Deformation mechanism and medium- and long-term landslide prediction model of Xinpu Xia'ertai landslide
-
摘要:
以奉节新铺下二台滑坡为例, 基于GPS位移监测数据、裂缝数据、降雨量及库水位等多源数据, 总结分析了大型古滑坡的复活规律, 引入滑坡中长期预报模型, 实现了以季度或月份为时间单位的跨水文年滑坡位移预测, 并通过岩土体蠕变压缩模型, 验证了推移式滑坡后缘裂缝形成机理。结果表明: ①降雨是下二台滑坡变形的主导因素, 滑坡变形使得滑体产生裂缝并成为降雨入渗通道, 加剧了岩体破碎与软弱层软化, 降低了滑坡稳定性, 集中持续降雨可使滑坡失稳破坏; ②通过模型预测值与地表监测数据的比较, 将年降雨量作为滑坡中长期预报模型中的主控因素具有实际可操作性且有助于提高滑坡中长预报精度; ③推移式滑坡后缘裂缝由滑坡推移式位移和岩土体压缩形成, 引入蠕变压缩模型计算的裂缝宽度并和监测数据的比较说明, 蠕变压缩模型非常适合该类边坡, 同时应用岩土体蠕变压缩模型反推得到岩土体平均变形模量, 判断岩体破碎程度, 可以为滑坡稳定性分析及后续工程治理提供参考。
Abstract:Due to the influence of reservoir water level, rainfall and geological conditions, the Three Gorges Reservoir area is a landslide hazard-prone area, and the landslide genesis mechanism and evolution process are also extremely complex.By taking the Xinpu Xia'ertai landslide as an example, this paper summarizes and analyses the resurgence law of large palaeo-landslides based on multiple sources of data, such as GPS displacement monitoring data, fracture data, rainfall and reservoir water level, and through a geotechnical creep compression model. The paper also verifies the mechanism of fracture formation on the trailing edge of the displaced landslide.The results show the following: ①Rainfall is the dominant factor of landslide deformation. Landslide deformation causes the landslide body to produce cracks and form rainfall infiltration channels, which intensifies rock fragmentation and weak layer mudification and reduces landslide stability; besides, concentrated and continuous rainfall can destabilize landslides. ②By comparing the predicted value of the model with the surface monitoring data, it is feasible to take annual rainfall as the controlling factor in the medium- and long-term landslide prediction model and help to improve the prediction accuracy of landslides. ③Pushing landslide trailing edge cracks consist of landslide pushing displacement and geotechnical body compression. In this paper, the compression creep model is introduced to calculate the crack width and compare it with the monitoring data. This shows that the compression creep model is suitable for this type of slope, and the average deformation modulus of the geotechnical body is obtained by applying the backpropagation of the geotechnical body creep compression model. Thus, we judge the degree of rock fragmentation, which provides a reference for landslide stability analysis and subsequent engineering management.
-
表 1 下二台滑坡累积位移与库水位相关系数
Table 1. Correlation coefficient between the cumulative displacement and reservoir water level of the Xia′ertai landslide
阶段 月份 累计位移与库水位相关系数r GPS07 GPS01 缓慢下降阶段 12 -0.133 0 -0.077 2 1 0.303 4 0.143 7 2 0.129 5 0.092 5 3 -0.095 0 -0.158 5 4 -0.349 5 -0.197 5 快速下降阶段 5 0.218 4 0.050 6 6 0.396 4 0.117 7 低水位波动阶段 7 0.195 8 0.107 4 8 0.182 4 0.065 2 快速上升阶段 9 0.009 9 0.132 6 10 0.144 0 -0.165 7 稳定阶段 11 0.161 5 0.226 7 表 2 下二台滑坡一级滑体GPS05样本数据
Table 2. Sample data at GPS05 of the first grade slide, Xia′ertai landslide
年份 累计降雨强度系数 观测位移/mm 预测位移/mm 2017 3.07 1 005 1 024 2018 3.56 1 175 1 142 2019 4.26 1 297 1 310 2020 5.36 1 587 1 587 2021 6.39 1 903 1 858 表 3 GPS13监测点至LF38裂缝间岩体分段压缩量计算表
Table 3. Rock section compression calculation table between GPS13 and LF38
分段i 平均垂直厚度hi/m 分段长xi/m 容重γ/(kN·m-3) 黏聚力C/MPa 内摩擦角φ/(°) 岩层倾角β/(°) 弹性模量E/MPa 分段压缩量Bi/mm 1 5.12 8.0 26 4.8 13.35 14 8.77×104 0.04 2 8.03 8.0 26 4.8 13.35 14 8.77×104 0.10 3 10.95 8.0 26 4.8 13.35 14 8.77×104 0.20 4 13.81 8.0 26 4.8 13.35 14 8.77×104 0.32 5 16.54 8.0 26 4.8 13.35 14 8.77×104 0.47 6 19.50 8.0 26 4.8 13.35 14 8.77×104 0.65 7 22.78 8.0 26 4.8 13.35 14 8.77×104 0.87 8 25.50 8.0 26 4.8 13.35 14 8.77×104 1.11 9 27.36 8.4 26 4.8 13.35 14 8.77×104 1.38 10 27.52 4.0 26 4.8 13.35 14 8.77×104 1.52 累计压缩量 6.67 -
[1] 王忠福, 李冬冬, 万天同. 基于滑坡变形分区的锁固型滑坡稳定性分析研究[J]. 华北水利水电大学学报: 自然科学版, 2018, 39(6): 35-40. doi: 10.3969/j.issn.1002-5634.2018.06.007Wang Z F, Li D D, Wan T T. Stability analysis of landslide based on landslide deformation partition with retaining wall[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2018, 39(6): 35-40(in Chinese with English abstract). doi: 10.3969/j.issn.1002-5634.2018.06.007 [2] Tang H M, Wasowski J, Juang C H. Geohazards in the Three Gorges Reservoir area, China: Lessons learned from decades of research[J]. Engineering Geology, 2019, 261(10): 5267. [3] Gong W P, Juang C H, Wasowski J. Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China: Engineering geologist's perspective[J]. Engineering Geology, 2021, 285(10): 6051. [4] Petley D N. Global patterns of loss of life from landslides[J]. Geology, 2012, 40(10): 927-930. doi: 10.1130/G33217.1 [5] Lin Q, Wang Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018, 15(12): 2357-2372. doi: 10.1007/s10346-018-1037-6 [6] Tong D F, Su A J, Tan F, et al. Genetic mechanism of water-rich landslide considering antecedent rain fails: A case study of Pingyikou landslide in Three Gorges Reservoir area[J/OL]. Journal of Earth Science: 1-27[2022-11-11]. http://kns.cnki.net/kcms/detail/42.1788.P.20220805.1445.006.html. [7] 陈洪凯, 唐红梅, 艾南山. 三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响[J]. 地理研究, 1997, 16(4): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.002.htmChen H K, Tang H M, Ai N S. Neotectonic strese field and its effects on the dominant sliding direction of landslides in the Three Gorges Reservoir region[J]. Geographical Research, 1997, 16(4): 16-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.002.htm [8] 冯振, 殷跃平, 李滨, 等. 重庆武隆鸡尾山滑坡视向滑动机制分析[J]. 岩土力学, 2012, 33(9): 2704-2712. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209027.htmFeng Z, Yin Y P, Li B, et al. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing[J]. Rock and Soil Mechanics, 2012, 33(9): 2704-2712(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209027.htm [9] 张帆, 王孔伟, 罗先启, 等. 长江三峡库区构造特征与滑坡分布关系[J]. 地质学报, 2007, 81(1): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701005.htmZhang F, Wang K W, Luo X Q, et al. Relationship between landslides and structural featurein Three Gorges Reservoir[J]. Acta Geologica Sinica, 2007, 81(1): 38-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701005.htm [10] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108 [11] 唐辉明, 鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报, 2018, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htmTang H M, Lu S. Research on the spatial distribution of slip zone of huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2018, 26(1): 129-136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htm [12] 谭淋耘, 黄润秋, 裴向军. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 2021, 40(2): 302-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102007.htmTan L Y, Hang R Q, Pei X J. Deformation characteristics and inducing mechanisms of a super-large bedding rock landslide triggered by reservoir water level decline in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 302-314(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102007.htm [13] 仝德富, 谭飞, 苏爱军, 等. 基于多源数据的谭家湾滑坡变形机制及稳定性评价[J]. 地质科技通报, 2021, 40(4): 162-170. doi: 10.19509/j.cnki.dzkq.2021.0432Tong D F, Tan F, Su A J, et al. Deformation mechanism and stability evaluation of Tanjiawan landslide based on multi-source data[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 162-170 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0432 [14] 张永双, 吴瑞安, 任三绍. 降雨优势入渗通道对古滑坡复活的影响[J]. 岩石力学与工程学报, 2021, 40(4): 777-789. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104011.htmZhang Y S, Wu R A, Ren S S. Influence of rainfall preponderance infiltration path on reactivation of ancient landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 777-789(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104011.htm [15] 李晓, 张年学, 盛祝平, 等. 武隆鸡尾山滑坡发生机制与裂缝成因分析[J]. 岩石力学与工程学报, 2020, 39(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001001.htmLi X, Zhang N X, Sheng Z P, et al. Sliding mechanisms and fracture genesis of Jiweishan landslide in Wulong[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001001.htm -