozoic magmatism and metalogeny geodynamics of Linglong gold deposit in Jiaodong Peninsula, eastern North China Craton[D]. Beijing: China University of Geosciences (Beijing), 2013: 70-81. (in Chinese with English abstract [8] ZHANG L, WEINBERG R F, YANG L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at (120±2) Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441. doi: 10.5382/econgeo.4716 [9] DENG J, QIU K F, WANG Q F, et al. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685. doi: 10.5382/econgeo.4711 [10] 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467.YANG L Q, DENG J, WANG Z L, et al. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 2014, 30(9): 2447-2467. (in Chinese with English abstract [11] 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学(地球科学), 2015, 45(8): 1153-1168. doi: 10.1360/zd2015-45-8-1153ZHU R X, FAN H R, LI J W, et al. Decratonic gold deposits[J]. Scientia Sinica (Terrae), 2015, 45(8): 1153-1168. (in Chinese with English abstract doi: 10.1360/zd2015-45-8-1153 [12] 范宏瑞, 冯凯, 李兴辉, 等. 胶东−朝鲜半岛中生代金成矿作用[J]. 岩石学报, 2016, 32(10): 3225-3238.FAN H R, FENG K, LI X H, et al. Mesozoic gold mineralization in the Jiaodong and Korean Peninsulas[J]. Acta Petrologica Sinica, 2016, 32(10): 3225-3238. (in Chinese with English abstract [13] 范宏瑞, 蓝廷广, 李兴辉, 等. 胶东金成矿系统的末端效应[J]. 中国科学(地球科学), 2021, 51(9): 1504-1523. doi: 10.1360/SSTe-2020-0335FAN H R, LAN T G, LI X H, et al. Conditions and processes leading to large-scale gold deposition in the Jiaodong province, eastern China[J]. Scientia Sinica (Terrae), 2021, 51(9): 1504-1523. (in Chinese with English abstract doi: 10.1360/SSTe-2020-0335 [14] 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236.SONG M C, LIN S Y, YANG L Q, et al. Metallogenic model of Jiaodong Peninsula gold deposits[J]. Mineral Deposits, 2020, 39(2): 215-236. (in Chinese with English abstract [15] MA W D, FAN H R, LIU X, et al. Geochronological framework of the Xiadian gold deposit in the Jiaodong province, China: Implications for the timing of gold mineralization[J]. Ore Geology Reviews, 2017, 86: 196-211. doi: 10.1016/j.oregeorev.2017.02.016 [16] YANG K F, JIANG P, FAN H R, et al. Tectonic transition from a compressional to extensional metallogenic environment at ~120 Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton[J]. Journal of Asian Earth Sciences, 2018, 160: 408-425. doi: 10.1016/j.jseaes.2017.08.014 [17] 翟明国, 范宏瑞, 杨进辉, 等. 非造山带型金矿: 胶东型金矿的陆内成矿作用[J]. 地学前缘, 2004, 11(1): 85-98.ZHAI M G, FAN H R, YANG J H, et al. Large-scale cluster of gold deposits in East Shandong: Anorogenic metallogenesis[J]. Earth Science Frontiers, 2004, 11(1): 85-98. (in Chinese with English abstract [18] GOLDFARB R J, GROVES D I. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. doi: 10.1016/j.lithos.2015.07.011 [19] GOLDFARB R J, HART C, DAVIS G, et al. East Asian gold: Deciphering the anomaly of Phanerozoic gold in Precambrian cratons[J]. Economic Geology, 2007, 102(3): 341-345. doi: 10.2113/gsecongeo.102.3.341 [20] GROVES D I, SANTOSH M. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?[J]. Geoscience Frontiers, 2016, 7(3): 409-417. doi: 10.1016/j.gsf.2015.08.002 [21] LI L, SANTOSH M, LI S R. The 'Jiaodong type' gold deposits: Characteristics, origin and prospecting[J]. Ore Geology Reviews, 2015, 65: 589-611. doi: 10.1016/j.oregeorev.2014.06.021 [22] WANG L G, QIU Y M, MCNAUGHTON N J, et al. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 275-291. [23] YANG L Q, DENG J, WANG Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. doi: 10.2113/econgeo.111.1.105 [24] 陈衍景, Franco PIRAJNO, 赖勇, 等. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 2004, 20(4): 907-922.CHEN Y J, PIRAJNO F, LAI Y, et al. Metallogenic time and tectonic settong of the Jiaodong gold province, esatern China[J]. Acta Petrologica Sinica, 2004, 20(4): 907-922. (in Chinese with English abstract [25] 蒋少涌, 戴宝章, 姜耀辉, 等. 胶东和小秦岭: 两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25(11): 2727-2738.JIANG S Y, DAI B Z, JIANG Y H, et al. Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different tectonic settings[J]. Acta Petrologica Sinica, 2009, 25(11): 2727-2738. (in Chinese with English abstract [26] DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: Lithospheric extension in the North China Craton, eastern Asia[J]. GSA Bulletin, 2017, 129(11/12): 1379-1407. [27] WU F Y, YANG J H, XU Y G, et al. Destruction of the North China Craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 173-195. doi: 10.1146/annurev-earth-053018-060342 [28] 邓军, 杨立强, 葛良胜, 等. 胶东矿集区形成的构造体制研究进展[J]. 自然科学进展, 2006, 16(5): 513-518.DENG J, YANG L Q, GE L S, et al. Research progress on structural system of Jiaodong ore concentration area[J]. Progress in Natural Science, 2006, 16(5): 513-518. (in Chinese with English abstract [29] 霍腾飞, 杨德彬, 师江朋, 等. 华北地块中部早白垩世富碱侵入岩的成因: 锆石U-Pb年代学和Sr-Nd-Hf同位素制约[J]. 岩石学报, 2016, 32(3): 697-712.HUO T F, YANG D B, SHI J P, et al. Petrogenesis of the Early Cretaceous alkali-rich intrusive rocks in the central North China Block: Constraints from zircon U-Pb chronology and Sr-Nd-Hf isotopes[J]. Acta Petrologica Sinica, 2016, 32(3): 697-712. (in Chinese with English abstract [30] 宋明春. 胶东型金矿及其成矿的构造岩浆背景[J]. 矿床地质, 2014, 33(增刊1): 131-132.SONG M C. Jiaodong-type gold deposit and its metallogenic tectonic magmatic background[J]. Mineral Deposits, 2014, 33(S1): 131-132. [31] 徐义刚, 李洪颜, 庞崇进, 等. 论华北克拉通破坏的时限[J]. 科学通报, 2009, 54(14): 1974-1989. doi: 10.1360/csb2009-54-14-1974XU Y G, LI H Y, PANG C J, et al. On the time limit of destruction of North China Craton[J]. Chinese Science Bulletin, 2009, 54(14): 1974-1989. (in Chinese with English abstract doi: 10.1360/csb2009-54-14-1974 [32] 朱日祥, 陈凌, 吴福元, 等. 华北克拉通破坏的时间、范围与机制[J]. 中国科学(地球科学), 2011, 41(5): 583-592. doi: 10.1360/zd-2011-41-5-583ZHU R X, CHEN L, WU F Y, et al. Time, scope and mechanism of North China Craton destruction[J]. Scientia Sinica (Terrae), 2011, 41(5): 583-592. (in Chinese with English abstract doi: 10.1360/zd-2011-41-5-583 [33] SUN W D, DING X, HU Y H, et al. The golden transformation of the Cretaceous plate subduction in the West Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542. [34] ZHENG Y F, MAO J W, CHEN Y J, et al. Hydrothermal ore deposits in collisional orogens[J]. Science Bulletin, 2019, 64(3): 205-212. doi: 10.1016/j.scib.2019.01.007 [35] 梁亚运, 刘学飞, 李龚健, 等. 胶东地区脉岩成因与金成矿关系的研究: 年代学及Sr-Nd-Pb同位素的约束[J]. 地质科技情报, 2014, 33(3): 10-24.LIANG Y Y, LIU X F, LI G J, et al. Petrogenesis and connection with gold deposits of dikes in Jiaodong Peninsula, eastern of North China Craton: Constraint on geochronology and Sr-Nd-Pb isotope[J]. Geological Science and Technology Information, 2014, 33(3): 10-24. (in Chinese with English abstract [36] GUO P, SANTOSH M, LI S R. Geodynamics of gold metallogeny in the Shandong Province, NE China: An integrated geological, geophysical and geochemical perspective[J]. Gondwana Research, 2013, 24(3/4): 1172-1202. [37] JIANG P, YANG K F, FAN H R, et al. Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton[J]. Lithos, 2016, 258/259: 197-214. [38] 宋明春, 宋英昕, 丁正江, 等. 胶东金矿床: 基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4): 406-422.SONG M C, SONG Y X, DING Z J, et al. Jiaodong gold deposits: Essential characteristics and major controversy[J]. Gold Science and Technology, 2018, 26(4): 406-422. (in Chinese with English abstract [39] 宋明春, 宋英昕, 李杰, 等. 深部矿阶梯找矿方法: 以胶东金矿集区深部找矿为例[J]. 中国地质, 2022, 49(1): 1-15.SONG M C, SONG Y X, LI J, et al. Stepwise prospecting method for deep-seated deposits: Take deep prospecting of ore concentration area of gold in Jiaodong Peninsula, China as an example[J]. Geology in China, 2022, 49(1): 1-15. (in Chinese with English abstract [40] YANG K F, FAN H R, SANTOSH M, et al. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong terrane, the North China Craton[J]. Lithos, 2012, 146/147: 112-127. [41] MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. [42] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [43] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [44] IRVINE T N, BARAGAR W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055 [45] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [46] MCDONOUGH W F, SUN S S. The composition of the earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. [47] HOSKIN P W O. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027 [48] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.1360/csb2004-49-16-1589WU Y B, ZHENG Y F. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. (in Chinese with English abstract doi: 10.1360/csb2004-49-16-1589 [49] HOSKIN P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006 [50] 关俊雷, 耿全如, 王国芝, 等. 北冈底斯带日松花岗岩体的锆石U-Pb测年和Hf同位素组成[J]. 地质学报, 2014, 88(1): 36-52.GUAN J L, GENG Q R, WANG G Z, et al. Zircon U-Pb dating and Hf isotope compositions of the risong granite in North Gangdese, Tibet[J]. Acta Geologica Sinica, 2014, 88(1): 36-52. (in Chinese with English abstract [51] 彭花明, 袁琪, 李秋耘, 等. 赣西北大岭上钨矿黑云母花岗斑岩锆石U-Pb年龄、Hf同位素及其与W、Cu矿化的关系[J]. 地质论评, 2015, 61(5): 1089-1098.PENG H M, YUAN Q, LI Q Y, et al. U-Pb ages, Hf isotope of zircons from biotite granite porphyry in Dalingshang tungsten deposite, northwestern Jiangxi, and relations to the W-Cu mineralization[J]. Geological Review, 2015, 61(5): 1089-1098. (in Chinese with English abstract [52] 林博磊, 李碧乐. 胶东玲珑花岗岩的地球化学、U-Pb年代学、Lu-Hf同位素及地质意义[J]. 成都理工大学学报(自然科学版), 2013, 40(2): 147-160.LIN B L, LI B L. Geochemistry, U-Pb dating, Lu-Hf isotopic analysis and geological significance of Linglong granite in Jiaodong Peninsula[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(2): 147-160. (in Chinese with English abstract [53] MARTIN H. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos, 1999, 46(3): 411-429. doi: 10.1016/S0024-4937(98)00076-0 [54] WU M L, ZHAO G C, SUN M, et al. A synthesis of geochemistry and Sm-Nd isotopes of Archean granitoid gneisses in the Jiaodong terrane: Constraints on petrogenesis and tectonic evolution of the eastern Block, North China Craton[J]. Precambrian Research, 2014, 255: 885-899. doi: 10.1016/j.precamres.2014.10.012 [55] CHAI P, ZHANG H R, HOU Z Q, et al. Geochronological framework of the Damoqujia gold deposit, Jiaodong Peninsula, China: Implications for the timing and geologic setting of gold mineralization[J]. Geological Journal, 2020, 55(1): 596-613. doi: 10.1002/gj.3428 [56] DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0 [57] 于晓卫, 王来明, 任天龙, 等. 胶西北地区钻孔揭露隐伏郭家岭期花岗岩的地球化学、锆石U-Pb年龄及Lu-Hf同位素特征[J]. 地质学报, 2023, 97(2): 417-432.YU X W, WANG L M, REN T L, et al. Geochemistry, zircon U-Pb age and Lu-Hf isotope of the concealed Guojialing granite revealed by boreholes in the northwestern Jiaodong region[J]. Acta Geologica Sinica, 2023, 97(2): 417-432. (in Chinese with English abstract [58] WANG Z L, YANG L Q, DENG J, et al. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China: Petrogenesis and tectonic setting[J]. Journal of Asian Earth Sciences, 2014, 95: 274-299. doi: 10.1016/j.jseaes.2014.03.001 [59] 王中亮, 赵荣新, 张庆, 等. 胶西北高Ba-Sr郭家岭型花岗岩岩浆混合成因: 岩石地球化学与Sr-Nd同位素约束[J]. 岩石学报, 2014, 30(9): 2595-2608.WANG Z L, ZHAO R X, ZHANG Q, et al. Magma mixing for the high Ba-Sr Guojialing-type granitoids in Northwest Jiaodong Peninsula: Constraints from petrogeochemistry and Sr-Nd isotopes[J]. Acta Petrologica Sinica, 2014, 30(9): 2595-2608. (in Chinese with English abstract [60] 王立功, 祝德成, 郭瑞朋, 等. 胶西北仓上、三山岛岩体二长花岗岩地球化学、锆石U-Pb年龄及Lu-Hf同位素研究[J]. 地质学报, 2018, 92(10): 2081-2095.WANG L G, ZHU D C, GUO R P, et al. Geochemistry, zircon U-Pb age and Lu-Hf isotopes of the Cangshang and Sanshandao monzogranites in the northwestern Jiaodong Peninsula, China[J]. Acta Geologica Sinica, 2018, 92(10): 2081-2095. (in Chinese with English abstract [61] 宋英昕, 于学峰, 李大鹏, 等. 胶东西北部北截岩体岩石成因: 锆石U-Pb年龄、岩石地球化学与Sr-Nd-Pb同位素制约[J]. 岩石学报, 2020, 36(5): 1477-1500. doi: 10.18654/1000-0569/2020.05.10SONG Y X, YU X F, LI D P, et al. Petrogenesis of the Beijie pluton from the northwestern Jiaodong Peninsula: Constraints from zircon U-Pb age, petrogeochemistry and Sr-Nd-Pb isotopes[J]. Acta Petrologica Sinica, 2020, 36(5): 1477-1500. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.05.10 [62] 罗贤冬, 杨晓勇. 关于胶东金矿区郭家岭花岗岩体的地球化学研究[J]. 矿床地质, 2010, 29(增刊1): 1113-1114.LUO X D, YANG X Y. Geochemical study on guojialing granite in Jiaodong gold mining area[J]. Mineral Deposits, 2010, 29(S1): 1113-1114. [63] 杨进辉, 朱美妃, 刘伟, 等. 胶东地区郭家岭花岗闪长岩的地球化学特征及成因[J]. 岩石学报, 2003, 19(4): 692-700.YANG J H, ZHU M F, LIU W, et al. Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China[J]. Acta Petrologica Sinica, 2003, 19(4): 692-700. (in Chinese with English abstract [64] 郭敬辉, 陈福坤, 张晓曼, 等. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞−碰撞后构造过程: 锆石U-Pb年代学[J]. 岩石学报, 2005, 21(4): 1281-1301.GUO J H, CHEN F K, ZHANG X M, et al. Evolution of syn-to post-collisional magmatism from north Sulu UHP belt, eastern China: Zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2005, 21(4): 1281-1301. (in Chinese with English abstract [65] DENG J, MO X, ZHAO H L, et al. Lithosphere root/de-rooting and activation of the East China continent[J]. Geoscience, 1994, 8(3): 349-356. [66] 徐夕生, 范钦成, S Y O'Reilly, 等. 安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨[J]. 科学通报, 2004, 49(18): 1883-1891. doi: 10.1360/csb2004-49-18-1883XU X S, FAN Q C, O'REILLY S Y, et al. Zircon U-Pb dating and genesis of quartz diorite and its inclusions in Tongguanshan, Anhui Province[J]. Chinese Science Bulletin, 2004, 49(18): 1883-1891. (in Chinese with English abstract doi: 10.1360/csb2004-49-18-1883 [67] 郑永飞, 叶凯, 张立飞. 发展板块构造: 从洋壳俯冲到大陆碰撞[J]. 科学通报, 2009, 54(13): 1799-1803. doi: 10.1360/csb2009-54-13-1799ZHENG Y F, YE K, ZHANG L F. Developing plate tectonics: From subduction of oceanic crust to continental collision[J]. Chinese Science Bulletin, 2009, 54(13): 1799-1803. (in Chinese with English abstract doi: 10.1360/csb2009-54-13-1799 [68] 刘红涛, 翟明国, 刘建明, 等. 华北克拉通北缘中生代花岗岩: 从碰撞后到非造山[J]. 岩石学报, 2002, 18(4): 433-448.LIU H T, ZHAI M G, LIU J M, et al. The Mesozoic granitoids in the northern marginal region of North China Craton: Evolution from post-collisional to ano rogenic settings[J]. Acta Petrologica Sinica, 2002, 18(4): 433-448. (in Chinese with English abstract [69] WU F Y, LIN J Q, WILDE S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119. [70] 宋明春, 宋英昕, 李杰, 等. 胶东与白垩纪花岗岩有关的金及有色金属矿床成矿系列[J]. 大地构造与成矿学, 2015, 39(5): 828-843.SONG M C, SONG Y X, LI J, et al. Metallogenic series of gold and nonferrous metal deposits related to Cretaceous granites in eastern Shandong Peninsula, China[J]. Geotectonica et Metallogenia, 2015, 39(5): 828-843. (in Chinese with English abstract [71] MA L, JIANG S Y, HOFMANN A W, et al. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton[J]. Geochimica et Cosmochimica Acta, 2014, 124: 250-271. [72] 朱日祥, 朱光, 李建威, 等. 华北克拉通破坏[M]. 北京: 科学出版社, 2020.ZHU R X, ZHU G, LI J W. The North China Craton destruction[M]. Beijing: Science Press, 2020. (in Chinese) [73] 杨阳, 王晓霞, 于晓卫, 等. 胶西北中生代花岗岩中黑云母和角闪石成分特征及成岩成矿意义[J]. 岩石学报, 2017, 33(10): 3123-3136.YANG Y, WANG X X, YU X W, et al. Chemical composition of biotite and amphibole from Mesozoic granites in northwestern Jiaodong Peninsula, China, and their implications[J]. Acta Petrologica Sinica, 2017, 33(10): 3123-3136. (in Chinese with English abstract [74] 王来明, 任天龙, 于晓卫, 等. 胶东中生代花岗岩与金矿关系研究及找矿方向[C]//佚名. 第十七届华东六省一市地质科技论坛论文集. 山东威海: 山东省地质学会, 2023: 80-121.WANG L M, REN T L, YU X W, et al. Study on the relationship between Mesozoic granites and gold deposits and prospecting direction in Jiaodong[C]//Anon. Proceedings of the 17th Geological Science and Technology Forum of the Six Provinces and One City in East China. Weihai Shandong: Shandong Geological Society, 2023: 80-121. (in Chinese) [75] 严子清, 石文杰, 张鹏涛, 等. 胶东大尹格庄金矿成矿流体时空演化及矿床成因: 来自流体包裹体、成矿元素和H-O-S-Pb同位素证据[J]. 地质科技通报, 2024, 43(2): 156-174.YAN Z Q, SHI W J, ZHANG P T, et al. Ore genesis and vertical variations of ore-forming fluids in the Dayingezhuang gold deposit, Jiaodong Peninsula: Constraints from fluid inclusions, ore forming elements, and H-O-S-Pb isotopes[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 156-174. (in Chinese with English abstract [76] 李俊建, 罗镇宽, 刘晓阳, 等. 胶东中生代花岗岩及大型-超大型金矿床形成的地球动力学环境[J]. 矿床地质, 2005, 24(4): 361-372.LI J J, LUO Z K, LIU X Y, et al. Geodynamic setting for formation of large-superlarge gold deposits and Mesozoic granites in Jiaodong area[J]. Mineral Deposits, 2005, 24(4): 361-372. (in Chinese with English abstract [77] 韩小梦, 郭云成, 段留安, 等. 胶莱盆地东北缘前垂柳金矿床S、Pb同位素组成: 对成矿物质来源的指示[J]. 地质科技通报, 2023, 42(3): 210-221.HAN X M, GUO Y C, DUAN L A, et al. S and Pb isotopic compositions of the Qianchuiliu gold deposit on the northeastern margin of the Jiaolai Basin: Implication on the source of ore-forming material[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 210-221. (in Chinese with English abstract -
下载:
