Study on slope stability considering first-order linear strain-softening theory
-
摘要:
在持续降雨或开挖卸荷作用下, 土体的强度指标会发生劣化, 但现今采用的边坡稳定性计算大多直接将其视为一个常数。为接近真实的边坡失稳破坏模式, 基于瑞典条分法以及一阶线性应变软化机制, 提出了一种边坡渐进破坏分析新方法, 推导出应变软化型边坡极限平衡表达式, 并获得了各破坏进度下边坡的安全系数。通过对模拟算例进行分析, 证明了条分-软化法的可靠性, 且计算结果表明渐进破坏过程中安全系数不仅取决于边坡的破坏方式与强度参数, 还与岩土体的软化模量密切相关。同时, 通过与滑坡实际案例的对比验算, 证实其强度指标存在不同的衰减系数, 即黏聚力的衰减系数大于摩擦角。从理论到应用, 最终获得的条分-软化法, 不仅考虑了岩土体的强度劣化效应以及滑动面的渐进发展, 还能有效地服务于实际工程背景下边坡的稳定性分析, 可以为滑坡的预防与治理提供指导建议。
Abstract:Under the action of continuous rainfall or excavation unloading, the strength index of soil deteriorates, but most of the current slope stability calculations directly regard it as a constant. To approach the real failure mode of slope instability, based on the Swedish slice method and the first-order linear strain-softening theory, this paper proposes a new method for slope progressive failure analysis, deduces the limit equilibrium expression of the strain-softening slope, and obtains the safety factor under the corresponding damage progress. Through the analysis of simulation examples, the feasibility of the slice-softening method is illustrated, and the calculation results show that the safety factor in the progressive failure process not only depends on the failure mode and strength parameters of the slope but is also closely related to the softening modulus of the rock and soil mass. At the same time, by comparing and checking the actual cases of the Danba landslide, it is confirmed that there are different attenuation coefficients for its strength index, that is, the attenuation coefficient of cohesion is greater than the friction angle. From theory to application, the finally obtained slice-softening method not only considers the strength degradation effect of rock and soil mass under the action of rainfall and the gradual development of sliding surface but can also effectively serve the stability analysis of slope under the background of practical engineering and provide guidance and suggestions for the prevention and treatment of landslides.
-
表 1 不同黏聚力所对应的安全系数
Table 1. Safety factors for different cohesive forces
黏聚力/kPa 40 25 10 安全系数 1.386 1.102 0.784 表 2 不同软化模量下的安全系数
Table 2. Safety factors with different softening modulus
工况 A B C D E F 残余强度时的应变/10-3 8 5 4 3.5 3.2 3 软化模量Ms/103 kPa 5 10 15 20 25 30 安全系数Fs 1.271 1.209 1.163 1.133 1.110 1.092 表 3 滑坡各地层的物理力学参数
Table 3. Physico-mechanical parameters of the slope
地层编号 黏聚力/kPa 摩擦角/(°) 重度/(kN·m-3) 1 16 31.61 19.5 2 65 37 19.5 3 100 45 49.5 4 450 55 19.5 -
[1] 崔鹏, 陈容, 向灵芝, 等. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展, 2014, 10(2): 103-109. doi: 10.3969/j.issn.1673-1719.2014.02.004Cui P, Chen R, Xiang L Z, et al. Risk analysis of mountain hazards in Tibetan Plateau under global warming[J]. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(2): 103-109 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2014.02.004 [2] 杨情情, 郑欣玉, 苏志满, 等. 高速远程冰-岩碎屑流研究进展[J]. 地球科学, 2022, 47(3): 935-949. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203014.htmYang Q Q, Zheng X Y, Su Z M, et al. Review on rock-ice avalanches[J]. Earth Science, 2022, 47(3): 935-949 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203014.htm [3] 郑光, 许强, 刘秀伟, 等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2020, 28(3): 541-556. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htmZheng G, Xu Q, Liu X W, et al. The Jichang landslide on July 23, 2019 in Shuicheng, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2020, 28(3): 541-556 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm [4] 姚云琦, 曾润强, 马建花, 等. 考虑优势流作用的降雨入渗边坡可靠度分析[J]. 岩土力学, 2022, 43(8): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202208024.htmYao Y Q, Zeng R Q, Ma J H, et al. Reliability analysis of slope under rainfall infiltration considering preferential flow model[J]. Rock and Soil Mechanics, 2022, 43(8): 1-12 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202208024.htm [5] 何满潮, 任树林, 陶志刚. 滑坡地质灾害牛顿力远程监测预警系统及工程应用[J]. 岩石力学与工程学报, 2021, 40(11): 2161-2172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111001.htmHe M C, Ren S L, Tao Z G. Remote monitoring and forecasting system of Newton force for landslide geological hazards and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2161-2172 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111001.htm [6] 白冰, 袁维, 石露, 等. 一种双折减法与经典强度折减法的关系[J]. 岩土力学, 2015, 36(5): 1275-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505006.htmBai B, Yuan W, Shi L, et al. Comparing a new double reduction method to classic strength reduction method for slope stability analysis[J]. Rock and Soil Mechanics, 2015, 36(5): 1275-1281 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505006.htm [7] 蒋先平, 张鹏, 卢艺伟, 等. 物质点强度折减法边坡失稳判据选择方法[J]. 地质科技通报, 2022, 41(2): 113-122. doi: 10.19509/j.cnki.dzkq.2021.0075Jiang X P, Zhang P, Lu Y W, et al. Slope failure criterion for the strength reduction material point method[J], Bulletin of Geological Science and Technology, 2022, 41(2): 113-122 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0075 [8] 吴益平, 卢里尔, 薛阳. 基于临界状态的边坡渐进破坏力学模型分析及应用[J]. 地质科技通报, 2020, 39(5): 1-7. doi: 10.19509/j.cnki.dzkq.2020.0501Wu Y P, Lu L E, Xue Y. Application of landslide progressive failure mechanical model based on the critical stress state[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 1-7 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0501 [9] 张嘎, 张建民. 基于瑞典条分法的应变软化边坡稳定性评价方法[J]. 岩土力学, 2007, 28(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701003.htmZhang G, Zhang J M. Stability evaluation of strain softening slope based on Swedish slice method[J]. Rock and Soil Mechanics, 2007, 28(1): 12-16 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701003.htm [10] Law K T, Lumb P. A limit equilibrium analysis of progressive failure in the stability of slope[J]. Canadian Geotechnical Journal, 1978, 15: 113-122. [11] Srbulov M M. A simple method for the analysis of stability of slopes in the brittle soil[J]. Soils and Foundations, 1995, 35(4): 123-127. [12] 何成, 唐辉明, 申培武, 等. 应变软化边坡渐进破坏模式及稳定性可靠度[J]. 地球科学, 2021, 46(2): 697-707. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102024.htmHe C, Tang H M, Shen P W, et al. Progressive failure mode and stability reliability of strain-softening slope[J]. Earth Science, 2021, 46(2): 697-707 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102024.htm [13] 吕铁墩. 应变软化土坡稳定极限平衡分析[D]. 杭州: 浙江大学, 2007.Lu T D. Limit equilibrium method applied to slope stability analysis of brittle soil[D]. Hangzhou: Zhejiang University, 2007 (in Chinese with English abstract). [14] 何志明, 吴维, 付宏渊, 等. 基于应变软化模型的软岩高边坡过程稳定性研究[J]. 中南大学学报: 自然科学版, 2013, 44(3): 1203-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303052.htmHe Z M, Wu W, Fu H Y, et al. Process stability of soft rock high slope based on strain softening model[J]. Journal of Central South University: Science and Tenchnology, 2013, 44(3): 1203-1208 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303052.htm [15] 薛海斌, 党发宁, 尹小涛, 等. 应变软化边坡稳定性分析方法研究[J]. 岩土工程学报, 2016, 38(3): 570-577. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603026.htmXue H B, Dang F N, Yin X T, et al. Study on the stability analysis method of strain-softening slope[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 570-577 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603026.htm [16] 韩建新, 李术才, 李树忱, 等. 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. 岩土力学, 2013, 34(2): 342-346. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302008.htmHan J X, Li S C, Li S C, et al. Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. Rock and Soil Mechanics, 2013, 34(2): 342-346 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302008.htm [17] 王水林, 郑宏, 刘泉声, 等. 应变软化岩体分析原理及其应用[J]. 岩土力学, 2014, 35(3): 609-622, 630. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403001.htmWang S L, Zheng H, Liu Q S, et al. Principle of analysis of strain-softening rock mass and its application[J]. Rock and Soil Mechanics, 2014, 35(3): 609-622, 630 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403001.htm [18] 殷跃平, 李廷强, 唐军. 四川省丹巴县城滑坡失稳及应急加固研究[J]. 岩石力学与工程学报, 2008, 27(5): 971-978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805016.htmYin Y P, Li Y Q, Tang J. Landslide reactivation and emergency stabilization on Danba County Town in Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 971-978 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805016.htm [19] 范雅婕, 范宣梅, 方成勇. 基于栅格最大值法的县域综合地质灾害建模[J]. 地质科技通报, 2022, 41(2): 197-208. doi: 10.19509/j.cnki.dzkq.2022.0046Fan Y J, Fan X M, Fang C Y. County comprehensive geohazard modelling based on the grid maximum method[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 197-208 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0046 [20] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htmXu Q, Zheng G, Li W L, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534-1551 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806016.htm [21] 范宣梅, 许强, 黄润秋, 等. 丹巴县城后山滑坡锚固动态优化设计和信息化施工[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4139-4146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2080.htmFan X M, Xu Q, Huang R Q, et al. Dynamic optimal anchoring design and information construction of Danba landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4139-4146 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2080.htm [22] Donald I, Chen Z Y. Slope stability analysis by an upper bound plasticity method[J]. Canadian Geotechnical Journal, 1997, 34(11): 853-862. [23] 陈国庆, 黄润秋, 石豫川, 等. 基于动态和整体强度折减法的边坡稳定性分析[J]. 岩石力学与工程学报, 2014, 33(2): 243-256. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402006.htmChen G Q, Huang R Q, Shi Y C, et al. Stability analysis of slope based on dynamic and whole strength reduction methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 243-256 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402006.htm [24] 陈国庆, 黄润秋, 周辉, 等. 边坡渐进破坏的动态强度折减法研究[J]. 岩土力学, 2013, 34(4): 1140-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304038.htmChen G Q, Huang R Q, Zhou H, et al. Research on progressive failure for slope using dynamic strength reduction method[J]. Rock and Soil Mechanics, 2013, 34(4): 1140-1146 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304038.htm [25] 赵尚毅, 郑颖人, 时卫民, 等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, 2002, 24(3): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200203016.htmZhao S Y, Zheng Y R, Shi W M, et al. Analysis of safety factor of slope stability by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200203016.htm [26] 郑颖人, 赵尚毅, 张鲁渝. 用有限元强度折减法进行边坡稳定性分析[J]. 中国工程科学, 2002, 4(10): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302020.htmZheng Y R, Zhao S Y, Zhang L Y. Slope stability analysis by strength reduction FEM[J]. Engineering Science, 2002, 4(10): 57-62 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302020.htm [27] 唐芬, 郑颖人. 边坡渐进破坏双折减系数法的机理分析[J]. 地下空间与工程学报, 2008, 4(3): 436-441. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200803012.htmTang F, Zheng Y R. Mechanism analysis of dual reduction factors about the progress failure of slope[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(3): 436-441 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200803012.htm [28] 唐芬, 郑颖人, 赵尚毅. 土坡渐进破坏的双安全系数讨论[J]. 岩石力学与工程学报, 2007, 26(7): 1402-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707013.htmTang F, Zheng Y R, Zhao S Y. Discussion on two safety factors for progressive failure of soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1402-1407 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707013.htm [29] 饶晨曦, 胡斌, 刘飞, 等. 双强度折减法分析岩质边坡稳定性[J]. 人民黄河, 2014, 36(6): 119-121. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201406040.htmRao C X, Hu B, Liu F, et al. Application of double strength reduction to rock slope stability analysis based on UDEC[J]. Yellow River, 2014, 36(6): 119-121 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201406040.htm [30] 陈晓平, 黄井武, 尹赛华, 等. 滑带土强度特性的试验研究[J]. 岩土力学, 2011, 32(11): 3212-3218. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111003.htmChen X P, Huang J W, Yin S H, et al. Experimental study of strength property of slip zone soils[J]. Rock and Soil Mechanics, 2011, 32(11): 3212-3218 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201111003.htm -