Landslide deformation hysteresis regularity based on permeability of landslide and reservoir water change
-
摘要:
三峡水库运行过程中库岸滑坡的变形演化往往滞后于库水位的变化, 表现出时间滞后效应, 而且随渗透系数和库水位波动速率的不同, 滞后效应亦不同。以三峡库区白家包滑坡为例, 通过现场调查、监测数据分析以及数值模拟的方法, 研究了滑坡在不同渗透系数
k 和不同库水位下降速率v 条件下的变形滞后时间变化规律。研究表明: 滑体渗透系数一定时, 库水位下降速率越大, 地下水滞后越明显; 库水位下降速率一定时, 滑体渗透系数越大, 地下水下降越快。当滑体渗透系数一定时, 库水位下降速率越大, 滑坡的变形滞后时间越短; 滑体渗透系数k =0.85 m/d时不同库水位下降速率作用下滑坡的变形滞后时间为3.74~9 d, 当0.47<v /k <1.18时, 0.24<相对变形滞后时间<1;当1.18<v /k <2.38时, 0<相对变形滞后时间<0.24。当库水位下降速率一定时, 滑体渗透系数越大, 滑坡变形滞后时间越短, 不同库水位下降速率下滑坡变形滞后时间随渗透系数的变化规律大致相同; 库水位下降速率v =1.8 m/d时不同滑体渗透系数下滑坡的变形滞后时间为1.7~8 d, 当0.52<v /k <0.84时, 0<相对变形滞后时间<0.16;当0.84<v /k <2.12时, 0.16<相对变形滞后时间<0.43;当2.12<v /k <9时, 0.43<相对变形滞后时间<1。研究成果对水库滑坡预测预警具有较强的应用价值。Abstract:The deformation evolution of reservoir landslides of ten lags behind the variation in the reservoir water level during the operation of the Three Gorges Project, showing a deformation hysteresis effect, and the hysteresis effect is different with the difference in the permeability coefficient and fluctuation rate of reservoir water. Taking the Baijiabao landslide in the Three Gorges Reservoir area as an example, the variation law of the deformation lag time under different permeability coefficients
k and reservoir water level decline ratesv is studied by field investigation, monitoring data analysis and numerical simulation. The results show that when the permeability coefficient of the landslide is constant, the higher the decreasing rate of reservoir water level is, the more obvious the groundwater lag. When the reservoir water level drops at a certain rate, the greater the permeability coefficient of the sliding body is, the faster the groundwater drop.When the permeability coefficient of the sliding body is 0.85 m/d, the higher the rate of reservoir water level decline is, the shorter the deformation lag time of the landslide.The corresponding lag time is 3.74-9 d under different decline rates of the reservoir water level.When 0.47 <v /k < 1.18, 0.24 < relative deformation lag time < 1; when 1.18 <v /k < 2.38, 0 < relative deformation lag time < 0.24. When the reservoir water level decline rate is constant, the larger the landslide permeability coefficient is, the shorter the landslide deformation lag time is. Under different reservoir water level decline rates, the change rule of the relative deformation lag time with increasingv /k value is roughly the same,v =1.8 m/d, and the corresponding lag time of different permeability coefficients is 1.7-8 d. When 0.52 <v /k < 0.84, 0 < relative deformation lag time < 0.16; when 0.84 <v /k < 2.12, 0.16 < relative deformation lag time < 0.43; when 2.12 <v /k < 9, 0.43 < relative deformation lag time < 1. The research results have strong application value for the prediction and warning of reservoir landslides. -
表 1 白家包滑坡数值模拟参数
Table 1. Parameters of numerical model of the Baijiabao landslide
参数名称 滑体 滑带 滑床 含水量wB/% 20.7 15.8 弹性模量/MPa 15.4 8.1 6.6×104 泊松比 0.25 0.44 0.24 黏聚力/kPa 17.1 26.8 1 200 内摩擦角/(°) 21.4 18.6 32.3 容重/(kN·m-3) 18.0 21.3 24.3 表 2 不同滑体渗透系数的模拟工况
Table 2. Simulated permeability coefficients for the different sliding bodies
工况序号 库水位下降速率/(m·d-1) 渗透系数/(m·d-1) 1 0.6 0.2, 0.85, 1.5, 2.15, 2.8, 3.45 2 1.2 0.2, 0.85, 1.5, 2.15, 2.8, 3.45 3 1.8 0.2, 0.85, 1.5, 2.15, 2.8, 3.45 表 3 不同库水位下降速率和渗透系数下滑坡变形滞后时间变化
Table 3. Time lag table of landslide deformation under different decreasing rates of the reservoir water level and permeability coefficient
渗透系数变化区间/(m·d-1) 库水位下降速率/(m·d-1) 滞后时间/d 最小值 最大值 (0.20, 0.85) 0.6 8 13 1.2 6 10.5 1.8 4.42 8 (0.85, 2.15) 0.6 4 8 1.2 3.5 6 1.8 2.72 4.42 (2.15, 3.45) 0.6 3 4 1.2 2.5 3.5 1.8 1.7 2.72 -
[1] 陈丽霞, 殷坤龙, 刘礼领, 等. 江西省滑坡与降雨的关系研究[J]. 岩土力学, 2008, 29(4): 1114-1120. doi: 10.3969/j.issn.1000-7598.2008.04.049Chen L X, Yin K L, Liu L L, et al. Analysis of relationship between landslide and rainfall in Jiangxi Province[J]. Rock and Soil Mechanics, 2008, 29(4): 1114-1120 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2008.04.049 [2] Asch T W J, Malet J P, Bogaard T A. The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides[J]. Natural Hazards and Earth System Sciences, 2009, 9(3): 739-749. doi: 10.5194/nhess-9-739-2009 [3] 刘晓, 唐辉明, 刘瑜. 基于集对分析的滑坡变形动态建模研究[J]. 岩土力学, 2009, 30(8): 2371-2378. doi: 10.3969/j.issn.1000-7598.2009.08.031Liu X, Tang H M, Liu Y. Landslide deformation dynamic modeling research based on set pair analysis[J]. Rock and Soil Mechanics, 2009, 30(8): 2371-2378(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.08.031 [4] 吴礼舟, 黄润秋. 非饱和土渗流-变形耦合的数值分析[J]. 土木建筑与环境工程, 2011, 33(3): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201103012.htmWu L Z, Huang R Q. Numerical analysis of seepage and deformation in unsaturated soils[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(3): 63-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201103012.htm [5] 付宏渊, 曾铃, 蒋中明, 等. 降雨条件下公路边坡暂态饱和区发展规律[J]. 中国公路学报, 2012, 25(3): 59-64. doi: 10.3969/j.issn.1001-7372.2012.03.004Fu H Y, Zeng L, Jiang Z M, et al. Developing law of transient saturated areas of highway slope under rainfall conditions[J]. China Journal of Highway and Transport, 2012, 25(3): 59-64(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7372.2012.03.004 [6] 易庆林, 胡大儒, 代天凡, 等. 基于小波分析的滑坡变形规律研究[J]. 南水北调与水利科技, 2013, 11(5): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201305021.htmYi Q L, Hu D R, Dai T F, et al. Deformation law for a landslide in the Three Gorges Reservoir area based on wavelet analysis[J]. South-to-North Water Transfer and Water Science & Technology, 2013, 11(5): 91-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201305021.htm [7] 马春驰, 李天斌, 陈国庆, 等. 地下水与开挖作用下堆积层滑坡体滑动机制分析[J]. 工程地质学报, 2013, 21(6): 878-884. doi: 10.3969/j.issn.1004-9665.2013.06.013Ma C C, Li T B, Chen G Q, et al. Landslide mechanism of Quaternary deposits with horizontal bedding under groundwater and slope excavation[J]. Journal of Engineering Geology, 2013, 21(6): 878-884(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2013.06.013 [8] 缪海波, 殷坤龙. 库岸深层老滑坡复活对诱发因素的滞后响应机制[J]. 地质科技情报, 2014, 33(5): 188-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405028.htmMiao H B, Yin K L. Delayed response mechanism of the ancient landslide reactivation of deep-seated reservoir to the inducing factors[J]. Geological Science and Technology Information, 2014, 33(5): 188-192(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405028.htm [9] 赵国通, 朱小龙, 马佰衡. 河北省崩塌滑坡滞后于降雨的地质背景分析[J]. 水文地质工程地质, 2015, 42(2): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502024.htmZhao G T, Zhu X L, Ma B H. Geological background analysis of the collapse and landslide lagging behind rainfall in Hebei Province[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 151-155(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502024.htm [10] Zhang J, Li J T, Lin H. Models and influencing factors of the delay phenomenon for rainfall on slope stability[J]. European Journal of Environmental and Civil Engineering, 2016, 22(1): 122-136. [11] 张建, 李江腾, 林杭, 等. 降雨触发浅层坡体失稳的迟滞现象及其与土质参数的关联性[J]. 中南大学学报: 自然科学版, 2018, 49(1): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801020.htmZhang J, Li J T, Lin H, et al. Delay phenomenon of shallow slope failure triggered by rainfall and its correlation with soil parameters[J]. Journal of Central South University: Science and Technology, 2018, 49(1): 150-157(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801020.htm [12] 鲁莎. 三峡库区黄土坡滑坡滑带特性及变形演化研究[D]. 武汉: 中国地质大学(武汉), 2017.Lu S. Study on slip zone properties and evolution characteristics of Huangtupo landslide in Three Gorges Reservoir Area[D]. Wuhan: China University of Geosciences(Wuhan), 2017 (in Chinese with English abstract). [13] Shen J H, Gao Y H, Wen L W, et al. Deformation response regularity of Liujiaba landslide under fluctuating reservoir water level condition[J]. Natural Hazards, 2018, 94(1): 151-166. [14] 唐辉明, 鲁莎. 三峡库区黄土坡滑坡滑带空间分布特征研究[J]. 工程地质学报, 2018, 26(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htmTang H M, Lu S. Research on the spatial distribution of slip zone of Huangtupo landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2018, 26(1): 129-136 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801014.htm [15] Tang M G, Xu Q, Yang H, et al. Activity law and hydraulics mechanism of landslides with different sliding surface and permeability in the Three Gorges Reservoir area, China[J]. Engineering Geology, 2019, 260: 150212. [16] Yang H, Tang M G, Xu Q, et al. Characteristics and hysteresis of saturated-unsaturated seepage of soil landslides in the Three Gorges Reservoir area, China[J]. Open Geosciences, 2019, 11(1): 298-312. [17] 尚敏, 廖芬, 马锐, 刘昱廷, 等. 白家包滑坡变形与库水位、降雨相关性定量化分析研究[J]. 工程地质学报, 2021, 29(3): 742-750.Shang M, Liao F, Ma R, et al. The quantitative analysis of the correlation on deformation of Baijiabao landslide between rainfall and reservoir water level[J]. Journal of Engineering Geology, 2021, 29(3): 742-750(in Chinese with English abstract). [18] 高晨曦, 刘艺梁, 薛欣, 等. 三峡库区典型堆积层滑坡变形滞后时间效应研究[J]. 工程地质学报, 2021, 29(5): 1427-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105018.htmGao C X, Liu Y L, Xue X, et al. Study on deformation lag time effect of typical colluvial landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2021, 29(5): 1427-1436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105018.htm [19] 唐军峰, 唐雪梅, 肖鹏, 等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报, 2021, 40(4): 153-161. doi: 10.19509/j.cnki.dzkq.2021.0409Tang J F, Tang X M, Xiao P, et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 153-161(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0409 [20] Wang S M, Pan Y C, Wang L, et al. Deformation characteristics, mechanisms, and influencing factors of hydrodynamic pressure landslides in the Three Gorges Reservoir: A case study and model test study[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 3513-3533. [21] 黄观文, 王家兴, 杜源, 等. 顾及降雨及库水位因素的滑坡时滞分析与预测: 以三峡库区新铺滑坡为例[J]. 地球科学与环境学报, 2021, 43(3): 621-631. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202103018.htmHuang G W, Wang J X, Du Y, et al. Time-delay analysis and prediction of landslide considering precipitation and reservoir water level: A case study of Xinpu landslide in Three Gorges Reservoir area, China[J]. Journal of Earth Sciences and Environment, 2021, 43(3): 621-631(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202103018.htm [22] Han H M, Shi B, Zhang L. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change[J]. Engineering Geology, 2021, 280: 105876. [23] 黄发明, 殷坤龙, 张桂荣, 等. 多变量PSO-SVM模型预测滑坡地下水位[J]. 浙江大学学报: 工学版, 2015, 49(6): 1193-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201506031.htmHuang F M, Yin K L, Zhang G R, et al. Prediction of groundwater level in landslide using multi-variable PSO-SVM model[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(6): 1193-1200(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201506031.htm [24] 彭令, 牛瑞卿, 叶润青, 等. 基于进化支持向量机的滑坡地下水位动态预测[J]. 中南大学学报: 自然科学版, 2012, 43(12): 4788-4795. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201212031.htmPeng L, Niu R Q, Ye R Q, et al. Prediction of groundwater level in landslide based on genetic-support vector machine[J]. Journal of Central South University: Science and Technology, 2012, 43(12): 4788-4795(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201212031.htm -