留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯实验设计优化跨孔高密度电阻率法监测四维水文地质过程

彭勃 强思远 施小清

彭勃,强思远,施小清. 基于贝叶斯实验设计优化跨孔高密度电阻率法监测四维水文地质过程[J]. 地质科技通报,2025,44(5):293-301 doi: 10.19509/j.cnki.dzkq.tb20230600
引用本文: 彭勃,强思远,施小清. 基于贝叶斯实验设计优化跨孔高密度电阻率法监测四维水文地质过程[J]. 地质科技通报,2025,44(5):293-301 doi: 10.19509/j.cnki.dzkq.tb20230600
PENG Bo,QIANG Siyuan,SHI Xiaoqing. Optimizing 4D hydrogeological process monitoring using cross-hole electrical resistivity tomography (CHERT) via Bayesian experimental design[J]. Bulletin of Geological Science and Technology,2025,44(5):293-301 doi: 10.19509/j.cnki.dzkq.tb20230600
Citation: PENG Bo,QIANG Siyuan,SHI Xiaoqing. Optimizing 4D hydrogeological process monitoring using cross-hole electrical resistivity tomography (CHERT) via Bayesian experimental design[J]. Bulletin of Geological Science and Technology,2025,44(5):293-301 doi: 10.19509/j.cnki.dzkq.tb20230600

基于贝叶斯实验设计优化跨孔高密度电阻率法监测四维水文地质过程

doi: 10.19509/j.cnki.dzkq.tb20230600
基金项目: 国家重点研发计划项目(2022YFC3703101);国家自然科学基金项目(42272276; 41977157)
详细信息
    作者简介:

    彭勃:E-mail:peng_bo@smail.nju.edu.cn

    通讯作者:

    E-mail:shixq@nju.edu.cn

  • 中图分类号: P631.8;P641

Optimizing 4D hydrogeological process monitoring using cross-hole electrical resistivity tomography (CHERT) via Bayesian experimental design

More Information
  • 摘要:

    地球物理方法可以有效监测四维水文地质过程中水流的动态和物质的传输,其成像精度往往与监测布置方案密切相关。以常用的高密度电阻率法(electrical resistivity tomography,简称ERT)为例,为了获得良好的成像精度往往需要大量的电极排列,导致监测时间较长,因而不能实时响应四维水文地质动态过程。已有ERT监测方案优化研究多侧重地表ERT,很少针对跨孔ERT。由于跨孔ERT在研究区域高精度刻画方面更具优势,提出了采用贝叶斯实验设计优化跨孔ERT监测方案。通过室内静态/动态实验以及野外场地数据,对比优化电极排列与传统电极排列的监测时间与监测精度,验证了贝叶斯实验设计优化方案的有效性。室内实验结果表明:优化后监测方案能减少约75%的监测时间,而且优化方案反演结果能更精准地动态刻画电阻异常区域,显著改善传统方案监测四维水文地质过程的滞后性误差。野外场地实验验证表明:在保证监测精度的前提下优化方案可减少约95%的监测时间。基于贝叶斯实验设计优化跨孔ERT电极排列监测方案为四维水文地质过程的高效监测提供了技术支撑。

     

  • 图 1  实验设置概念图

    Figure 1.  Conceptual diagrams of the test setup

    图 2  研究场地跨孔ERT数据概化模型

    Figure 2.  Generalized model with cross-hole ERT data in the study site

    图 3  静态实验电阻异常体反演结果标准化图

    Figure 3.  Normalized inversion results for the resistivity anomaly in the static test

    图 4  动态实验电阻异常体反演结果标准化图

    a~e. 1249组Bipole-Bipole电极排列;f~j. 250组优化电极排列

    Figure 4.  Normalized inversion results for the resistivity anomaly in the dynamic test

    图 5  不同电极排列测得异常体与实际异常体的质心坐标 (a) 及其之间的质心距 (b)

    Figure 5.  Centroid coordinates of the anomaly measured by different electrode configurations and the actual anomaly(a) and centroid distances between the anomaly measured by different electrode configurations and the actual anomaly (b)

    图 6  不同电极排列测得异常体质心坐标 (a) 及其与实际异常体质心距 (b) 的均方根误差(RMSE

    Figure 6.  Root-mean-square errors of centroid coordinates of the anomaly measured by different electrode configurations (a) and root-mean-square errors of centroid distances between the anomaly measured by different electrode configurations and the actual anomaly (b)

    图 7  Bipole-Bipole电极排列的2种不同排列方式

    A,B. 电流电极;M,N. 电位电极;下同

    Figure 7.  Two arrangements for Bipole-Bipole electrode configurations

    图 8  Bipole-Bipole电极排列的2种不同排列方式的灵敏度分布图

    Figure 8.  Sensitivity distributions of two arrangements for Bipole-Bipole electrode configurations

    图 9  不同电极排列的总灵敏度分布图

    Figure 9.  Total sensitivity distributions for different electrode configurations

    图 10  研究场地地表ERT数据反演结果

    a~d. 孔1和孔2之间的监测结果;e~h. 孔3和孔4之间的监测结果. a,e. 研究场地跨孔ERT数据概化模型;b,f. 使用Dipole-Dipole电极排列完整数据集(100%)的反演结果;c,g. 使用优化电极排列数据集(4.7%)的反演结果;d,h. 使用Dipole-Dipole电极排列缩减数据集(4.7%)的反演结果。

    Figure 10.  Inversion results from surface ERT data in the study site

  • [1] HERMANS T, GODERNIAUX P, JOUGNOT D, et al. Advancing measurements and representations of subsurface heterogeneity and dynamic processes: Towards 4D hydrogeology[J]. Hydrology and Earth System Sciences, 2023, 27(1): 255-287. doi: 10.5194/hess-27-255-2023
    [2] ROBERT T, PAULUS C, BOLLY P Y, et al. Heat as a proxy to image dynamic processes with 4D electrical resistivity tomography[J]. Geosciences, 2019, 9(10): 414. doi: 10.3390/geosciences9100414
    [3] 焦如义. 高密度电法在水平定向钻穿越孔壁稳定性检测中的应用[J]. 地质科技情报, 2016, 35(2): 108-112.

    JIAO R Y. Feasibility study on borehole collapse detection of HDD by high density electrical method[J]. Geological Science and Technology Information, 2016, 35(2): 108-112. (in Chinese with English abstract
    [4] JOHNSON T C, HAMMOND G E, CHEN X Y. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data[J]. Computers & Geosciences, 2017, 99: 72-80.
    [5] 高畅, 邢程, 郭秀军, 等. 不同演化阶段的NAPLs污染区高密度电阻率法探测效果分析[J]. 中国海洋大学学报(自然科学版), 2020, 50(增刊1): 128-136.

    GAO C, XING C, GUO X J, et al. Effect analysis of electrical resistivity tomography (ERT) detection in NAPLs contaminated areas at different evolutionary stages[J]. Periodical of Ocean University of China, 2020, 50(S1): 128-136. (in Chinese with English abstract
    [6] DIMECH A, CHENG L Z, CHOUTEAU M, et al. A review on applications of time-lapse electrical resistivity tomography over the last 30 years: Perspectives for mining waste monitoring[J]. Surveys in Geophysics, 2022, 43(6): 1699-1759. doi: 10.1007/s10712-022-09731-2
    [7] 苏永军, 范翠松, 赵更新, 等. 综合电法在探测海水入侵界面中的研究与应用: 以莱州湾地区为例[J]. 物探与化探, 2020, 44(3): 704-708.

    SU Y J, FAN C S, ZHAO G X, et al. Research and application of comprehensive electrical method in detecting saltwater intrusion interface: A case study of Laizhou Bay area[J]. Geophysical and Geochemical Exploration, 2020, 44(3): 704-708. (in Chinese with English abstract
    [8] ASARE A, APPIAH-ADJEI E K, OWUSU-NIMO F, et al. Lateral and vertical mapping of salinity along the coast of Ghana using electrical resistivity tomography: The case of Central Region[J]. Results in Geophysical Sciences, 2022, 12: 100048. doi: 10.1016/j.ringps.2022.100048
    [9] 李继兴, 严松, 杨春健, 等. 泥质砂岩残积土边坡降雨冲刷特性[J]. 地质科技通报, 2022, 41(2): 26-33.

    LI J X, YAN S, YANG C J, et al. Rainfall erosion characteristics of argillaceous sandstone residual soil slopes[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 26-33. (in Chinese with English abstract
    [10] WILKINSON P, CHAMBERS J, UHLEMANN S, et al. Reconstruction of landslide movements by inversion of 4D electrical resistivity tomography monitoring data[J]. Geophysical Research Letters, 2016, 43(3): 1166-1174. doi: 10.1002/2015GL067494
    [11] TORRESE P. Investigating karst aquifers: Using pseudo 3D electrical resistivity tomography to identify major karst features[J]. Journal of Hydrology, 2020, 580: 124257. doi: 10.1016/j.jhydrol.2019.124257
    [12] 刘金涛, 胡晓明. 高密度电法勘探在岩溶查找中的应用[J]. 地质科技情报, 2003, 22(2): 100-102.

    LIU J T, HU X M. Application of the distributed multi-electrode resistivity imaging method in finding the karst[J]. Geological Science and Technology Information, 2003, 22(2): 100-102. (in Chinese with English abstract
    [13] 郭蕾蕾, 魏良帅, 黄安邦, 等. 乌蒙山地区岩溶地下水流系统结构及其找水应用[J]. 地质科技通报, 2022, 41(1): 146-157.

    GUO L L, WEI L S, HUANG A B, et al. Structure of karst groundwater system and its water exploration in Wumeng Mountain area[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 146-157. (in Chinese with English abstract
    [14] 潘剑伟, 占嘉诚, 洪涛, 等. 地面核磁共振方法和高密度电阻率法联合找水[J]. 地质科技情报, 2018, 37(3): 253-262.

    PAN J W, ZHAN J C, HONG T, et al. Combined use of surface nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Geological Science and Technology Information, 2018, 37(3): 253-262. (in Chinese with English abstract
    [15] ABDULLAH F M, LOKE M H, NAWAWI M, et al. Assessing the reliability and performance of optimized and conventional resistivity arrays for shallow subsurface investigations[J]. Journal of Applied Geophysics, 2018, 155: 237-245. doi: 10.1016/j.jappgeo.2018.06.018
    [16] BELLMUNT F, MARCUELLO A, LEDO J, et al. Capability of cross-hole electrical configurations for monitoring rapid plume migration experiments[J]. Journal of Applied Geophysics, 2016, 124: 73-82. doi: 10.1016/j.jappgeo.2015.11.010
    [17] SINGHA K, GORELICK S M. Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis[J]. Water Resources Research, 2005, 41(5); W05023.
    [18] FURMAN A, FERRÉ T P A, WARRICK A W. Optimization of ERT surveys for monitoring transient hydrological events using perturbation sensitivity and genetic algorithms[J]. Vadose Zone Journal, 2004, 3(4): 1230-1239. doi: 10.2136/vzj2004.1230
    [19] STUMMER P, MAURER H, GREEN A G. Experimental design: Electrical resistivity data sets that provide optimum subsurface information[J]. Geophysics, 2004, 69(1): 120-139. doi: 10.1190/1.1649381
    [20] WILKINSON P B, LOKE M H, MELDRUM P I, et al. Practical aspects of applied optimized survey design for electrical resistivity tomography[J]. Geophysical Journal International, 2012, 189(1): 428-440. doi: 10.1111/j.1365-246X.2012.05372.x
    [21] LOKE M H, WILKINSON P B, CHAMBERS J E, et al. Optimized arrays for 2D resistivity survey lines with a large number of electrodes[J]. Journal of Applied Geophysics, 2015, 112: 136-146. doi: 10.1016/j.jappgeo.2014.11.011
    [22] QIANG S Y, SHI X Q, KANG X Y, et al. Optimized arrays for electrical resistivity tomography survey using Bayesian experimental design[J]. Geophysics, 2022, 87(4): 189-203. doi: 10.1190/geo2021-0408.1
    [23] WANG H R, LIN C P, LIU H C. Pitfalls and refinement of 2D cross-hole electrical resistivity tomography[J]. Journal of Applied Geophysics, 2020, 181: 104143. doi: 10.1016/j.jappgeo.2020.104143
    [24] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.

    CHAI L W. A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1283-1288. (in Chinese with English abstract
    [25] WANG T P, CHEN Y T, CHEN C C, et al. Application of cross-hole electrical resistivity tomography to groundwater contaminated remediation site[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2020, 31(5): 507-521. doi: 10.3319/TAO.2019.06.17.01
    [26] LEONTARAKIS K, APOSTOLOPOULOS G V. Laboratory study of the cross-hole resistivity tomography: The Model Stacking (MOST) technique[J]. Journal of Applied Geophysics, 2012, 80: 67-82. doi: 10.1016/j.jappgeo.2012.01.005
    [27] GOES B J M, MEEKES J A C. An effective electrode configuration for the detection of DNAPLs with electrical resistivity tomography[J]. Journal of Environmental and Engineering Geophysics, 2004, 9(3): 127-141. doi: 10.4133/JEEG9.3.127
    [28] BING Z, GREENHALGH S A. Cross-hole resistivity tomography using different electrode configurations[J]. Geophysical Prospecting, 2000, 48(5): 887-912. doi: 10.1046/j.1365-2478.2000.00220.x
    [29] LINDLEY D V. On a measure of the information provided by an experiment[J]. The Annals of Mathematical Statistics, 1956, 27(4): 986-1005. doi: 10.1214/aoms/1177728069
    [30] HUAN X, MARZOUK Y M. Simulation-based optimal Bayesian experimental design for nonlinear systems[J]. Journal of Computational Physics, 2013, 232(1): 288-317. doi: 10.1016/j.jcp.2012.08.013
    [31] WILKINSON P B, UHLEMANN S, MELDRUM P I, et al. Adaptive time-lapse optimized survey design for electrical resistivity tomography monitoring[J]. Geophysical Journal International, 2015, 203(1): 755-766. doi: 10.1093/gji/ggv329
    [32] KESSOURI P, JOHNSON T, DAY-LEWIS F D, et al. Post-remediation geophysical assessment: Investigating long-term electrical geophysical signatures resulting from bioremediation at a chlorinated solvent contaminated site[J]. Journal of Environmental Management, 2022, 302: 113944. doi: 10.1016/j.jenvman.2021.113944
    [33] JOHNSON T C, VERSTEEG R J, DAY-LEWIS F D, et al. Time-lapse electrical geophysical monitoring of amendment-based biostimulation[J]. Groundwater, 2015, 53(6): 920-932. doi: 10.1111/gwat.12291
  • 加载中
图(10)
计量
  • 文章访问数:  516
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 录用日期:  2024-01-18
  • 修回日期:  2024-01-06
  • 网络出版日期:  2024-07-17

目录

    /

    返回文章
    返回