Hydrochemical characteristics and genesis analysis of typical aquifer system in karst critical zone of Central Yunnan Plateau
-
摘要:
岩溶关键带水文地球化学过程的研究对于科学认识其内部的演化环境与结构特征具有重要意义。岩溶水是水-岩作用后主要的信息载体, 定量分析其水化学特征及成因是揭示岩溶关键带含水系统介质环境与水动力条件的有效手段。以滇中高原岩溶关键带3个典型岩溶含水系统为研究对象, 通过对不同含水系统出露的岩溶泉进行野外采样与室内测试, 综合采用数理统计分析、水化学图解、离子比例系数与水文地球化学模拟等方法, 深入剖析了各含水系统岩溶水水化学组分特征、成因作用和含水层介质特性, 并对关键带中水循环与水化学的内在联系及规律进行了探讨。结果表明: ①HCO3-、Ca2+是各含水系统岩溶水中含量最高且来源稳定的离子组分, Mg2+是控制各含水系统水化学类型异化的关键因素; ②碳酸盐岩类的岩石风化、矿物溶解是各含水系统内岩溶水化学组分特征的主要成因作用, 岩溶水对华宁水系统含水层的溶蚀作用仍在发生, 阳离子吸附交替与硅酸盐岩类的风化溶解是区域岩溶水中Na+、K+的重要来源; ③区域岩溶的发育强度、岩溶含水层的出露条件及含水介质岩性与连通性共同塑造了滇中高原岩溶关键带不同含水系统地下水化学特性。研究成果丰富了对滇中高原岩溶关键带水文地球化学过程的认识, 为区域岩溶水资源的开发、利用与保护提供基于水化学的证据支撑。
Abstract:The study of hydrogeochemical processes in the karst critical zone (KCZ) is of great significance for the scientific understanding of their internal evolutionary environment and structural characteristics. Karst groundwater is the main information carrier after water-rock interactions. Quantitative analysis of its hydrochemical characteristics and causes is an effective means to reveal the medium environment and hydrodynamic conditions of the aquifer system in the KCZ. In this paper, three typical karst aquifer systems in the KCZ of the central Yunnan Plateau were taken as the research objects. Through field sampling and laboratory testing of karst springs exposed by different aquifer systems, mathematical statistics analysis, hydrochemical diagram, ion ratio coefficient and hydrogeochemical simulation were comprehensively used to deeply analyze the characteristics of hydrochemical components, genesis and aquifer medium of karst groundwater in each aquifer system; the internal relationship and law between the water cycle and hydrochemistry in the key belt were discussed. The results showed that: ①HCO3- and Ca2+ were the highest and most stable ion components in regional karst groundwater, and Mg2+ was the key factor controlling the alienation of hydrochemical types in each aquifer system; ②The rock weathering and mineral dissolution of carbonate rocks were the main causes of the chemical composition characteristics of karst water in each aquifer system, and karst groundwater dissolution on the aquifer of the Huaning aquifer system was still occurring. The alternation of cation adsorption and the weathering and dissolution of silicate rocks were the main sources of Na+ and K+ in regional karst groundwater; ③The development intensity of regional karst, the exposed condition of karst aquifers and the lithology and connectivity of aquifer media jointly shaped the groundwater chemical characteristics of different aquifer systems in the KCZ of the Central Yunnan Plateau.
-
表 1 研究区岩溶水化学成分分析结果
Table 1. Results of chemical composition analysis of karst groundwater in the study area
水系统 取样
编号含水层 流量/
(L·s-1)pH K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- ρ(TDS)/
(mg·L-1)水化学类型 NB/(meq·L-1) 龙朋 L01 Pt1d 150 7.74 0.01 0.06 2.34 0.30 0.05 0.06 2.72 143 HCO3-Ca L02 40 7.66 0.01 0.07 2.29 1.37 0.01 0.13 3.72 188 HCO3-Ca·Mg L03 230 7.65 0.01 0.07 3.35 1.01 0.01 0.04 4.52 226 HCO3-Ca L04 900 7.37 0.02 0.18 3.25 1.01 0.05 0.12 4.52 232 HCO3-Ca L05 12 7.56 0.03 0.18 3.25 1.00 0.14 0.14 4.23 223 HCO3-Ca L06 50 7.59 0.01 0.03 2.70 0.20 0.02 0.07 2.85 148 HCO3-Ca 平均值 — 7.60 0.01 0.10 2.86 0.82 0.05 0.09 3.76 193 — 标准差 — 0.12 0.01 0.06 0.44 0.42 0.05 0.04 0.74 36.72 — 变异系数 — 0.02 0.43 0.61 0.15 0.52 0.99 0.42 0.20 0.19 — 石屏 S01 D2+3
(C+ D2+3)30 7.22 0.03 0.02 5.09 1.63 0.01 0.21 6.83 349 HCO3-Ca S02 110 7.28 0.03 0.09 3.81 3.66 0.05 0.23 7.74 381 HCO3-Ca·Mg S03 1 100 7.27 0.02 0.04 4.06 2.03 0.29 0.02 6.13 312 HCO3-Ca·Mg S04 100 7.10 0.02 0.03 4.57 1.78 0.21 0.01 6.54 329 HCO3-Ca·Mg S05 210 7.47 0.02 0.08 3.25 3.00 0.32 0.04 6.18 313 HCO3-Ca·Mg S06 1 350 7.23 0.02 0.07 4.32 1.78 0.22 0.02 6.34 319 HCO3-Ca·Mg S07 30 7.23 0.03 0.03 3.76 2.03 0.04 0.26 5.83 300 HCO3-Ca·Mg S08 30 7.27 0.06 0.06 3.66 1.88 0.02 0.09 5.83 289 HCO3-Ca·Mg 平均值 — 7.26 0.03 0.05 4.06 2.22 0.15 0.11 6.43 324 — 标准差 — 0.10 0.01 0.02 0.54 0.67 0.12 0.10 0.59 27.35 — 变异系数 — 0.01 0.45 0.46 0.13 0.30 0.82 0.88 0.09 0.08 — 华宁 H01 C+P1 60 7.74 0.01 0.02 4.20 1.20 0.02 0.70 4.51 278 HCO3-Ca H02 1 300 7.25 0.03 0.02 3.10 0.70 0.20 0.22 3.29 194 HCO3-Ca H03 500 7.19 0.01 0.02 3.00 0.30 0.06 0.22 3.20 178 HCO3-Ca H04 260 7.60 0.08 0.02 3.10 2.00 0.19 0.27 4.51 253 HCO3-Ca·Mg H05 240 7.31 0.01 < 0.01 3.30 0.70 0.01 0.07 3.70 196 HCO3-Ca H06 150 7.18 0.01 < 0.01 1.70 0.90 0.02 0.06 2.51 128 HCO3-Ca·Mg H07 60 7.23 0.01 < 0.01 2.00 0.40 0.03 0.06 2.29 122 HCO3-Ca H08 100 6.93 0.05 0.01 1.80 0.80 0.07 0.19 2.29 132 HCO3-Ca·Mg H09 200 7.17 0.01 < 0.01 2.10 0.20 0.02 0.06 2.20 118 HCO3-Ca H10 40 7.09 0.01 0.02 3.00 0.70 0.04 0.05 3.51 184 HCO3-Ca 平均值 — 7.27 0.02 0.01 2.73 0.79 0.07 0.19 3.20 178 — 标准差 — 0.22 0.02 0.01 0.76 0.49 0.07 0.19 0.83 52.48 — 变异系数 — 0.03 1.02 0.81 0.28 0.62 1.03 0.98 0.26 0.29 — 表 2 研究区岩溶水常见矿物饱和度指数
Table 2. Saturation index of common minerals in karst groundwater in the study area
水系统 取样编号 矿物饱和度指数(SI) 方解石 白云石 龙朋 L01 0.30 -0.16 L02 0.32 0.54 L03 0.54 0.69 L04 0.25 0.12 L05 0.41 0.44 L06 0.23 -0.54 石屏 S01 0.43 0.49 S02 0.40 0.91 S03 0.35 0.52 S04 0.25 0.22 S05 0.45 0.99 S06 0.35 0.44 S07 0.25 0.37 S08 0.29 0.42 华宁 H01 0.70 0.98 H02 -0.01 -0.54 H03 -0.09 -1.04 H04 0.44 0.82 H05 0.13 -0.29 H06 -0.42 -1.00 H07 -0.33 -1.24 H08 -0.69 -1.60 H09 -0.39 -1.67 H10 -0.15 -0.80 -
[1] National Research Council, Committee on Basic Research Opportunitie, Board on Earth Sciences and Resources. Basic research opportunities in earth science[M]. Wahington, DC: National Academies Press, 2001. [2] Mahler B J, Jiang Y J, Pu J B, et al. Editorial: Advances in hydrology and the water environment in the karst critical zone under the impacts of climate change and anthropogenic activities[J]. Journal of Hydrology, 2021, 595: 125982. doi: 10.1016/j.jhydrol.2021.125982 [3] 吴泽燕, 章程, 蒋忠诚, 等. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201905007.htmWu Z Y, Zhang C, Jiang Z C, et al. Advance of karst critical zone and its carbon cycle[J]. Advances in Earth Science, 2019, 34(5): 488-498(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201905007.htm [4] Sullivan P L, Macpherson G L, Martin J B, et al. Evolution of carbonate and karst critical zones[J]. Chemical Geology, 2019, 527: 119223. doi: 10.1016/j.chemgeo.2019.06.023 [5] 吕玉香, 胡伟, 杨琰. 岩溶关键带水循环过程研究进展[J]. 水科学进展, 2019, 30(1): 123-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201901014.htmLü Y X, Hu W, Yang Y. Research progress of hydrological cycle in karst critical zone[J]. Advances in Water Science, 2019, 30(1): 123-138(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201901014.htm [6] 曹建华, 蒋忠诚, 袁道先, 等. 岩溶动力系统与全球变化研究进展[J]. 中国地质, 2017, 44(5): 874-900. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705005.htmCao J H, Jiang Z C, Yuan D X, et al. The progress in the study of the karst dynamic system and global changes in the past 30 years[J]. Geology in China, 2017, 44(5): 874-900 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705005.htm [7] 章程, 蒋忠诚, Chris Groves, 等. 岩溶IGCP国际合作30年与岩溶关键带研究展望[J]. 中国岩溶, 2019, 38(3): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201903001.htmZhang C, Jiang Z C, Chris G, et al. 30 years international cooperation with IGCP and perspectives of karst critical zone research[J]. Carsologica Sinica, 2019, 38(3): 301-306 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201903001.htm [8] 白阳, 齐跃明, 项敏, 等. 南梁煤矿多煤层开采地下水系统演化规律[J]. 地质科技通报, 2022, 41(1): 183-192. doi: 10.19509/j.cnki.dzkq.2022.0034Bai Y, Qi Y M, Xiang M, et al. Evolution law of groundwater system with multiple seams mining in Nanliang Coal Mine[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 183-192 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0034 [9] 李舒, 杨佳雪, 李小倩, 等. 地下水化学组成的时空聚类分析与多级嵌套水流系统识别[J]. 地质科技通报, 2022, 41(1): 309-318. doi: 10.19509/j.cnki.dzkq.2022.0028Li S, Yang J X, Li X Q, et al. Lumped cluster analysis for understanding spatial and temporal patterns of groundwater geochemistry and hierarchically nested flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 309-318 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0028 [10] 王宇, 张贵, 张华, 等. 云南省岩溶水文地质环境地质调查与研究[M]. 北京: 地质出版社, 2018.Wang Y, Zhang G, Zhang H, et al. Geological survey and research on karst hydrogeological environment in Yunnan Province[M]. Beijing: Geological Publishing House, 2018 (in Chinese). [11] 胡伟, 吕玉香, 郭传道. 云南蒙自断陷盆地岩溶地下水流向研究[J]. 水文, 2017, 37(4): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201704007.htmHu W, Lü Y X, Guo C D. Study on flow direction of karst groundwater in Mengzi Fault Basin of Yunnan Province[J]. Journal of China Hydrology, 2017, 37(4): 35-39(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201704007.htm [12] 王宇, 李燕, 谭继中, 等. 断陷盆地岩溶水赋存规律[M]. 昆明: 云南科技出版社, 2003.Wang Y, Li Y, Tan J Z, et al. Storage rule of karst water in fault basins[M]. Kunming: Yunnan Science and Technology Press, 2003(in Chinese). [13] 王宇. 云南省岩溶水开发利用条件分析评价[J]. 水利学报, 2001(1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200101008.htmWang Y. Study on explotation and utilization condition of karst groundwater in Yunnan Province[J]. Journal of Hydraulic Engineering, 2001(1): 49-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200101008.htm [14] 高旭波, 向绚丽, 侯保俊, 等. 水化学-稳定同位素技术在岩溶水文地质研究中的应用[J]. 中国岩溶, 2020, 39(5): 629-636. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htmGao X B, Xiang X L, Hou B J, et al. Application of hydrochemistry coupled with stable isotopes in the study of karst water hydrogeology[J]. Carsologica Sinica, 2020, 39(5): 629-636(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202005001.htm [15] 周长松, 邹胜章, 冯启言, 等. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203004.htmZhou C S, Zou S Z, Feng Q Y. Progress in hydrogeochemical study of karst critical zone: A critical review[J]. Earth Science Frontiers, 2022, 29(3): 37-50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203004.htm [16] Li Z J, Yang Q C, Yang Y S, et al. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities[J]. Journal of Hydrology, 2019, 576: 685-697. [17] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103 [18] Huang H, Chen Z H, Wang T, et al. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China[J]. Environmental Science and Pollution Research, 2019, 26(29): 30055-30068. [19] Qian J Z, Peng Y X, Zhao W D, et al. Hydrochemical processes and evolution of karst groundwater in the northeastern Huaibei Plain, China[J]. Hydrogeology Journal, 2018, 26(5): 1721-1729. [20] 江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511 [21] 刘伟江, 袁祥美, 张雅, 等. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报, 2018, 37(6): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htmLiu W J, Yuan X M, Zhang Y, et al. Hydrochemical characteristics and evolution of karst groundwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6): 245-251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm [22] Ivan, V, Stevenazzi S, Pollicino L C, et al. An enhanced approach to the spatial and statistical analysis of factors influencing spring distribution on a transboundary karst aquifer[J]. Water, 2020, 12(8): 2133. [23] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993.Shen Z L, Zhu W H, Zhong Z S. Fundamentals of hydrogeochemistry[M]. Beijing: Geological Publishing House, 1993(in Chinese). [24] 周训, 胡伏生, 何江涛, 等. 地下水科学概论[M]. 北京: 地质出版社, 2014.Zhou X, Hu F S, He J T, et al. Introduction to groundwater science[M]. Beijing: Geological Publishing House, 2014(in Chinese). [25] Piper A M. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos, Transactions, American Geophysical Union, 1944, 25(6): 914-928. [26] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170: 1088-1090. [27] Gibbs R J. Water chemistry of the Amazon River[J]. Geochimica et Cosmochimica Acta, 1972, 36(9): 1061 -1066. [28] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30. [29] 林聪业, 孙占学, 高柏, 等. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘, 2021, 28(5): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105008.htmLin C Y, Sun Z X, Gao B, et al. Hydrochemical characteristics and formation mechanism of groundwater in Lhasa area, China[J]. Earth Science Frontiers, 2021, 28(5): 49-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105008.htm [30] 彭红霞, 侯清芹, 曾敏, 等. 雷州半岛地下水化学特征及控制因素分析[J]. 环境科学, 2021, 42(11): 5375-5383. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202111035.htmPeng H X, Hou Q Q, Z M, et al. Hydrochemical characteristics and controlling factors of groundwater in the Leizhou Peninsula[J]. Environmental Science, 2021, 42(11): 5375-5383(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202111035.htm [31] Thakur T, Rishi M S, Naik P K, et al. Elucidating hydrochemical properties of groundwater for drinking and agriculture in parts of Punjab, India[J]. Environmental Earth Sciences, 2016, 75(6): 467. [32] Long X, Sun Z, Zhou A, et al. Hydrogeochemical and isotopic evidence for flow paths of karst waters collected in the Heshang cave, Central China[J]. Journal of Earth Science, 2015, 26(1): 149-156. [33] 史箫笛, 康小兵, 许模, 等. 川滇高原斜坡地带峡谷区岩溶水化学特征及演化规律[J]. 地质学报, 2019, 93(11): 2975-2984. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911019.htmShi X D, Kang X B, Xu M, et al. Hydrochemical characteristics and evolution laws of karst grounderwater in the slope zone of the canyon area, Sichuan-Yunnan Plateau[J]. Acta Geologica Sinica, 2019, 93(11): 2975-2984(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201911019.htm [34] Dixon W, Chiswell B. The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia[J]. Journal of Hydrology, 1992, 135(1/4): 259-274. [35] Jiang Y J, Cao M, Yuan D X, et al. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China[J]. Hydrogeology Journal, 2018, 26(5): 1487-1497. [36] 杨立铮. 中国南方岩溶水化学的某些特征[J]. 成都地质学院学报, 1989(1): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198901012.htmYang L Z. Chemical characteristics of karst water in South China[J]. Journal of Chengdu College of Geology, 1989(1): 93-101(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198901012.htm -