Application of NMR logging while drilling in fluid identification of low resistivity reservoirs in Wenchang Oilfield, South China Sea
-
摘要:
随钻核磁共振测井在南海文昌油田低阻油层的开发中以安全高效的测井方式提供了孔隙度、渗透率等参数,且在定性识别轻质油层方面发挥了关键作用。为了进一步提升随钻核磁共振测井在文昌油田低阻油层流体识别中的使用价值,从孔隙结构和流体性质2个影响因素出发,提出了
T 2谱含油特征指标法并引入纯水谱重构法开展流体定量识别。其中T 2谱含油特征指标法以消除孔隙结构的影响为基础,利用轻质油和水的横向弛豫时间差异提取轻质油真实的拖尾现象达到定量识别流体的目的;水谱重构法则采用球管模型和正态分布模型分别构建束缚水谱和可动水谱,并将两者之和作为纯水谱,通过与实测核磁T 2谱的对比提取流体性质信息,达到识别流体性质的目的,2种方法在文昌油田低阻油层的流体识别中均取得了良好的应用效果,可在低阻油层、水淹层等储层流体的定量识别中发挥显著作用。Abstract:In the development of low resistivity reservoirs in Wenchang Oilfield of South China Sea, NMR logging while drilling provides porosity, permeability and other parameters in a safe and efficient logging way, and plays a key role in qualitative identification of light oil. In order to further improve the application value of NMR logging while drilling in fluid identification of low resistivity reservoir in Wenchang Oilfield, starting from two influencing factors which is pore structure and fluid properties,
T 2 spectrum oil-bearing characteristic index was proposed, and pure water spectrum reconstruction was introduced to carry out fluid quantitative identification. TheT 2 spectrum oil-bearing characteristics index method was based on eliminating the influence of pore structure, and by using the transverse relaxation time difference between light oil and water to extract the real tail phenomenon of light oil, so as to achieve the purpose of quantitative identification of fluid.The water spectrum reconstruction method used the spherical tube model and the normal distribution model to construct the bound water spectrum and the movable water spectrum respectively, which the sum of the two spectrum is pure water spectrum. The information of fluid properties is extracted by comparing with the actual measured NMRT 2 spectrum, so as to identify the fluid properties. The two methods have good applications to the fluid identification of low resistivity reservoirs in Wenchang Oilfield.These two methods can play important roles in the quantitative identification of reservoir fluids such as low resistivity reservoirs and water flooded reservoirs. -
-
[1] Radu C, Holger T, Holger T, et al. Improved NMR logging approach to simultaneously determine porosity, T2 and T1[C]//Anon. The SPE Annual Technical conference and exhibition. Houston, Texas: [s. n. ], 2015: 18-22. [2] Soren A C, Holger F T, Ole V. NMR fluid substitution method for reservoir characterization and drilling optimization in low-porosity chalk[C]//Anon. The SPWLA 56th annual logging symposium. Long Beach, Calofornia, USA: [s. n. ], 2015: 18-22. [3] Holger Thern, Geoffrey Page. Joint interpretation of magnetic resonance and resistivity fluid volumetrics: A framework for petrophysical evaluation[C]//Anon. The SPWLA 57th annual logging symposium. Reykjavik, Iceland: [s. n. ], 2016: 25-29. [4] Thomas Kruspe, Holger F. Thern, Gerhard Kurz, et al. Slimhole application of magnetic resonance while drilling[C]//Anon. The SPWLA 50th annual logging symposium. Woodlands, Texas, USA: [s. n. ], 2009: 21-24. [5] 李新, 肖立志, 刘化冰. 随钻核磁共振测井的特殊问题与应用实例[J]. 测井技术, 2011, 35(3): 200-205. doi: 10.3969/j.issn.1004-1338.2011.03.002Li X, Xiao L Z, Liu H B, et al. Key issues and application case of NMR logging while drilling[J]. Well Logging Techology, 2011, 35(3): 200-205(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2011.03.002 [6] Xu J X, Tan L, Cui Y J, et al. Formation evaluation by sourceless logging while drilling: NMR case study from Bohai Bay[C]//Anon. The SPE/ITATMI Asia Pacific Oil&Gas Conference and Exhibition. Jakarta, Indonesia: [s. n. ], 2017: 17-19. [7] 郑炀. 徐锦绣, 刘欢, 等. 基于随钻核磁共振测井的渗透率评价方法及其应用[J]. 中国海上油气, 2019, 31(2): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201902008.htmZheng Y, Xu J X, Liu H, et al. A permeability evaluation method based on NMR logging while drilling and its application: Taking Paleogene Shahejie Formation in Jinzhou Oilfield of Bohai Sea as an example[J]. China Offshore Oil and Gas, 2019, 31(2): 69-75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201902008.htm [8] 冯恩龙, 彭乐, 曹军, 等. 随钻核磁共振测井仪MagTrak在渤海油田的应用[J]. 石化技术, 2018, 25(4): 333-334. doi: 10.3969/j.issn.1006-0235.2018.04.275Feng E L, Peng L, Cao J, et al. Application of NMR logging while drilling tool MagTrak in Bohai Oilfield[J]. Petrochemical Technology, 2018, 25(4): 333-334(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0235.2018.04.275 [9] 徐锦绣, 彭学梅, 陆云龙, 等. 随钻核磁共振测井识别JZ油田沙河街组地层流体[J]. 测井技术, 2020, 44(2): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202002018.htmXu J X, Peng X M, Lu Y L, et al. New techniques for identifying fluid in the Shahejie formation in JZ Oilfield by NMR-LWD[J]. Well Logging Technology, 2020, 44(2): 192-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202002018.htm [10] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学出版社, 1998.Xiao L Z. Nuclear magnetic resonance logging and core magnetic resonance imaging and its application[M]. Beijing: Science Press, 1998(in Chinese). [11] 李鹏举, 张鹏志, 姜大鹏. 核磁共振测井流体识别方法综述[J]. 测井技术, 2011, 35(5): 396-401. doi: 10.3969/j.issn.1004-1338.2011.05.002Li P J, Zhang P Z, Jiang D P. Review on fluid identification methods with NMR logging[J]. Well Logging Technology, 2011, 35(5): 396-401(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2011.05.002 [12] 胡法龙, 周灿灿, 李潮流, 等. 基于弛豫扩散的二维核磁共振流体识别方法[J]. 石油勘探与开发, 2012, 39(5): 552-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205005.htmHu F L, Zhou C C, Li C L, et al. Fluid identification method based on 2D diffusion-relaxation nuclear magnetic resonance(NMR)[J]. Petroleum Exploration and Development, 2012, 39(5): 552-556(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205005.htm [13] 韩闯, 李纲, 别康, 等. 二维核磁共振T1-T2谱在风西复杂碳酸盐岩储层流体识别中的应用[J]. 测井技术, 2021, 45(1): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202101011.htmHan C, Li G, Bie K, et al. Application of innovative T1-T2 fluid typing method in complex carbonate reservoir of Fengxi block[J]. Well Logging Technology, 2021, 45(1): 56-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202101011.htm [14] 黄月银, 姚光庆, 成涛, 等. 文昌13-1/2油田珠江一段细粒储层沉积相及低阻油层性质[J]. 地质科技情报, 2016, 35(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602033.htmHuang Y Y, Yao G Q, Cheng T, et al. Geological origin and genesis of low-resistivity oil layers in Wenchang 13-1/2 Oilfield[J]. Geological Science and Technology Information, 2016, 35(2): 161-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201602033.htm [15] 汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报, 2021, 40(4): 93-103. doi: 10.19509/j.cnki.dzkq.2021.0429Wang X G, Zhang C, Zhang H, et al. Classification and evaluation of low-permeability sand reservoir based on micro-pore structure[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 93-103(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0429 [16] 邵维志, 贵兴海, 郝丽萍, 等. 浅析核磁共振测井在储层流体性质识别方面的局限性[J]. 测井技术, 2014, 38(6): 684-689. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201406014.htmShao W Z, Gui X H, Hao L P, et al. Analysis of limitation in reservoir fluid identification by using nuclear magnetic resonance logging[J]. Well Logging Technology, 2014, 38(6): 684-689(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201406014.htm [17] 骆玉虎, 何胜林, 谭伟, 等. 北部湾盆地砂砾岩低阻成因及饱和度计算方法[J]. 地质科技情报, 2019, 38(6): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906006.htmLuo Y H, He S L, Tan W, et al. Genetic mechanism and saturation calculation method of low resistivity sandy conglomerate oil layers in Beibu Gulf Basin[J]. Geological Science and Technology Information, 2019, 38(6): 33-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906006.htm [18] 胡法龙, 周灿灿, 李潮流, 等. 核磁共振测井构建水谱法流体识别技术[J]. 石油勘探与开发, 2016, 43(2): 244-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602012.htmHu F L, Zhou C C, Li C C, et al. Water spectrum method of NMR logging for identifying fluids[J]. Petroleum Exploration and Development, 2016, 43(2): 244-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602012.htm [19] 王明方. 一种核磁共振测井T2谱100%纯水谱的确定方法: 中国, 106050225[P/OL]. 2016-10-26.Wang M F. A method to determine100% pure water spectrum in NMR logging: China, 106050225[P/OL]. 2016-10-26(in Chinese). [20] 鲜德清, 傅少庆, 谢然红. 核磁共振测井束缚水模型研究[J]. 核电子学与探测技术, 2007, 27(3): 578-582. https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200703038.htmXian D Q, Fu S Q, Xie R H, et al. Research on NMR logging bound water model[J]. Nuclear Electronics and Detection Technology, 2007, 27(3): 578-582(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HERE200703038.htm [21] 周灿灿, 刘堂宴, 马在田, 等. 应用球管模型评价岩石孔隙结构[J]. 石油学报, 2006, 27(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200601019.htmZhou C C, Liu T Y, Ma Z T, et al. Evaluation of pore structure using sphere cylinder model[J]. Journal of Petroleum, 2006, 27(1): 92-96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200601019.htm -