Analysis of instability process of the loess landslides under rainfall and excavation actions: A case study of Laomiao landslide at Yangchang Village in Changwu County, Guanzhong area
-
摘要:
降雨入渗和人工开挖是诱发黄土滑坡的重要因素, 为了研究在这2种诱因作用下关中地区黄土滑坡失稳过程及其对稳定性的影响, 以陕西省长武县杨厂村老庙滑坡为研究对象, 通过现场调查、地质测绘和钻孔勘探, 查明了该滑坡变形特征, 定性分析了滑坡变形演变过程; 基于滑坡变形前15 d内日降雨量实测值, 采用有限元软件, 对坡脚开挖后连续降雨作用下滑坡形成过程进行了仿真模拟; 基于强度折减法对该滑坡稳定性变化规律进行了研究。结果表明: ①关中地区特殊的地层结构是滑坡变形的内因, 降雨是最主要的诱发因素; ②滑坡失稳演化过程表现为: 坡体处于蠕滑状态, 坡脚开挖后, 坡体前缘失稳, 牵引中后缘坡体向下错动而产生张拉裂缝, 在降雨作用下, 雨水沿裂缝渗入坡体深部, 滑坡中部岩土体浸水后抗剪强度降低, 从而导致黄土层与红黏土层接触面饱水形成贯通滑带, 诱发深层滑坡; ③滑坡开挖后较初始状态, 稳定性系数降幅为0.102, 此后受连续降雨影响, 稳定性系数在前10 d以平均0.010/d的速率缓慢下降, 第10~13 d以0.034/d的速率快速下降至最低, 第13 d以后开始回升。研究结果可以为该类滑坡防治提供有效依据。
Abstract:Rainfall infiltration and artificial excavation are important factors inducing the loess landslides. To study the deformation process of loess landslides in the Guanzhong area and its influence on stability under the two inducements, the Laomiao landslide in Yangchang Village, Changwu County, Shaanxi Province is taken as the research object.Through field investigation, geological mapping and borehole exploration, the deformation characteristics of the landslide are determined, and the deformation evolution process of the landslide is qualitatively analyzed. Based on the measured daily rainfall within 15 days before the landslide deformation, the process of landslide formation under continuous rainfall after excavation actions at the slope foot was simulated by using finite element software. Based on the strength reduction method, the stability variation law of the landslide is studied. The results show that: ① the special formation structure in the Guanzhong area is the internal cause of landslide deformation, and rainfall is the most important inducing factor; ②the deformation evolution process of the landslide: at first the slope was in a state of creep. After the excavation actions, the anterior edge of the slope became unstable, and then the trailing edge of the slope was drawn downward, resulting in tension cracks. Under the influence of rainfall, rainfall infiltrated along the fissures of the slope, while the shear strength of the rock and soil mass in the central part was reduced, resulting in the sliding interface between the soil layer and red clay layer. Ultimately a deep landslide was induced. ③ After the landslide excavation, the stability coefficient decreased by 0.102, as compared with the initial state. Then, influenced by continuous rainfall, the stability coefficient decreased slowly at an average rate of 0.010/d in the first 10 d, and rapidly decreased to the lowest rate of 0.034/d in 10-13 d, and began to rise after 13 d. The research results are expected to provide effective basis for the prevention and control of such landslides.
-
图 11 老庙滑坡工况3下各监测点抗剪强度(A)、累计位移(B)与降雨历时曲线
(a, b, c位置见图 6)
Figure 11. Curve of shear strength (A), resultant displacement (B) versus rainfall duration of each monitoring site under working condition 3 of the Laomiao landslide
表 1 老庙滑坡数值计算岩土体力学参数
Table 1. Mechanical parameters of the rock and soil of the Laomiao landslide in the calculation
岩层 天然重度γ/(kN·m-3) 饱和重度γ′/(kN·m-3) 弹性模量E/MPa 泊松比μ 黏聚力c/kPa 内摩擦角φ/(°) 有效黏聚力c′/kPa 有效内摩擦角φ′/(°) 砂质粉土 18.9 19.1 23.0 0.30 15.5 14.0 11.2 8.5 粉质黏土 19.6 19.9 21.0 0.20 17.0 16.5 13.5 9.3 红黏土 19.5 19.7 20.0 0.20 18.5 20.0 14.6 10.8 砂泥岩 24.0 24.5 150.0 0.15 400.0 42.0 -
[1] 彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(5): 714-730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005008.htmPeng J B, Wang Q Y, Zhuang J Q, et al. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 2020, 26(5): 714-730 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005008.htm [2] 孙萍萍, 张茂省, 程秀娟, 等. 黄土高原地质灾害发生规律[J]. 山地学报, 2019, 37(5): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201905011.htmSun P P, Zhang M S, Cheng X J, et al. On the regularity of geological hazards on the Loess Plateau in China[J]. Mountain Research, 2019, 37(5): 737-746 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201905011.htm [3] Zhang M, Liu J. Controlling factors of loess landslides in western China[J]. Environmental Earth Sciences, 2010, 59(8): 1671-1680. doi: 10.1007/s12665-009-0149-7 [4] 巨玉文, 齐琼, 董震, 等. 山西西部地区黄土地质灾害与降雨的关联性分析[J]. 自然灾害学报, 2016, 25(1): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201601013.htmJu Y W, Qi Q, Dong Z, et al. Analysis of relevance between loess geological disasters and rainfalls in the westem area of Shanxi Province[J]. Journal of Natural Disasters, 2016, 25(1): 81-87 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201601013.htm [5] 雷祥义. 陕西关中人为黄土滑坡类型的研究: 人类活动的黄土斜坡地质环境负效应问题[J]. 水文地质工程地质, 1996(3): 36-39, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG603.010.htmLei X Y. Research on the types of anthropogenic loess landslides in Guanzhong, Shaanxi: Negative effects of human activities on the geological environment of loess slope[J]. Hydrogeology and Engineering Geology, 1996(3): 36-39, 42 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG603.010.htm [6] 朱建东, 鄢好, 李绍红, 等. 黄土-泥岩接触面滑坡的两种雨型模型试验[J]. 工程地质学报, 2019, 27(3): 623-631. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903021.htmZhu J D, Yan H, Li S H, et al. Model tests on two rain patterns of loess-mudstone interface landslide[J]. Journal of Engineering Geology, 2019, 27(3): 623-631 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903021.htm [7] 曾昌禄, 李荣建, 关晓迪, 等. 不同雨强条件下黄土边坡降雨入渗特性模型试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1022.htmZeng C L, Li R J, Guan X D, et al. Model test of rainfall infiltration characteristics of loess slope under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 111-115 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1022.htm [8] 卢操, 晏鄂川, 张瑜, 等. 隆而作用下青石镇政府后山堆积层滑坡渗流与稳定性[J]. 地质科技通报, 2020, 39(2): 139-147. doi: 10.19509/j.cnki.dzkq.2020.0215Lu C. Yan E C, Zhang Y, et al. Seepage and stability of the coiluvial landslide on the back hill of Qingshi Town Govern-ment under rainfall[J]. Balletin of Geological Science and Technology, 2020, 39(2): 139-147 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0215 [9] 杜光波, 倪万魁. 降雨条件下黄土斜坡的入渗特征分析[J]. 安全与环境学报, 2017, 17(4): 1387-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704037.htmDu G B, Ni W K. Status-in-situ observation and analysis for the loess landslide under the impact of the rainfall[J]. Journal of Safety and Environment, 2017, 17(4): 1387-1391 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704037.htm [10] 文海家, 张岩岩, 付红梅, 等. 降雨型滑坡失稳机理及稳定性评价方法研究进展[J]. 中国公路学报, 2018, 31(2): 15-29, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802003.htmWen H J, Zhang Y Y, Fu H M, et al. Instability mechanism and rainfall type landslide stability evaluation method research[J]. China Journal of Highway and Transport, 2018, 31(2): 15-29, 96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802003.htm [11] 周创兵, 李典庆. 暴雨诱发滑坡致灾机理与减灾方法研究进展[J]. 地球科学进展, 2009, 24(5): 477-487. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200905004.htmZhou C B, Li D Q. Advances in rainfall induced landslides mechanism and risk mitigation[J]. Advances in Earth Science, 2009, 24 (5): 477-487 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200905004.htm [12] 高华喜, 殷坤龙. 降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J]. 岩土力学, 2007, 28(5): 1055-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705040.htmGao H X, Yin K L. Discuss on the correla-tions between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics, 2007, 28(5): 1055-1060 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705040.htm [13] Tu X B, Kwong A K L, Dai F C, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology, 2009, 105(1): 134-150. [14] Wen B P, Wang S J, Wang E Z, et al. Deformation characteristics of loess landslide along the contact between loess and Neocene red mudstone[J]. Acta Geologica Sinica: English Edition, 2005, 79(1): 139-151. [15] Zhou Y F, Tham L G, Yan W M, et al. Laboratory study on soil behavior in loess slope subjected to infiltration[J]. Engineering Geology, 2014, 183: 31-38. [16] 董时俊. 降雨条件下灵台黄土滑坡变形机理分析[J]. 铁道工程学报, 2014, 31(10): 44-48, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201410009.htmDong S J. Deformation mechanism of lingtai loess landslide under rainfall condition[J]. Journal of Railway Engineering Society, 2014, 31(10): 44-48, 68 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201410009.htm [17] 杨背背, 般坤龙, 梁鑫, 等. 三峡库区麻柳林滑玻变形特征及演化模拟[J]. 地质科技通报, 2020, 39(2): 122-129. doi: 10.19509/j.cnki.dzkq.2020.0213Yang B B, Yin K L, Liang X, et al. Deformation characteristies and evolution simulation of the Maliulin landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 122-129 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0213 [18] 殷坤龙, 汪洋, 唐仲华. 降雨对滑坡的作用机理及动态模拟研究[J]. 地质科技情报, 2002, 21(1): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201019.htmYin K L, Wang Y, Tang Z H. Study on the mechanism and dynamic simulation of rainfall on landslide[J]. Geological Science and Technology Information, 2002, 21(1): 75-78 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201019.htm [19] 裴向军, 袁广, 张晓超, 等. 坡脚开挖诱发滑坡机理: 以沙井驿滑坡为例[J]. 山地学报, 2017, 35(2): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201702009.htmPei X J, Yuan G, Zhang X C, et al. Study on the mechanism of the loess landslide triggered by slope toe excavation-for the example of the landslide of Shajingyi[J]. Mountain Research, 2017, 35(2): 195-202 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201702009.htm [20] 曹春山, 吴树仁, 潘懋, 等. 工程切坡诱发黄土滑坡成因机制研究[J]. 岩土力学, 2016, 37(4): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604018.htmCao C S, Wu S R, Pan M, et al. Study on genesis mechanism of loess landslide induced by engineering slope cutting[J]. Rock and Soil Mechanics, 2016, 37(4): 1049-1060 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604018.htm [21] 彭建兵, 吴迪, 段钊, 等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报, 2016, 51(5): 971-980. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201605021.htmPeng J B, Wu D, Duan Z, et al. Characteristics and mechanism of loess landslide induced by typical human engineering activities[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 971-980 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201605021.htm [22] 张永兴, 姜广荣. 考虑滑面变形的楔形体稳定分析方法研究[J]. 重庆交通学院学报, 1995, 14(3): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT503.005.htmZhang Y X, Jiang G R. Study on stability analysis method of wedge considering sliding surface deformation[J]. Journal of Chongqing Jiaotong University, 1995, 14(3): 35-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT503.005.htm [23] 周应华, 周德培, 张辉, 等. 楔形体破坏模式下红层边坡岩体质量SMR法评价[J]. 工程地质学报, 2005, 13(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ20050100E.htmZhou Y H, Zhou D P, Zhang H, et al. Evaluation of rock mass quality of red bed slope by SMR method under wedge failure mode[J]. Journal of Engineering Geology, 2005, 13(1): 89-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ20050100E.htm [24] 薛强, 张茂省, 毕俊擘, 等. 开挖型黄土边坡剥落侵蚀作用及变形破坏研究[J]. 西北地质, 2019, 52(2): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201902020.htmXue Q, Zhang M S, Bi J B, et al. Exfoliation erosion and deformation failure of excavated loess slope[J]. Northwest Geology, 2019, 52(2): 158-166 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201902020.htm [25] 王衍汇, 倪万魁, 李征征, 等. 工程开挖引起的黄土边坡变形破坏机理分析[J]. 西北地质, 2015, 48(4): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201504027.htmWang Y H, Ni W K, Li Z Z, et al. Analysis on deformation and failure mechanism of loess slope caused by engineering excavation[J]. Northwest Geology, 2015, 48(4): 210-217 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201504027.htm [26] 贾杰, 裴向军, 谢睿, 等. 延安市阳崖黄土边坡开挖破坏离心模拟试验研究[J]. 工程地质学报, 2016, 24(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601001.htmJia J, Pei X J, Xie R, et al. Centrifugal simulation test on excavation failure of Yangya loess slope in Yan'an City[J]. Journal of Engineering Geology, 2016, 24(1): 1-9 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601001.htm [27] 陈春利, 殷跃平, 李同录. 窑洞开挖诱发浅层黄土滑坡的变形机理模拟[J]. 地质通报, 2013, 32(12): 1962-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312010.htmChen C L, Yin Y P, Li T L. Deformation mechanism simulation of shallow loess landslide induced by cave excavation[J]. Geological Bulletin of China, 2013, 32(12): 1962-1967 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312010.htm [28] 张子东, 裴向军, 张晓超, 等. 黄土边坡开挖卸荷力学响应与破坏机理研究[J]. 工程地质学报, 2018, 26(3): 684-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803015.htmZhang Z D, Pei X J, Zhang X C, et al. Study on mechanical response and failure mechanism of loess slope under excavation unloading[J]. Journal of Engineering Geology, 2018, 26(3): 684-693 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803015.htm [29] 吴艳, 白建勤, 张晓萍, 等. 基于日雨量的长武县53年来降雨量及侵蚀力演变趋势分析[J]. 水土保持研究, 2012, 19(4): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201204010.htmWu Y, Bai J Q, Zhang X P, et al. Evolution trend of rainfall and erosive force in Changwu County in the past 53 years based on daily rainfall[J]. Research of Soil and Water Conversation, 2012, 19(4): 38-42 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201204010.htm [30] 陈杰, 刘文兆, 王文龙, 等. 长武黄土高塬沟壑区降水及侵蚀性降雨特征[J]. 中国水土保持科学, 2009, 7(1): 27-31, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC200901006.htmChen J, Liu W Z, Wang W L, et al. Characteristics of precipitation and erosive rainfall in gully region of Changwu Loess Plateau[J]. Science of Soil and Water Conservation, 2009, 7(1): 27-31, 56 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBC200901006.htm [31] 李庶林, 赵睿鸣, 彭府华, 等. 基于强度折减法的高陡边坡滑坡治理稳定性分析[J]. 建筑科学与工程学报, 2020, 37(1): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202001015.htmLi S L, Zhao R M, Peng F H, et al. Stability analysis of high and steep slope landslide treatment based on strength reduction method[J]. Chinese Journal of Building Science and Engineering, 2020, 37 (1): 120- 126 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202001015.htm [32] 卢永兴, 肖建章, 许冲, 等. 蓄水与施工作用下滑坡变形机制与稳定性分析[J]. 工程地质学报, 2014, 22(3): 386-395. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403007.htmLu Y X, Xiao J Z, Xu C, et al. Deformation mechanism and stability analysis of landslide under impoundment and construction[J]. Journal of Engineering Geology, 2014, 22(3): 386-395 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403007.htm [33] 重庆市城乡建设委员会. 建筑边坡工程技术规范: GB50330-2013[S]. 北京: 中国建筑工业出版社, 2013.Chongqing Urban and Rural Construction Commission. Technical code for construction slope engineering: GB50330-2013[S]. Beijing: China Architecture and Building Press, 2013(in Chinese). -