Experiment study on the effect of arbor species planting on slope protection effect
-
摘要:
近年来, 植被护坡作为一种生态友好型支护方式越来越多地被应用到斜坡支护工程中, 故如何科学地种植植被以充分发挥其护坡效果具有重要的研究意义。为此, 以乔木为研究对象, 结合3D打印技术制备乔木根系模型, 通过自行设计的滑坡模型试验系统, 开展了系统物理模型试验, 对3种根系排布方式与3种根系间距下乔木的护坡效果进行了研究。结果表明: ①在乔木根系支护下, 抗滑力峰值增大, 达到峰值的时间延长, 峰后抗滑力衰减程度降低。②对抗滑力的改善效果方面, 反拱型排布>正拱型排布>直线型排布>无根系支护。根系间距
S =1.5D (D 为根系间最大水平距离,D =7cm)与S =2.0D 对抗滑力的改善效果接近,S =2.5D 时抗滑力峰值最大。③就根系排布方式而言, 反拱型排布对坡体位移的改善效果最为明显, 正拱型排布与直线型排布对位移的改善效果接近; 就根系间距而言,S =2.5D 对坡体位移的改善效果最为明显,S =1.5D 与S =2.0D 对坡体位移的改善效果接近。④直线型排布下坡体滑动范围增大, 正拱型排布与反拱型排布则能有效限制坡体变形。根系间距对坡体变形场的影响不大。综上可知, 在乔木护坡工程中可通过控制乔木的排布方式与根系间距来提升其护坡效果。Abstract:Vegetation slope protection has become more popular in recent years as an environmentally friendly support approach for slope protection projects. Thus, it's critical to study how to properly plant vegetation to maximize its slope protection effect. As a result, this work uses arbor as the research object and 3D printing technology to construct a model of the arbor root. The slope protection effect of arbor was studied by using a self-designed landslide model test system and conducting systematic physical model tests with three different root arrangement modes and three different root spacings. The results reveal that: ①With tree roots supporting the slope, the peak value of anti-sliding force increases, the time to reach the peak value of anti-sliding force is substantially delayed, and anti-sliding force attenuation is reduced. ②Anti-arch arrangement>positive arch arrangement>linear arrangement>no root support in terms of anti-sliding force improvement.
S =1.5D (root coverage rangeD =7 cm) has a similar improved impact toS = 2.0D , whileS =2.5D has the highest peak value of anti-sliding force. ③In terms of the root arrangement mode, the anti-arch arrangement has the most obvious improvement effect on the slope displacement, while the positive arch arrangement and linear arrangement are close in terms of the improvement effect on the displacement. In terms of the root spacing,S =2.5D has the most obvious improvement effect on the slope displacement, whileS =1.5D andS =2.0D are close in terms of the improvement effect on the slope. ④Under the linear arrangement, the slope's sliding range expands, whereas the positive arch and anti-arch arrangements effectively limit slope deformation. Root spacing has no obvious effect on the slope deformation field.In conclusion, managing the arrangement mode of trees and root spacing in the vegetation protection project can increase the slope protection effect.-
Key words:
- arbor species /
- arrangement mode /
- root spacing /
- slope protection effect /
- physical model experiment
-
表 1 试验用土物理力学性质指标
Table 1. Physical mechanics of soil samples
wL/% wP/% IP ρ/(g·cm-3) ω/% c/kPa φ/(°) 21.4 12.6 8.8 1.77 14.0 11.0 19.4 注:wL为液限;wP为塑限;IP为塑性指数;ρ为密度;ω为含水率;c为内聚力;φ为内摩擦角 表 2 试验方案(D=7 cm)
Table 2. Testing scheme (D=7 cm)
试验工况 排布方式 根系间距/cm 1 无根系 2 直线型 1.5D(10.5 cm) 3 正拱型 1.5D(10.5 cm) 4 反拱型 1.5D(10.5 cm) 5 直线型 1.5D(10.5 cm) 6 直线型 2.0D(14.0 cm) 7 直线型 2.5D(17.5 cm) -
[1] Shao Q, Gu W, Dai Q, et al. Effectiveness of geotextile mulches for slope restoration in semi-arid northern China[J]. Catena, 2014, 116: 1-9. doi: 10.1016/j.catena.2013.12.006 [2] 王上上, 陈富, 李东贤, 等. 锚杆不确定性对加固边坡失稳概率的影响[J]. 地质科技通报, 2022, 41(2): 282-289. doi: 10.19509/j.cnki.dzkq.2022.0055Wang S S, Chen F, Li D X, et al. Influence of anchor uncertainty on the failure probability of reinforced slope[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 282-289(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0055 [3] Yang Y, Yang J, Zhao T, et al. Ecological restoration of highway slope by covering with straw-mat and seeding with grass-legume mixture[J]. Ecological Engineering, 2016, 90: 68-76. doi: 10.1016/j.ecoleng.2016.01.052 [4] 周珂, 黄小城, 雷德阳, 等. 平面剪切岩质边坡滑裂面的确定及稳定性分析[J]. 地质科技通报, 2022, 41(2): 325-334. doi: 10.19509/j.cnki.dzkq.2022.0062Zhou K, Huang X C, Lei D Y, et al. Determinations of the critical sliding surface of planar sliding rock slopes and their stability analysis[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 325-334(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0062 [5] 丁戈媛, 胡新丽. 大奔流顺层岩质滑坡溃屈型破坏力学机制研究[J]. 地质科技通报, 2020, 39(2): 186-190. doi: 10.19509/j.cnki.dzkq.2020.0220Ding G Y, Hu X L. Mechanical mechanism of buckling failure of Dabenliu consequent bedding rockslide[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 186-190(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0220 [6] Lan H J, Wang D J, He S T, et al. Experimental study on the effects of tree planting on slope stability[J]. Landslides, 2020, 17(4): 1021-1035. doi: 10.1007/s10346-020-01348-z [7] Andreoli A, Chiaradia E A, Cislaghi A, et al. Roots reinforcement by riparian trees in restored rivers[J]. Geomorphology, 2020, 370: 107389. doi: 10.1016/j.geomorph.2020.107389 [8] Gao W J, Yang C J. Effect of vegetation on the stability of highway slopes[J]. Soil Engineering and Foundation, 2020, 34(2): 200-203. [9] Wang Y, Liu X. Plant slope protection in highway engineering[C]//Anon. IOP Conference Series: Earth and Environmental Science. [S. l. ]: IOP Publishing, 2018: 052038. [10] 余芹芹, 乔娜, 卢海静, 等. 植物根系对土体加筋效应研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3216-3223. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1083.htmYu Q Q, Qiao N, Lu H J, et al. Effect study of plant roots reinforcement on soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3216-3223(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1083.htm [11] Yu X. Storm water scouring simulation analysis on vegetated slope[J]. Geotechnical and Geological Engineering, 2017, 35(1): 293-301. doi: 10.1007/s10706-016-0104-9 [12] Chen F, Xiong X B, Zhai Z M, et al. Research on factors influence of vegetation slope protection based on grey incidence analysis theory[C]//Anon. Applied Mechanics and Materials. [S. l. ]: Trans. Tech. Publications Ltd., 2012, 226: 1382-1385. [13] Wu T H, McKinnell Ⅲ W P, Swanston D N. Strength of tree roots and landslides on Prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1): 19-33. doi: 10.1139/t79-003 [14] Waldron L J, Dakessian S. Soil reinforcement by roots: Calculation of increased soil shear resistance from root properties[J]. Soil Science, 1981, 132(6): 427-435. doi: 10.1097/00010694-198112000-00007 [15] Pollen N, Simon A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model[J]. Water Resources Research, 2005, 41: W07025. [16] Schwarz M, Lehmann P, Or D. Quantifying lateral root reinforcement in steep slopes-from a bundle of roots to tree stands[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2010, 35(3): 354-367. doi: 10.1002/esp.1927 [17] 言志信, 宋云, 江平, 等. 植被护坡中植物根和岩土相互作用的力学分析[J]. 应用数学和力学, 2010, 31(5): 585-590. doi: 10.3879/j.issn.1000-0887.2010.05.009Yan Z X, Song Y, Jiang P, et al. Mechanical analysis of interaction between plant roots and soil mass in slope vegetation[J]. Applied Mathematics and Mechanics, 2010, 31(5): 585-590(in Chinese with English abstract). doi: 10.3879/j.issn.1000-0887.2010.05.009 [18] 刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应[J]. 工程地质学报, 2020, 28(3): 471-481. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003005.htmLiu Y B, Hu X S, Yu D M, et al. Distribution characteristics of combined herb and shrub roots in loess area of Xining Basin and their effect on enhancing soil shear strength[J]. Journal of Engineering Geology, 2020, 28(3): 471-481(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003005.htm [19] Gray D H, Ohashi H. Mechanics of fiber reinforcement in sand[J]. Journal of Geotechnical Engineering, 1983, 109(3): 335-353. doi: 10.1061/(ASCE)0733-9410(1983)109:3(335) [20] Mahannopkul K, Jotisankasa A. Influences of root concentration and suction on Chrysopogon zizanioides reinforcement of soil[J]. Soils and Foundations, 2019, 59(2): 500-516. doi: 10.1016/j.sandf.2018.12.014 [21] Lee J T, Chu M Y, Lin Y S, et al. Root traits and biomechanical properties of three tropical pioneer tree species for forest restoration in landslide areas[J]. Forests, 2020, 11(2): 179. doi: 10.3390/f11020179 [22] Leung A K, Kamchoom V, Ng C W W. Influences of root-induced soil suction and root geometry on slope stability: A centrifuge study[J]. Canadian Geotechnical Journal, 2017, 54(3): 291-303. doi: 10.1139/cgj-2015-0263 [23] Ghestem M, Veylon G, Bernard A, et al. Influence of plant root system morphology and architectural traits on soil shear resistance[J]. Plant and Soil, 2014, 377(1): 43-61. [24] 宋享桦, 谭勇, 张生杰. 暴雨气候下砂土边坡植被护坡模型试验研究[J]. 哈尔滨工业大学学报, 2021, 53(5): 123-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202105016.htmSong X H, Tan Y, Zhang S J. Investigation on effects of vegetations on stability of sandy slope by indoor rainfall model test[J]. Journal of Harbin Institute of Technology, 2021, 53(5): 123-133(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202105016.htm [25] Schwarz M, Rist A, Cohen D, et al. Root reinforcement of soils under compression[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(10): 2103-2120. doi: 10.1002/2015JF003632 [26] Liang T, Knappett J A, Bengough A G, et al. Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides[J]. Landslides, 2017, 14(5): 1747-1765. doi: 10.1007/s10346-017-0802-2 [27] Temgoua A G T, Kokutse N K, Kavazoviĉ Z. Influence of forest stands and root morphologies on hillslope stability[J]. Ecological Engineering, 2016, 95: 622-634. doi: 10.1016/j.ecoleng.2016.06.073 [28] 安然, 柴军瑞, 覃源, 等. 植被根系形态对边坡稳定性的影响分析[J]. 水利水电技术, 2018, 49(3): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201803022.htmAn R, Chai J R, Qin Y, et al. Analysis on effect of vegetation root-system morphology on slope stability[J]. Water Resources and Hydropower Engineering, 2018, 49(3): 150-156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201803022.htm [29] 嵇晓雷, 杨平. 不同根系布置模式对降雨条件下边坡稳定性的影响[J]. 东北林业大学学报, 2020, 48(7): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY202007017.htmJi X L, Yang P. Influence of different root distribution modes on slope stability under rainfall sonditions[J]. Journal of Northeast Forestry University, 2020, 48(7): 86-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY202007017.htm [30] Li S Y, Li D D, Liu H D, et al. Formation and failure mechanism of the landslide: A case study for Huaipa, Western Henan, China[J]. Environmental Earth Sciences, 2021, 80(15): 1-12. [31] 刘汉东, 张艺冰, 鲁丽萍. 豫西锁固型滑坡类型研究[J]. 华北水利水电大学学报: 自然科学版, 2018, 39(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201806002.htmLiu H D, Zhang Y B, Lu L P. Types of the locked section landslide in the western Henan Province[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2018, 39(6): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201806002.htm [32] 姜彤, 雷家华, 王润泽, 等. 抗滑桩不同布桩方式加固效果对比模型试验研究[J]. 应用基础与工程科学学报, 2019, 27(2): 404-417. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201902015.htmJiang T, Lei J H, Wang R Z, et al. Comparative model test study on reinforcement effect of anti-slide pile with different arrangements[J]. Journal of Basic Science and Engineering, 2019, 27(2): 404-417(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201902015.htm [33] 宋恒川. 北川县四个树种根系的分布及力学性能研究[D]. 北京: 北京林业大学, 2013.Song H C. Study on the distribution and mechanical properties of root system of four tree species in Beichuan County[D]. Beijing: Beijing Forestry University, 2013(in Chinese with English abstract). -