留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于点云数据的高陡岩质边坡结构面识别与稳定性分析

奚望 陈宜伟 张文广 边林松 门林 梁鹏飞 周博

奚望,陈宜伟,张文广,等. 基于点云数据的高陡岩质边坡结构面识别与稳定性分析[J]. 地质科技通报,2025,44(4):330-339 doi: 10.19509/j.cnki.dzkq.tb20230667
引用本文: 奚望,陈宜伟,张文广,等. 基于点云数据的高陡岩质边坡结构面识别与稳定性分析[J]. 地质科技通报,2025,44(4):330-339 doi: 10.19509/j.cnki.dzkq.tb20230667
XI Wang,CHEN Yiwei,ZHANG Wenguang,et al. Recognition of structural planes and stability analysis of highly steep rock slopes on 3D point cloud data[J]. Bulletin of Geological Science and Technology,2025,44(4):330-339 doi: 10.19509/j.cnki.dzkq.tb20230667
Citation: XI Wang,CHEN Yiwei,ZHANG Wenguang,et al. Recognition of structural planes and stability analysis of highly steep rock slopes on 3D point cloud data[J]. Bulletin of Geological Science and Technology,2025,44(4):330-339 doi: 10.19509/j.cnki.dzkq.tb20230667

基于点云数据的高陡岩质边坡结构面识别与稳定性分析

doi: 10.19509/j.cnki.dzkq.tb20230667
基金项目: 中铁十九局集团有限公司项目“基于BIM数字孪生技术的岩溶地区桥梁桩基精细化设计与智慧施工”(0231242361)
详细信息
    作者简介:

    奚望:E-mail:55911275@qq.com

    通讯作者:

    E-mail:zhoubohust@hust.edu.cn

  • 中图分类号: P642.2

Recognition of structural planes and stability analysis of highly steep rock slopes on 3D point cloud data

More Information
  • 摘要:

    结构面分布对岩体的工程与力学性质具有重要影响,准确获取结构面信息对于分析岩体特性及其稳定性具有重要意义。通过三维激光扫描技术获取某高陡岩质边坡三维点云数据,通过对点云数据进行滤波前处理,采用开源程序Discontinuity Set Extractor (DSE)对点云数据进行半自动化识别与分类,获取边坡岩体结构面的产状、迹长、间距等关键参数信息及点云聚类信息。通过对点云聚类信息进行拟合分析得到其概率分布模型并建立岩体的离散裂隙网络(DFN)模型,进一步基于点云数据采用“Rhino-Griddle-3DEC”联合建模方法建立了高陡岩质边坡的三维块体离散元模型,通过离散元模拟分析了该边坡的稳定性与潜在失稳区域。结果表明:在重力作用下,边坡整体安全系数约为1.5,坡顶突出危岩体竖向位移较大且安全系数较小,为潜在失稳区域。因此,采用该方法识别获取的结构面参数信息能够较好地反映岩体工程力学性质,对高陡岩质边坡稳定性分析与评价具有重要指导意义。

     

  • 图 1  研究区域岩质高边坡的三维点云数据

    Figure 1.  3D point cloud data of a highly steep rock slope

    图 2  DSE识别结构面步骤

    KNN. k nearest neighbor search(k最近邻搜索算法);KDE. kernel density estimation(核密度估计法,用于估计随机变量的概率密度函数);DBSCAN. density-based spatial clustering of applications with noise(基于密度的聚类分析算法);PCA. principal component analysis(主成分分析法,一种数据降维算法)

    Figure 2.  Procedures of structural plane recognition via DSE

    图 3  最近邻点搜索算法算法示意图

    Pi. 岩体三维点云数据中的任意原始点;{P}. 原始点附近具有相同特征的若干点形成的点云集;K. 邻点搜索个数

    Figure 3.  Diagram of the nearest neighbor searching algorithm

    图 4  点云集、优势结构面、聚类关系示意图

    Figure 4.  Relations among the point cloud set, principal structural plane and cluster

    图 5  结构面极点密度图

    Figure 5.  Density of the poles of the structural plane

    图 6  结构面直径的概率分布统计

    Figure 6.  Probability distribution statistics of the structural plane diameter

    图 7  结构面间距计算原理

    Figure 7.  Calculation principles of structural surface spacing

    图 8  边坡三维地质模型建模流程图

    Figure 8.  Processes of 3D model reconstruction

    图 9  岩质高边坡三维离散元模型

    Figure 9.  3D DEM model of the rock slope

    图 10  2组优势结构面的DFN模型

    xyz分别为DFN模型长、宽、高

    Figure 10.  DFN models of two dominant joints

    图 11  DFN节理圆盘裂隙示意图

    Figure 11.  Schematic diagram of a fissure disc in a DFN

    图 12  坡体位移场云图

    Figure 12.  Displacement contours of the slope

    图 13  坡体安全系数分布云图

    Figure 13.  Contours of the safety factor of the slope

    图 14  边坡潜在失稳区域

    Figure 14.  Potential failure area of the slope

    表  1  结构面产状

    Table  1.   Structural planes orientation

    结构面组号 倾向/(°) 倾角/(°) 点云数量百分比/%
    J1 184.7 79.8 51.32
    J2 126.6 85.1 34.48
    J3 305.0 41.0 0.87
    J4 41.9 62.5 3.26
    下载: 导出CSV

    表  2  结构面法向间距

    Table  2.   Normal spacing of structural planes

    优势结构面组号 计算方式 最小值/m 最大值/m 平均值/m 标准差
    J1 完全连续 0.01 2.13 0.37 0.53
    不完全连续 0.05 5.30 0.82 1.01
    J2 完全连续 0.01 0.78 0.23 0.19
    不完全连续 0.02 3.43 0.81 0.62
    下载: 导出CSV

    表  3  岩体DFN模型参数

    Table  3.   Parameters for DFN model

    优势结构面组号 属性 分布 参数
    J1 产状 F分布 倾向:184.7°,倾角:79.8°,K=100
    位置 随机分布 在空间中均匀分布
    尺寸 负指数分布 指数:1.08,尺寸范围:0.5~21 m
    密度 P10 0.21
    J2 产状 F分布 倾向:126.6°,倾角:85.1°,K=100
    位置 随机分布 在空间中均匀分布
    尺寸 负指数分布 指数:1.04,尺寸范围:0.5~13 m
    密度 P10 0.11
    下载: 导出CSV

    表  4  岩块和结构面物理力学参数

    Table  4.   Physical and mechanical parameters of rock blocks and structural planes

    参数名称 密度/
    (kg·m−3)
    杨氏模量/
    GPa
    泊松比 体积模量/
    GPa
    剪切模量/
    GPa
    黏聚力/
    MPa
    内摩擦角/
    (°)
    抗拉强度/
    MPa
    剪切刚度/
    (GPa·m−1)
    法向刚度/
    (GPa·m−1)
    岩块 2600 14.1 0.26 9.79 5.595 9 35 4
    真实裂隙 0 30 0 3.0 9
    虚拟裂隙 9 35 4 559.5 1398
    下载: 导出CSV
  • [1] 陈洪江. 土木工程地质[M]. 第2版. 北京: 中国建材工业出版社, 2010.

    CHEN H J. Civil engineering geology[M]. Second Edition. Beijing: China Building Material Industry Publishing House, 2010. (in Chinese with English abstract
    [2] 刘佑荣, 唐辉明. 岩体力学[M]. 北京: 化学工业出版社, 2009.

    LIU Y R, TANG H M. Rock mechanics[M]. Beijing: Chemical Industry Press, 2009. (in Chinese with English abstract
    [3] 董秀军. 三维空间影像技术在地质工程中的综合应用研究[D]. 成都: 成都理工大学, 2015.

    DONG X J. Research of comprehensive application of three-dimensional image technology in geologic engineering[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese with English abstract
    [4] 董秀军, 黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3629-3635.

    DONG X J, HUANG R Q. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3629-3635. (in Chinese with English abstract
    [5] FARDIN N, FENG Q, STEPHANSSON O. Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 329-335. doi: 10.1016/S1365-1609(03)00111-4
    [6] 王鑫. 基于地面激光扫描的裂缝面提取及构造古剪应变张量的聚类分析[D]. 杭州: 浙江大学, 2019.

    WANG X. The extraction of fracture surfaces based on terrestrial laser scanning and the clustering analysis of tectonic paleo shear strain tensors[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract
    [7] HACK H R G K, AZZAM R, CHARLIER R. Engineering geology for infrastructure planning in Europe: A European perspective[M]. Berlin, New York: Springer, 2004.
    [8] 赵佳斌. 基于摄影测量三维点云的结构面识别及三维渗流管网模型研究[D]. 南京: 南京理工大学, 2018.

    ZHAO J B. Structural plane identification and 3D seepage pipe network model based on photogrammetry 3D point cloud[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese with English abstract
    [9] HE B S, DING L Q, SUN P. The application of 3D laser scanning technology in rock joint sets identification[J]. Journal of China Institute Water Resource and Hydropower Research, 2007, 5(1): 43-48.
    [10] 朱云福. 基于三维激光扫描数据的岩体结构面识别方法研究及系统研制[D]. 北京: 中国地质大学(北京), 2012.

    ZHU Y F. The theory and system development of discontinuity identification based on 3D laser scanning data[D]. Beijing: China University of Geosciences (Beijing), 2012. (in Chinese with English abstract
    [11] 葛云峰, 夏丁, 唐辉明, 等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报, 2017, 36(12): 3050-3061.

    GE Y F, XIA D, TANG H M, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3050-3061. (in Chinese with English abstract
    [12] 徐俊, 谢礼明, 刘宇, 等. 基于三维激光扫描的岩体结构面识别与块体分析[J]. 人民长江, 2021, 52(增刊1): 309-312.

    XU J, XIE L M, LIU Y, et al. Rock structural face identification and block analysis based on 3D laser scanning[J]. Yangtze River, 2021, 52(S1): 309-312. (in Chinese with English abstract
    [13] 陈娜. 基于三维激光扫描的边坡岩体结构信息提取和变形监测研究[D]. 武汉: 武汉大学, 2018.

    CHEN N. The structural information and deformation monitoring of rock slope based on 3D laser scanning technology[D]. Wuhan: Wuhan University, 2018. (in Chinese with English abstract
    [14] 宁浩. 基于三维激光扫描的岩体结构面识别与信息提取[D]. 成都: 成都理工大学, 2020.

    NING H. Recognition and information extraction of rock mass structural plane based on 3D laser scanning[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese with English abstract
    [15] 许度, 冯夏庭, 李邵军, 等. 激光扫描隧洞变形与岩体结构面测试技术及应用[J]. 岩土工程学报, 2018, 40(7): 1336-1343.

    XU D, FENG X T, LI S J, et al. In-situ testing technique for tunnel deformation and structural plane of rock mass based on contactless laser scanning method and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1336-1343. (in Chinese with English abstract
    [16] 吴翔. 基于三维激光点云的岩体结构面几何信息提取研究[D]. 长春: 吉林大学, 2022.

    WU X. Research on geometric information extraction of rock mass discontinuity based on 3D laser point cloud[D]. Changchun: Jilin University, 2022. (in Chinese with English abstract
    [17] FENG Q, FARDIN N, JING L, et al. A new method for in situ non-contact roughness measurement of large rock fracture surfaces[J]. Rock Mechanics and Rock Engineering, 2003, 36(1): 3-25. doi: 10.1007/s00603-002-0033-1
    [18] ARMESTO J, ORDÓÑEZ C, ALEJANO L, et al. Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes[J]. Geomorphology, 2009, 106(3/4): 271-277.
    [19] ABELLÁN A, VILAPLANA J M, CALVET J, et al. Rockfall monitoring by terrestrial laser scanning: Case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain)[J]. Natural Hazards and Earth System Sciences, 2011, 11(3): 829-841. doi: 10.5194/nhess-11-829-2011
    [20] RIQUELME A J, ABELLÁN A, TOMÁS R, et al. A new approach for semi-automatic rock mass joints recognition from 3D point clouds[J]. Computers & Geosciences, 2014, 68: 38-52.
    [21] RIQUELME A J, ABELLÁN A, TOMÁS R. Discontinuity spacing analysis in rock masses using 3D point clouds[J]. Engineering Geology, 2015, 195: 185-195. doi: 10.1016/j.enggeo.2015.06.009
    [22] KONG D H, WU F Q, SAROGLOU C. Automatic identification and characterization of discontinuities in rock masses from 3D point clouds[J]. Engineering Geology, 2020, 265: 105442. doi: 10.1016/j.enggeo.2019.105442
    [23] 杨辉. 基于三维激光扫描点云数据的隧道掌子面岩体结构面识别方法研究[D]. 成都: 西南交通大学, 2020.

    YANG H. Method for identification of rock discontinuities in tunnel face from 3D point clouds based on 3D laser scanning[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese with English abstract
    [24] 官东林, 文国军, 王玉丹, 等. 基于线激光扫描的岩石激光钻孔的三维重建和可视化[J]. 地质科技通报, 2021, 40(3): 173-183.

    GUAN D L, WEN G J, WANG Y D, et al. 3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 173-183. (in Chinese with English abstract
    [25] 张野, 陈金桥, 李炎隆. 基于多深度模型的钻孔结构面智能识别与量化分析[J]. 地质科技通报, 2023, 42(6): 31-41.

    ZHANG Y, CHEN J Q, LI Y L. Intelligent recognition and quantitative analysis of borehole hydraulic geological images utilizing multiple deep learning models[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 31-41. (in Chinese with English abstract
    [26] YE Z, XU Q, LIU Q, et al. Application of unmanned aerial vehicle oblique photogrammetry to investigation of high slope rock structure[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1739-1746.
    [27] WANG X, ZOU L J, SHEN X H, et al. A region-growing approach for automatic outcrop fracture extraction from a three-dimensional point cloud[J]. Computers & Geosciences, 2017, 99: 100-106.
    [28] GUO J T, LIU S J, ZHANG P N, et al. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds[J]. Computers & Geosciences, 2017, 103: 164-172.
    [29] 梁玉飞, 裴向军, 崔圣华, 等. 基于地面三维激光点云的滑坡破坏边界岩体结构特征分析[J]. 岩石力学与工程学报, 2021, 40(6): 1209-1225.

    LIANG Y F, PEI X J, CUI S H, et al. Analysis of rock mass structure characteristics of landslide boundaries based on ground 3D laser point cloud[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1209-1225. (in Chinese with English abstract
    [30] 王培涛, 覃拓, 黄正均, 等. 基于三维点云的岩体结构面信息快速化识别方法研究[J]. 岩石力学与工程学报, 2021, 40(3): 503-519.

    WANG P T, QIN T, HUANG Z J, et al. Fast identification of geometric properties of rock discontinuities based on 3D point cloud[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 503-519. (in Chinese with English abstract
    [31] DAGHIGH H, TANNANT D D, DAGHIGH V, et al. A critical review of discontinuity plane extraction from 3D point cloud data of rock mass surfaces[J]. Computers & Geosciences, 2022, 169: 105241.
    [32] GE Y F, CAO B, TANG H M. Rock discontinuities identification from 3D point clouds using artificial neural network[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1705-1720. doi: 10.1007/s00603-021-02748-w
    [33] 宋琨, 孙驰, 安冬, 等. 数字钻孔全景影像中结构面特征智能识别方法[J]. 地质科技通报, 2020, 39(5): 17-22.

    SONG K, SUN C, AN D, et al. Intelligent identification method for rock discontinuities properties by digital borehole panoramic images[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 17-22. (in Chinese with English abstract
    [34] 荆少东, 许国辉, 吴尚彬, 等. 基于三维精细化数值模型的地下油库水封安全评价[J]. 地质科技通报, 2023, 42(6): 1-11.

    JING S D, XU G H, WU S B, et al. Assessment of the water-sealed safety of underground crude oil storage based on a three-dimensional refined numerical model[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 1-11. (in Chinese with English abstract
    [35] LI Y C, CHEN J P, ZHOU F J, et al. Stability evaluation of rock slope based on discrete fracture network and discrete element model: A case study for the right bank of Yigong Zangbu Bridge[J]. Acta Geotechnica, 2022, 17(4): 1423-1441. doi: 10.1007/s11440-021-01369-5
    [36] LIU B, HE K, HAN M, et al. Dynamic process simulation of the Xiaogangjian rockslide occurred in shattered mountain based on 3DEC and DFN[J]. Computers and Geotechnics, 2021, 134: 104122. doi: 10.1016/j.compgeo.2021.104122
    [37] JIA L, CAI J S, WU L, et al. Influence of fracture geometric characteristics on fractured rock slope stability[J]. Applied Sciences, 2023, 13(1): 236.
    [38] ZHANG H J, WU S C, ZHANG Z X, et al. Reliability analysis of rock slopes considering the uncertainty of joint spatial distributions[J]. Computers and Geotechnics, 2023, 161: 105566. doi: 10.1016/j.compgeo.2023.105566
    [39] 蒋水华, 陈佳栋, 邹宗毅, 等. 基于通用椭圆盘模型及3DEC实现的节理岩质边坡稳定性分析[J]. 岩石力学与工程学报, 2023, 42(7): 1610-1622.

    JIANG S H, CHEN J D, ZOU Z Y, et al. Stability analysis of jointed rock slopes based on a universal elliptical disc model and its realization in 3DEC[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1610-1622. (in Chinese with English abstract
    [40] ZHANG W M, QI J B, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. doi: 10.3390/rs8060501
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  994
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-01
  • 录用日期:  2024-03-29
  • 修回日期:  2024-03-21
  • 网络出版日期:  2024-08-27

目录

    /

    返回文章
    返回