留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“9·5”泸定地震人口密集区域地震诱发滑坡空间分布规律

宋静园 刘洋 董秀军 袁阳杰

宋静园,刘洋,董秀军,等. “9·5”泸定地震人口密集区域地震诱发滑坡空间分布规律[J]. 地质科技通报,2025,44(5):202-214 doi: 10.19509/j.cnki.dzkq.tb20230619
引用本文: 宋静园,刘洋,董秀军,等. “9·5”泸定地震人口密集区域地震诱发滑坡空间分布规律[J]. 地质科技通报,2025,44(5):202-214 doi: 10.19509/j.cnki.dzkq.tb20230619
SONG Jingyuan,LIU Yang,DONG Xiujun,et al. Spatial distribution of earthquake-induced landslide in densely populated area of the Luding 9·5 earthquake[J]. Bulletin of Geological Science and Technology,2025,44(5):202-214 doi: 10.19509/j.cnki.dzkq.tb20230619
Citation: SONG Jingyuan,LIU Yang,DONG Xiujun,et al. Spatial distribution of earthquake-induced landslide in densely populated area of the Luding 9·5 earthquake[J]. Bulletin of Geological Science and Technology,2025,44(5):202-214 doi: 10.19509/j.cnki.dzkq.tb20230619

“9·5”泸定地震人口密集区域地震诱发滑坡空间分布规律

doi: 10.19509/j.cnki.dzkq.tb20230619
基金项目: 国家自然科学基金项目(42072306)
详细信息
    作者简介:

    宋静园:E-mail:2990732818@qq.com

    通讯作者:

    E-mail:274597918@qq.com

  • 中图分类号: P642.22

Spatial distribution of earthquake-induced landslide in densely populated area of the Luding 9·5 earthquake

More Information
  • 摘要:

    研究地震诱发滑坡的空间分布规律,不仅能为灾区地质灾害隐患排查、灾情评估等提供重要依据,同时对后期灾后重建、灾后安置选址以及地质灾害防治等工作具有重要意义。以2022年9月5日四川甘孜泸定县Ms 6.8级地震为例,首先基于获取得到的震后0.2 m分辨率光学影像(digital orthophoto map,简称DOM)和0.5 m分辨率的数字高程模型(digital elevation matrix,简称DEM),采用人工目视三维遥感解译地震诱发滑坡,再结合野外调查修正,确定最终地震诱发滑坡数量,并在此基础上分析地震诱发滑坡分布与地形地貌、地质构造、地震因子等地质背景的关系。结果表明:①此次泸定地震事件在约680 km2的研究区内引发了9248处滑坡,且以中、小型滑坡为主,滑坡面积密度最高集中在鲜水河断裂、大渡河断裂以及锦屏山断裂3条断裂交汇处;滑坡总面积约45.57 km2,平均滑坡面积可达4941 m2。②本次地震滑坡分布主要受地面峰值加速度PGA以及断裂构造影响,多分布在PGA> 0.6 gg为重力加速度),距发震断裂两侧1 km范围内;此外滑坡的发育还与距水系及道路距离呈负相关;局部受地形因素影响滑坡主要发育在高程12002400 m、坡度30°~60°、坡向E及SE向区域,且地层岩性多为硬岩。③此次泸定地震的滑坡数量及面积与震级关系也遵循指数分布;同时由于此次解译基础数据精度较高,解译得到的地震滑坡数量相比于其他文献而言更多,最小面积更小,总面积更大。本研究成果已应用于泸定地震灾区的灾后恢复重建工作,为提高抗灾能力和降低地震风险提供了科学依据。

     

  • 图 1  研究区位置(a)、地震烈度带(b)和历史地震及断裂带分布(c)

    Figure 1.  Location (a), seismic intensity (b), distribution of historical earthquakes and fault zones (c) in the study area

    图 2  泸定地震解译滑坡

    Figure 2.  Interpretation of the landslide by the Luding earthquake

    图 3  泸定地震滑坡的主要类型

    Figure 3.  Main types of landslides by the Luding earthquake

    图 4  研究区地震滑坡空间分布图

    a. 地震滑坡与PGA空间分布;b. 滑坡面密度空间分布;PGA. 地面峰值加速度,下同

    Figure 4.  Spatial distribution map of the earthquake-induced landslide in the study area

    图 5  地震滑坡面密度、高程、地层岩性的剖面图(剖面位置见图4b)

    Figure 5.  Profile of area density, elevation and stratum lithology of earthquake-induced landslide

    图 6  地震滑坡与地形(a~e)、地震(f,g)以及地质(h)因子关系分布图

    Figure 6.  Distribution of relationship between earthquake-induced landslide and topographic (a-e), earthquake (f, g) and geology (h) factors

    图 7  地震滑坡与地形(a~e)、地震(f,g)以及地质(h)因子关系统计图

    Figure 7.  Statistical plot of the relationship between earthquake-induced landslide and topographic (a−e), earthquake (f,g) and geology (h) factors

    图 8  不同地震事件诱发的滑坡对比

    Figure 8.  Comparison of landslides induced by different earthquake events

    表  1  地震滑坡控制因子分级

    Table  1.   Classification of controlling factors of earthquake-induced landslide

    因子类型 因子名称 因子分级
    地形地貌 高程/m < 1000, [1000, 1200), [1200, 1400), [1400, 1600), [1600, 1800), [1800, 2000), [2000, 2200),
    [2200, 2400], [2400, 2600), [2600, 2800), [2800, 3000], > 3000
    坡度/(°) < 25, [25, 30), [30, 35), [35, 40), [40, 45), [45, 50), [50, 55), [55, 60), [60, 65), [65, 70], > 70
    坡向 平面,N, NE, E, SE, S, SW, W, NW
    距水系距离/km < 0.5, [0.5, 1.0), [1.0, 1.5), [1.5, 2.0), [2.0, 2.5), [2.5, 3.0), [3.0, 3.5), [3.5, 4.0], > 4.0
    距道路距离/km < 0.5, [0.5, 1.0), [1.0, 1.5), [1.5, 2.0), [2.0, 2.5), [2.5, 3.0], > 3.0
    地质参数 地层岩性 三叠系,二叠系,泥盆系,第四系,基性岩,超基性岩,花岗岩,闪长岩,其他
    地震参数 距发震断层距离/km [0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6), [6, 7), [7, 8), [8, 9), [9, 10], [10, 11), [11, 12), [12, 13), [13, 14), [14, 15], > 15
    PGA/g < 0.3, [0.3, 0.4), [0.4, 0.5), [0.5, 0.6), [0.6, 0.7], > 0.7
    下载: 导出CSV

    表  2  不同文献得到的泸定地震相关结果对比

    Table  2.   Comparison of Luding earthquake related results from different documents

    文献来源 研究区面积/km2 滑坡数量/个 滑坡总面积/km2 滑坡最小面积/m2 高程/m 坡度/(°) 坡向 距发震断层距离/km 地层岩性
    文献[1-2] 419.2 3633 13.78 49 12001400 40~45 E 1 花岗岩
    文献[3] 2600 4528 28.1 / 12001500 40~45 / 1 花岗岩
    文献[21] 3056 2692 47 220.77 18002000 40~45 E 1 砂岩板岩
    文献[25] 19000 8685 30.7 / / / / 2 /
    文献[26] 4393 5007 17.36 65 13001500 40~50 E 1 花岗岩
    文献[40] 166 513 8.88 / 14002200 40~45 E、SE 3 /
    本研究 682 9248 46 15.5 16001800 40~45 E 0.5 花岗岩
    下载: 导出CSV
  • [1] 范宣梅, 王欣, 戴岚欣, 等. 2022年Ms 6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报, 2022, 30(5): 1504-1516.

    FAN X M, WANG X, DAI L X, et al. Characteristics and spatial distribution pattern of Ms 6.8 Luding earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504-1516. (in Chinese with English abstract
    [2] 王欣, 方成勇, 唐小川, 等. 泸定Ms 6.8地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1): 25-35.

    WANG X, FANG C Y, TANG X C, et al. Research on emergency evaluation of landslides induced by the Luding Ms 6.8 earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 25-35. (in Chinese with English abstract
    [3] ZHAO B, HU K H, YANG Z J, et al. Geomorphic and tectonic controls of landslides induced by the 2022 Luding earthquake[J]. Journal of Mountain Science, 2022, 19(12): 3323-3345. doi: 10.1007/s11629-022-7732-8
    [4] 魏旭, 彭志忠, 刘兴臣, 等. 泸石高速公路沿线历史地震诱发滑坡遥感调查及发育分布规律[J]. 地质科技通报, 2024, 43(2): 386-396.

    WEI X, PENG Z Z, LIU X C, et al. Remote sensing investigation and development distribution of historical earthquake-induced landslides along Lushi Expressway[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 386-396. (in Chinese with English abstract
    [5] 李传友, 孙凯, 马骏, 等. 四川泸定6.8级地震: 鲜水河断裂带磨西段局部发起、全段参与的一次复杂事件[J]. 地震地质, 2022, 44(6): 1648-1666. doi: 10.3969/j.issn.0253-4967.2022.06.017

    LI C Y, SUN K, MA J, et al. The 2022 Ms 6.8 Luding earthquake: A complicated event by faulting of the moxi segment of the Xianshuihe fault zone[J]. Seismology and Geology, 2022, 44(6): 1648-1666. (in Chinese with English abstract doi: 10.3969/j.issn.0253-4967.2022.06.017
    [6] 邓建辉, 韦晓, 戴仕贵, 等. 泸定地震诱发灾害特征分析[J]. 工程科学与技术, 2024, 56(1): 117-126.

    DENG J H, WEI X, DAI S G, et al. Characterization analysis of triggered disasters in the Luding earthquake[J]. Advanced Engineering Sciences, 2024, 56(1): 117-126. (in Chinese with English abstract
    [7] 孙东, 杨涛, 曹楠, 等. 泸定Ms 6.8地震同震地质灾害特点及防控建议[J]. 地学前缘, 2023, 30(3): 476-493.

    SUN D, YANG T, CAO N, et al. Characteristics and mitigation of coseismic geohazards associated with the Luding Ms 6.8 earthquake[J]. Earth Science Frontiers, 2023, 30(3): 476-493. (in Chinese with English abstract
    [8] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报, 2022, 41(6): 1-13.

    TANG H M. Advance and prospects of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1-13. (in Chinese with English abstract
    [9] 张佳佳, 陈龙, 李元灵, 等. 2022年9月5日泸定Ms 6.8地震的同震地质灾害发育特征及主控因素分析[J]. 地震学报, 2023, 45(2): 167-178. doi: 10.11939/jass.20220215

    ZHANG J J, CHEN L, LI Y L, et al. Development characteristics and controlling factors of coseismic geohazards triggered by the Luding Ms 6.8 earthquake occurred on September 5, 2022[J]. Acta Seismologica Sinica, 2023, 45(2): 167-178. (in Chinese with English abstract doi: 10.11939/jass.20220215
    [10] 许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1): 25-44. doi: 10.3969/j.issn.1004-9665.2013.01.004

    XU C, XU X W, WU X Y, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1): 25-44. (in Chinese with English abstract doi: 10.3969/j.issn.1004-9665.2013.01.004
    [11] 许冲. 2008年汶川地震滑坡编录及其量化成果[J]. 地质学报, 2013, 87(增刊1): 307-308.

    XU C. Landslide catalogue of the 2008 Wenchuan earthquake and its quantitative results[J]. Acta Ceologica Sinica, 2013, 87(S1): 307-308. (in Chinese with English abstract
    [12] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese with English abstract doi: 10.3969/j.issn.1004-9665.2008.04.001
    [13] XU C, XU X W, SHYU J B H. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013[J]. Geomorphology, 2015, 248: 77-92. doi: 10.1016/j.geomorph.2015.07.002
    [14] 张佳佳, 李海兵, 赵国华, 等. 2013年四川芦山地震次生山地灾害发育规律[J]. 地质通报, 2015, 34(5): 898-907.

    ZHANG J J, LI H B, ZHAO G H, et al. Features of secondary mountain hazards triggered by the 2013 Lushan earthquake, Sichuan Province[J]. Geological Bulletin of China, 2015, 34(5): 898-907. (in Chinese with English abstract
    [15] LING S X, SUN C W, LI X N, et al. Characterizing the distribution pattern and geologic and geomorphic controls on earthquake-triggered landslide occurrence during the 2017 Ms 7.0 Jiuzhaigou earthquake, Sichuan, China[J]. Landslides, 2021, 18(4): 1275-1291. doi: 10.1007/s10346-020-01549-6
    [16] 许冲, 王世元, 徐锡伟, 等. 2017年8月8日四川省九寨沟Ms7.0地震触发滑坡全景[J]. 地震地质, 2018, 40(1): 232-260. doi: 10.3969/j.issn.0253-4967.2018.01.017

    XU C, WANG S Y, XU X W, et al. A panorama of landslides triggered by the 8 August 2017 Jiuzhaigou, Sichuan Ms 7.0 earthquake[J]. Seismology and Geology, 2018, 40(1): 232-260. (in Chinese with English abstract doi: 10.3969/j.issn.0253-4967.2018.01.017
    [17] ZHAO B, LI W L, SU L J, et al. Insights into the landslides triggered by the 2022 Lushan Ms6.1 earthquake: Spatial distribution and controls[J]. Remote Sensing, 2022, 14(17): 4365. doi: 10.3390/rs14174365
    [18] 范宣梅, 方成勇, 戴岚欣, 等. 地震诱发滑坡空间分布概率近实时预测研究: 以2022年6月1日四川芦山地震为例[J]. 工程地质学报, 2022, 30(3): 729-739.

    FAN X M, FANG C Y, DAI L X, et al. Near real time prediction of spatial distribution probability of earthquake-induced landslides: Taking the Lushan earthquake on June 1, 2022 as an example[J]. Journal of Engineering Geology, 2022, 30(3): 729-739. (in Chinese with English abstract
    [19] HAKAN T, LUIGI L. Completeness index for earthquake-induced landslide inventories[J]. Engineering Geology, 2020, 264: 105331. doi: 10.1016/j.enggeo.2019.105331
    [20] HUANG Y D, XIE C C, LI T, et al. An open-accessed inventory of landslides triggered by the Ms 6.8 Luding earthquake, China on September 5, 2022[J]. Earthquake Research Advances, 2023, 3(1): 37-44.
    [21] 铁永波, 张宪政, 卢佳燕, 等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质, 2022, 49(6): 1-12.

    TIE Y B, ZHANG X Z, LU J Y, et al. Characteristics of geological hazards and it's mitigations of the Ms 6.8 earthquake in Luding County, Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 1-12. (in Chinese with English abstract
    [22] 陈博, 李振洪, 黄武彪, 等. 2022年四川泸定Mw6.6级地震诱发地质灾害空间分布及影响因素[J]. 地球科学与环境学报, 2022, 44(6): 971-985.

    CHEN B, LI Z H, HUANG W B, et al. Spatial distribution and influencing factors of geohazards induced by the 2022 Mw 6.6 Luding (Sichuan, China)earthquake[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 971-985. (in Chinese with English abstract
    [23] 张宪政, 铁永波, 李光辉, 等. 四川泸定Ms 6.8级地震区湾东河流域泥石流活动性预测[J]. 地质力学学报, 2022, 28(6): 1035-1045.

    ZHANG X Z, TIE Y B, LI G H, et al. Characteristics and risk assessment of debris flows in the Wandong catchment after the Ms 6.8 Luding earthquake[J]. Journal of Geomechanics, 2022, 28(6): 1035-1045. (in Chinese with English abstract
    [24] XIONG J, CHEN H Y, ZENG L, et al. Coseismic landslide sediment increased by the "9.5" Luding earthquake, Sichuan, China[J]. Journal of Mountain Science, 2023, 20(3): 624-636. doi: 10.1007/s11629-022-7770-2
    [25] ZHANG J Q, YANG Z J, MENG Q K, et al. Distribution patterns of landslides triggered by the 2022 Ms 6.8 Luding earthquake, Sichuan, China[J]. Journal of Mountain Science, 2023, 20(3): 607-623. doi: 10.1007/s11629-022-7772-0
    [26] XIAO Z K, XU C, HUANG Y D, et al. Analysis of spatial distribution of landslides triggered by the Ms 6.8 Luding earthquake in China on September 5, 2022[J]. Geoenvironmental Disasters, 2023, 10(1): 3. doi: 10.1186/s40677-023-00233-w
    [27] 张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.

    ZHANG Y, MING D P, ZHAO W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170. (in Chinese with English abstract
    [28] 邓博, 张会, 柏君, 等. 利用机载LiDAR的深圳市斜坡类地质灾害危险性评价[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1377-1391.

    DENG B, ZHANG H, BAI J, et al. Hazard evaluation of the slope based on airborne LiDAR data in Shenzhen, China[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1377-1391. (in Chinese with English abstract
    [29] YUSOFF H H M, RAZAK K A, YUEN F, et al. Mapping of post-event earthquake induced landslides in Sg. Mesilou using LiDAR[J]. IOP Conference Series(Earth and Environmental Science), 2016, 37: 012068. doi: 10.1088/1755-1315/37/1/012068
    [30] LIU W, YAMAZAKI F, MARUYAMA Y. Detection of earthquake-induced landslides during the 2018 Kumamoto earthquake using multitemporal airborne lidar data[J]. Remote Sensing, 2019, 11(19): 2292. doi: 10.3390/rs11192292
    [31] RUIZ P, CARR M J, ALVARADO G E, et al. Coseismic landslide susceptibility analysis using LiDAR data PGA attenuation and GIS: The case of Poás volcano, costa rica, central America[M]. Berlin, Germary: Springer International Publishing, 2019: 79-118.
    [32] 孟华君, 乔建平, 田宏岭, 等. 小区域地震地质灾害空间分布特点分析方法探讨[J]. 工程地质学报, 2014, 22(1): 14-23. doi: 10.3969/j.issn.1004-9665.2014.01.003

    MENG H J, QIAO J P, TIAN H L, et al. Method discussion on spatial distribution analysis of earthquake induced geohazards in small region[J]. Journal of Engineering Geology, 2014, 22(1): 14-23. (in Chinese with English abstract doi: 10.3969/j.issn.1004-9665.2014.01.003
    [33] 赵方彬, 王运生, 寇瑞斌, 等. 四川珙县下软上硬山岭地貌斜坡地震动响应特征[J]. 地质科技通报, 2023, 42(2): 279-287.

    ZHAO F B, WANG Y S, KOU R B, et al. Seismic dynamic response characteristics of the lower soft and upper hard mountain slopes in Gongxian, Sichuan[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 279-287. (in Chinese with English abstract
    [34] 王佳运, 张成航, 高波, 等. 玉树震区地质灾害分布规律与发育特征[J]. 工程地质学报, 2013, 21(4): 508-515.

    WANG J Y, ZHANG C H, GAO B, et al. Distribution regularity and development characteristics of geohazards in Yushu earthquake area[J]. Journal of Engineering Geology, 2013, 21(4): 508-515. (in Chinese with English abstract
    [35] 杨秀元, 姚亚辉, 田运涛. 云南鲁甸“8·3”震后地质灾害发育特征与分布规律[J]. 科学技术与工程, 2018, 18(24): 16-21. doi: 10.3969/j.issn.1671-1815.2018.24.003

    YANG X Y, YAO Y H, TIAN Y T. Development law and distribution characteristics of geological hazards after "8·3" earthquake in Ludian, Yunnan[J]. Science Technology and Engineering, 2018, 18(24): 16-21. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2018.24.003
    [36] 蒋涛, 崔圣华. 川滇地区典型强震诱发滑坡分布对比研究[J]. 科学技术与工程, 2022, 22(31): 13662-13671. doi: 10.3969/j.issn.1671-1815.2022.31.007

    JIANG T, CUI S H. Comparative study on the distribution of typical strong earthquake-induced landslides in Sichuan and Yunnan regions[J]. Science Technology and Engineering, 2022, 22(31): 13662-13671. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2022.31.007
    [37] XU C. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies[J]. Geoscience Frontiers, 2015, 6(6): 825-836. doi: 10.1016/j.gsf.2014.03.004
    [38] 许冲, 徐锡伟, 于贵华. 玉树地震滑坡分布调查及其特征与形成机制[J]. 地震地质, 2012, 34(1): 47-62.

    XU C, XU X W, YU G H. Study on the characteristics, mechanism, and spatial distribution of Yushu earthquake triggered landslides[J]. Seismology and Geology, 2012, 34(1): 47-62. (in Chinese with English abstract
    [39] ZOU Y, QI S W, GUO S F, et al. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China[J]. Engineering Geology, 2022, 296: 106477. doi: 10.1016/j.enggeo.2021.106477
    [40] 刘甲美, 王涛, 杜建军, 等. 四川泸定Ms 6.8级地震诱发崩滑灾害快速评估[J]. 水文地质工程地质, 2023, 50(2): 84-94.

    LIU J M, WANG T, DU J J, et al. Emergency rapid assessment of landslides induced by the Luding Ms 6.8 earthquake in Sichuan of China[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 84-94. (in Chinese with English abstract
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  421
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 录用日期:  2023-12-05
  • 修回日期:  2023-12-05
  • 网络出版日期:  2023-12-17

目录

    /

    返回文章
    返回