留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干热岩开发循环试验的研究进展和发展建议

王丹 文冬光 杨用彪 杨伟峰 金显鹏 吴斌

王丹,文冬光,杨用彪,等. 干热岩开发循环试验的研究进展和发展建议[J]. 地质科技通报,2025,44(5):1-12 doi: 10.19509/j.cnki.dzkq.tb20230644
引用本文: 王丹,文冬光,杨用彪,等. 干热岩开发循环试验的研究进展和发展建议[J]. 地质科技通报,2025,44(5):1-12 doi: 10.19509/j.cnki.dzkq.tb20230644
WANG Dan,WEN Dongguang,YANG Yongbiao,et al. International research progress and development suggestions for hot dry rock EGS flow tests[J]. Bulletin of Geological Science and Technology,2025,44(5):1-12 doi: 10.19509/j.cnki.dzkq.tb20230644
Citation: WANG Dan,WEN Dongguang,YANG Yongbiao,et al. International research progress and development suggestions for hot dry rock EGS flow tests[J]. Bulletin of Geological Science and Technology,2025,44(5):1-12 doi: 10.19509/j.cnki.dzkq.tb20230644

干热岩开发循环试验的研究进展和发展建议

doi: 10.19509/j.cnki.dzkq.tb20230644
基金项目: 江苏省碳达峰碳中和科技创新专项资金项目(BE2022859)
详细信息
    通讯作者:

    E-mail:2292060849@qq.com

International research progress and development suggestions for hot dry rock EGS flow tests

More Information
  • 摘要:

    干热岩是一种开发前景广阔的地热资源。增强型地热系统(EGS)是当前干热岩开发的主要方式,需要通过多个工程环节衔接实施,循环试验是其中的重要步骤。循环试验实施过程具有长期性和复杂性的特点,亟需技术突破降本增效。简要总结了国内外较为典型的干热岩开发EGS工程的循环试验经验和探索方向,阐述了多种因素对于循环试验的影响,并结合青海共和场地的实际情况提出了发展建议。可以看出,以往提高循环试验效果主要是通过开发层位及井组调整、长期循环、储层改造以及化学刺激等方法实现的,而当前技术人员主要通过改进准确获取工程参数的方法,以及改进注采井组设计和储层改造工艺进行探索。循环试验的方案制定需要充分考虑地质因素,且数值模拟、储层刺激、流程设计、工程实施等方面都值得进行深入研究。随着开发技术的日趋成熟,干热岩地热资源将会成为我国能源结构中的重要一环,为经济发展和环境保护发挥重要的作用。

     

  • 图 1  Fenton Hill EGS工程循环注采井示意图[22]

    EE-2,EE-3,EE-2A和EE-3A均为注采井,其中EE-2A和EE-3A分别为在EE-2和EE-3基础上侧钻的井(原因是原井连通不佳,因此改变井轨迹去增大连通概率);黑色虚线圈闭范围为注入区域;黑色箭头为注入流体的流动方向;黑色实线为侧钻井轨迹;黑色虚线为原井轨迹

    Figure 1.  Schematic diagram of the Fenton Hill EGS flow test well group

    图 2  Soultz EGS工程场地循环注采井分布示意图[28]

    GPK1,GPK2,GPK3和GPK4均为注采井;EPS1为监测井

    Figure 2.  Schematic diagram of the Soultz EGS flow test well group

    图 3  Habanero EGS工程场地循环注采井分布[39]

    Figure 3.  Schematic diagram of the Habanero EGS flow test well group

    图 4  Hijiori EGS工程场地循环注采井分布[47]

    HDR-2和HDR-3均为生产井;SKG-2和HDR-1均为注水井;HDR-2A为HDR-2的加深井(1994年HDR-2堵塞深度约为1600 m,然后加深至2303 m);黑色垂直带为井套管;白色垂直区域为无套管井筒。

    Figure 4.  Schematic diagram of the Hijiori EGS flow test well group

    图 5  2019年区域2注入测试期间单次(循环5)的压力−排量曲线[54]

    Figure 5.  Pressure curve for a single cycle (cycle 5) during injection testing in Region 2 in 2019

    图 6  Fervo EGS工程场地循环注采井分布示意图(据文献[58]修编;1 ft=0.3048 m)

    Figure 6.  Schematic diagram of the Fervo EGS flow test well group

    图 7  共和场地压裂注采期间注入井施工排量与压力变化趋势图[60]

    Figure 7.  Trend chart of the rate and pressure changes in the injection well during the flow test at the Gonghe site

    表  1  典型干热岩EGS工程稳定层位循环试验参数汇总

    Table  1.   Summary of stable layer flow test parameters for typical hot dry rock EGS engineering

    名称时间循环总量/m3回收率/%持续时间/d循环井组井间距/m最大注入
    流量/(L·S−1)
    最大生产
    流量/(L·S−1)
    井口压力
    (注)/MPa
    井口压力
    (采)/MPa
    液体井口
    温度/℃
    结垢控制
    Fenton Hill Phase Ⅱ1986-05-19—1986-06-183700062.830一注一采约40018.313.531.53.4190生产井压力
    保持在10 MPa
    1991-12—1992-03估算约270000水损失率稳
    定在7%左右
    18一注一采7.26.425.910.3180
    1992-04-08—1992-07-31112一注一采6.765.6627.299.66183
    1992-08—1993-02205一注一采7.145.7127.3212.40182.8
    1993-02-22—1993-04-1555一注一采6.505.7127.349.65184
    1995-05-10—1995-07-1466一注一采7.65.927.315.2181
    Soultz Level Ⅲ2008-07—2008-0862000循环水中有地层
    卤水成分,难以判别
    40一注两采约60031317.31.8生产井压力
    保持在2 MPa
    2008-11—2008-126300040一注两采27178.61.8
    2009-03—2009-10285000230两注两采20226.82
    2009-11—2010-10500000323两注一采151851.8
    2011-01—2011-0416500090两注一采11221.81.9
    2011-08—2011-1013500070两注一采12231.62
    2012-03—2012-043000031三注一采12211.52
    2013-01—2013-07200000180三注一采12150.62
    Habanero2008-12—2009-026100071一注一采57015.4212
    2013-04—2013-1018200091161一注一采69018.9215
    Hijiori2000-11-27—2001-11-1548420343354一注两采13020.010~7130结垢严重。扩孔
    消除水垢
    2001-11-23—2002-04-2831073354157两注两采13016.72-4
    2002-06-01—2002-08-3092两注两采13016.71
    下载: 导出CSV
  • [1] 张二勇. 干热岩资源调查与勘查试采示范工程简介[J]. 中国地质, 2022, 49(2): 350.

    ZHANG E Y. Introduction to the demonstration project of investigation and exploration of hot dry rock resources[J]. China Geology, 2022, 49(2): 350. (in Chinese with English abstract
    [2] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. doi: 10.3975/cagsb.2012.05.12

    LIN W J, LIU Z M, MA F, et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807-811. (in Chinese with English abstract doi: 10.3975/cagsb.2012.05.12
    [3] 蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 16.

    LIN W J, WANG G L, SHAO J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and enlightenment[J]. Acta Geologica Sinica, 2021, 95(5): 16. (in Chinese with English abstract
    [4] 赵宏, 伍浩松. 世界地热发电产业概况[J]. 国外核新闻, 2017(12): 18-22.

    ZHAO H, WU H S. Overview of the world geothermal power generation industry[J]. Foreign Nuclear News, 2017(12): 18-22. (in Chinese with English abstract
    [5] 黄嘉超, 李天舒, 谷雪曦. 国际地热利用发展形势对中国的启发[J]. 石化技术, 2020, 27(9): 252-253. doi: 10.3969/j.issn.1006-0235.2020.09.151

    HUANG J C, LI T S, GU X X. Enlightenment of the development situation of international geothermal utilization to China[J]. Petrochemical Industry Technology, 2020, 27(9): 252-253. (in Chinese with English abstract doi: 10.3969/j.issn.1006-0235.2020.09.151
    [6] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.

    XU T F, YUAN Y L, JIANG Z J, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152. (in Chinese with English abstract
    [7] 毛翔, 国殿斌, 罗璐, 等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 2019, 65(6): 1462-1472.

    MAO X, GUO D B, LUO L, et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review, 2019, 65(6): 1462-1472. (in Chinese with English abstract
    [8] 宋先知. 从传统地热能到增强型地热系统[J]. 国际学术动态, 2020(2): 2.

    SONG X Z. From traditional geothermal energy to enhanced geothermal systems[J]. International Academic Trends, 2020(2): 2. (in Chinese with English abstract
    [9] 亢方超, 唐春安, 李迎春, 等. 增强地热系统研究现状: 挑战与机遇[J]. 工程科学学报, 2022, 44(10): 1767-1777. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210014

    KANG F C, TANG C A, LI Y C, et al. Challenges and opportunities of enhanced geothermal systems: A review[J]. Chinese Journal of Engineering, 2022, 44(10): 1767-1777. (in Chinese with English abstract doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210014
    [10] ZHANG Y L, ZHAO G F. A global review of deep geothermal energy exploration: From a view of rock mechanics and engineering[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2019, 6(1): 4.
    [11] 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012

    XU T F, HU Z X, LI S T, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936-1947. (in Chinese with English abstract doi: 10.3969/j.issn.0001-5717.2018.09.012
    [12] 那金, 许天福, 吴永东, 等. 增强型地热系统(EGS)土酸化学刺激剂对热储层的改造[J]. 中南大学学报(自然科学版), 2017, 48(1): 247-254. doi: 10.11817/j.issn.1672-7207.2017.01.033

    NA J, XU T F, WU Y D, et al. Effectiveness of using mud acid as stimulation agent for enhanced geothermal systems(EGS) reservoir[J]. Journal of Central South University (Science and Technology), 2017, 48(1): 247-254. (in Chinese with English abstract doi: 10.11817/j.issn.1672-7207.2017.01.033
    [13] 窦斌, 高辉, 周刚, 等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报, 2014, 33(5): 208-210.

    DOU B, GAO H, ZHOU G, et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information, 2014, 33(5): 208-210. (in Chinese with English abstract
    [14] 王贵玲, 马峰, 蔺文静, 等. 干热岩资源开发工程储层激发研究进展[J]. 科技导报, 2015, 33(11): 103-107.

    WANG G L, MA F, LIN W J, et al. Reservoir stimulation in hot dry rock resource development[J]. Science & Technology Review, 2015, 33(11): 103-107. (in Chinese with English abstract
    [15] 王贵玲, 陆川. 碳中和目标驱动下干热岩和增强型地热系统增产技术发展[J]. 地质与资源, 2023, 32(1): 85-95.

    WANG G L, LU C. Stimulation technology development of hot dry rock and enhanced geothermal system driven by carbon neutrality target[J]. Geology and Resources, 2023, 32(1): 85-95. (in Chinese with English abstract
    [16] BROWN D W, DUCHANE D V. Scientific progress on the Fenton Hill HDR Project since 1983[J]. Geothermics, 1999, 28(4/5): 591-601.
    [17] NORBECK J H, MCCLURE M W, HORNE R N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics, 2018, 74: 135-149. doi: 10.1016/j.geothermics.2018.03.003
    [18] RINALDI A P, RUTQVIST J. Joint opening or hydroshearing? Analyzing a fracture zone stimulation at Fenton Hill[J]. Geothermics, 2019, 77: 83-98. doi: 10.1016/j.geothermics.2018.08.006
    [19] KELKAR S, WOLDEGABRIEL G, REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14. doi: 10.1016/j.geothermics.2015.08.008
    [20] BROWN D W. Hot dry rock geothermal energy: Important lessons from Fenton Hill[J]. Thirty-Fourth Workshop on Geothermal Reservoir Engineering, 2009: 3-6.
    [21] ZIAGOS J, PHILLIPS B, BOYD L, et al. A technology roadmap for strategic development of enhanced geothermal systems[C]//Anon. Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University, 2013: 17123116.
    [22] DUCHANE D. International programs in hot dry rock technology development[J]. Geotherm. Resour. Counc. Bull., 1991, 20(5): 135-142.
    [23] BROWN D W, DUCHANE D V, HEIKEN G, et al. Mining the earth's heat: Hot dry rock geothermal energy[M]. Berlin, Heidelberg: Springer, 2012.
    [24] BARIA R, BAUMGÄRTNER J, GÉRARD A, et al. European HDR research programme at Soultz-sous-Forêts(France)1987-1996[J]. Geothermics, 1999, 28(4): 655-669.
    [25] BARIA R, MICHELET S, BAUMGAERTNER J, et al. A 5000 m deep reservoir development at the European HDR site at Soultz[C]//Anon. 30th Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University, 2005.
    [26] VALLEY B, DEZAYES C, GENTER A. Multi-scale fracturing in the Soultz-sous-Forêts basement from borehole images analyses[C]//Anon. Soultz Seientific Meeting. Orleans: Geothermal Energy Division, 2007.
    [27] BARIA R, MICHELET S, BAUMGAERTNER J, et al. Microseismic monitoring of the world's largest potential HDR reservoir[C]//Anon. Twenty Ninth Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University, 2004.
    [28] DEZAYES C , CENTER A , GENTIER S. Fracture network of the EGS geothermal reservoir at Soultz-sous-Forêts (Rhine Graben, France)[J]. Transactions-Geothermal Resources Council, 2004, 28: 213-218.
    [29] BAUMGÄRTNER J, GÉRARD A, BARIA R, et al. Circulating the HDR reservoir at Soultz: Maintaining production and injection flow in complete balance[C]//Anon. Twenty-third Workshop on Geothermal Reservoir Engineering. [S. 1. ]: [s. n. ], 1998.
    [30] GENTER A, EVANS K, CUENOT N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342(7/8): 502-516.
    [31] HELD S, GENTER A, KOHL T, et al. Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts[J]. Geothermics, 2014, 51: 270-280. doi: 10.1016/j.geothermics.2014.01.016
    [32] SCHILL E, GENTER A, CUENOT N, et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests[J]. Geothermics, 2017, 70: 110-124. doi: 10.1016/j.geothermics.2017.06.003
    [33] CUENOT N, DORBATH C, DORBATH L. Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts (Alsace, France): Implications for the characterization of the geothermal reservoir properties[J]. Pure and Applied Geophysics, 2008, 165(5): 797-828. doi: 10.1007/s00024-008-0335-7
    [34] GENTER A, FRITSCH D, CUENOT N, et al. Overview of the current activities of the European EGS Soultz Project: From exploration to electricity production[C]//Anon. Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University, 2009: 11590911.
    [35] CHARLéTY J, CUENOT N, DORBATH L, et al. Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(8): 1091-1105. doi: 10.1016/j.ijrmms.2007.06.003
    [36] BENDALL B, HOGARTH R, HOLL H, et al. Australian experiences in EGS permeability enhancement: A review of 3 case studies[C]//Anon. Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University, 2014.
    [37] WYBORN D. Update of development of the geothermal field in the granite at Innamincka, South Australia[C]//Anon. World Geothermal Congress. Bali: Geodynamics Limited, 2010: 59373939.
    [38] KAIEDA H, SASAKI S, WYBORN D. Comparison of characteristics of micro-earthquakes observed during hydraulic stimulation operations in Ogachi, Hijiori and Cooper Basin HDR Projects[C]//Anon. Proceedings of the World Geothermal Congress. [S. l. ]: [s. n. ]: 2010.
    [39] LLANOS E M, ZARROUK S J, HOGARTH R A. Numerical model of the Habanero geothermal reservoir, Australia[J]. Geothermics, 2015, 53: 308-319. doi: 10.1016/j.geothermics.2014.07.008
    [40] HOGARTH R, HOLL H, MCMAHON A. Flow testing results from Habanero EGS Project[C]//Anon. Australian Geothermal Energy Conference. [S. 1. ]: [s. n. ], 2013.
    [41] AYLING B F, HOGARTH R A, ROSE P E. Tracer testing at the Habanero EGS site, central Australia[J]. Geothermics, 2016, 63: 15-26. doi: 10.1016/j.geothermics.2015.03.008
    [42] YANAGISAWA N, NGOTHAI Y, ROSE P, et al. Geochemical behavior of EGS reservoir during first circulation test at Habanero site, Cooper Basin, Australia[J]. Journal of the Geothermal Research Society of Japan, 2011, 33(3): 125-130.
    [43] CHEN D, WYBORN D. Habanero Field Tests in the Cooper Basin, Australia: A Proof-of-Concept for EGS[C]//Anon. Geothermal Resources Council Annual Meeting. [S. 1. ]: [s. n. ], 2009.
    [44] MATSUNAGA I, NIITSUMA H, OIKAWA Y. Review of the HDR development at Hijiori Site, Japan[C]//Anon. Proceedings World Geothermal Congress. [S. 1. ]: [s. n. ], 2005.
    [45] YANAGISAWA N, MATSUNAGA I, SUGITA H, et al. Reservoir evaluation by tracer tests during a long term circulation test at the Hijiori HDR test field, Yamagata, Japan[J]. Journal of the Geothermal Research Society of Japan, 2006, 28(1): 57-76.
    [46] TENMA N, YAMAGUCHI T, ZYVOLOSKI G. The Hijiori Hot Dry Rock test site, Japan: Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics, 2008, 37(1): 19-52. doi: 10.1016/j.geothermics.2007.11.002
    [47] SWENSON D, SCHROEDER R, SHINOHARA N, et al. Analyses of the Hijiori long term circulation test[C]//Anon. Twenty Fourth Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University, 1999: 27554763.
    [48] TENMA N, YAMAGUCHI T, OIKAWA Y, et al. Comparison of the deep and the shallow reservoirs at the Hijiori HDR test site using FEHM code [C]//Anon. Twenty Sixth Workshop on Geothermal Reservoir Engineering. Stanford, California: Stanford University, 2001.
    [49] YAMAGUCHI S, AKIBAYASHI S, ROKUGAWA S, et al. The numerical modeling study of the Hijiori HDR test site[C]//Anon. World Geothermal Congress. Kyushu, Tohoku: Akita University, 2000.
    [50] ITO T, HAYASHI K. Role of stress-controlled flow pathways in HDR geothermal reservoirs[J]. Pure and Applied Geophysics, 2003, 160(5/6): 1103-1124.
    [51] 解经宇, 王丹, 李宁, 等. 干热岩压裂建造人工热储发展现状及建议[J]. 地质科技通报, 2022, 41(3): 321-329.

    XIE J Y, WANG D, LI N, et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 321-329. (in Chinese with English abstract
    [52] 解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77.

    XIE J Y, LU H Z, CHEN L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77. (in Chinese with English abstract
    [53] BONNEVILLE A , CLADOUHOS T T , SCHULTZ A. Establishing the frontier observatory for research in geothermal energy (FORGE) on the Newberry Volcano, Oregon[C]//Anon. 41st Workshop on Geothermal Reservoir Engineering. [S. 1. ]: [s. n. ], 2016.
    [54] RIAHI A, PETTITT W, DAMJANAC B, et al. Numerical modeling of discrete fractures in a field-scale FORGE EGS reservoir[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5245-5258. doi: 10.1007/s00603-019-01894-6
    [55] ALLIS R, MOORE J, DAVATZES N, et al. EGS concept testing and development at the Milford, Utah FORGE site[C]//Anon. Workshop on Geothermal Reservoir Engineering. [S. 1. ]: [s. n. ], 2016.
    [56] XING P J, DAMJANAC B, MOORE J, et al. Flowback test analyses at the Utah Frontier Observatory for research in geothermal energy (FORGE) site[J]. Rock Mechanics and Rock Engineering, 2022, 55(5): 3023-3040. doi: 10.1007/s00603-021-02604-x
    [57] 张森琦, 文冬光, 许天福, 等. 美国干热岩“地热能前沿瞭望台研究计划”与中美典型EGS场地勘查现状对比[J]. 地学前缘, 2019, 26(2): 321-334.

    ZHANG S Q, WEN D G, XU T F, et al. The U. S. Frontier Observatory for Research in Geothermal Energy Project and comparison of typical EGS site exploration status in China and U. S.[J]. Earth Science Frontiers, 2019, 26(2): 321-334. (in Chinese with English abstract)
    [58] NORBECK J, LATIMER T. Commercial-scale demonstration of a first-of-a-kind enhanced geothermal system[J]. EarthArXiv Eprints, 2023: X52X0B.
    [59] 张森琦, 付雷, 张杨, 等. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业, 2020, 40(9): 156-169. doi: 10.3787/j.issn.1000-0976.2020.09.019

    ZHANG S Q, FU L, ZHANG Y, et al. Delineation of target areas for hot dry rock exploration in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry, 2020, 40(9): 156-169. (in Chinese with English abstract doi: 10.3787/j.issn.1000-0976.2020.09.019
    [60] 严维德. 共和盆地干热岩特征及利用前景[J]. 科技导报, 2015, 33(19): 54-57.

    YAN W D. Characteristics and utilization prospects of hot dry rocks in the Gonghe Basin[J]. Science and Technology Review, 2015, 33(19): 54-57. (in Chinese with English abstract
    [61] 中国地质调查局. 青海共和盆地钻获236℃干热岩[J]. 地质装备, 2017, 18(6): 8.

    China Geological Survey. Drilling of 236℃ hot dry rock in the Qinghai Gonghe Basin[J]. Geological Equipment, 2017, 18(6): 8. (in Chinese with English abstract
    [62] 佚名. 青海共和干热岩科技攻坚项目正式启动, 干热岩进入场地开发阶段[J]. 地热能, 2019(4): 27-28.

    Anon. The Qinghai Gonghe Hot Dry Rock Technology Project has officially started, and the hot dry rock has entered the stage of site development [J]. Geothermal Energy, 2019(4): 27-28. (in Chinese with English abstract
    [63] 朱贵麟, 刘东林, 周殷竹, 等. 青海共和盆地干热岩人工储层示踪试验研究[J]. 中国地质, 2025, 52(2): 416-424.

    ZHU G L, LIU D L, ZHOU Y Z, et al. Tracer test study on artificial reservoirs in hot dry rock(HDR) geothermal systems in the Gonghe Basin, Qinghai Province[J]. Geology in China, 2025, 52(2): 416-424. (in Chinese with English abstract
    [64] ZHANG E Y, WEN D G, WANG G L, et al. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 2022, 5(3): 372-382. doi: 10.31035/cg2022038
    [65] 窦斌, 肖鹏, 郑君, 等. 二氧化碳爆破致裂激发干热岩储层作用效果[J]. 地质科技通报, 2022, 41(5): 150-159.

    DOU B, XIAO P, ZHENG J, et al. Effect of stimulation in hot dry rock reservoirs from carbon dioxide blasting-induced cracking[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 150-159. (in Chinese with English abstract
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  353
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 录用日期:  2024-03-29
  • 修回日期:  2024-03-24
  • 网络出版日期:  2024-04-17

目录

    /

    返回文章
    返回