Carbon isotope composition and its evolution around the base of the Drumian Stage in Linzhou area, northern Henan
-
摘要:
碳同位素地层学是寒武系地层划分与对比的重要手段。通过对豫北驴驮沟剖面碳酸盐岩地层进行碳同位素分析发现,驴驮沟剖面寒武系鼓山阶(Drumian)底界附近的碳酸盐岩的
δ 13C值分布于3.1‰~-1.7‰之间,δ 18O值分布于-3.9‰~-9.4‰之间。δ 13C、δ 18O之前的非协变关系指示碳同位素组成比较稳定。鼓山阶底界附近δ 13C表现为负漂移演化趋势,漂移幅度为3.0‰,最低值为-1.7‰,出现在三叶虫Proasaphiscus 首现位置15 m之下。出现负漂移的位置和负漂移的幅度与华南湘西王村剖面、美国犹他州Drum Mountains等剖面的鼓山阶底部的负漂Drum carbon isotope excursion(DICE)一致,表明DICE负漂移具有洲际对比意义,可作为寒武系鼓山阶划分和对比的工具。负漂移峰值处岩性为位于青灰色页岩之间的薄层灰岩夹层,超覆于鲕粒灰岩之上,因此,寒武系鼓山阶底部附近的DICE负漂移对应于苗岭世早期的海侵时期。Abstract:Carbon isotope stratigraphy is an important means to subdivide and correlate the Cambrian strata. Based on the carbon isotope analysis of the carbonate strata of Lütuogou Section, northern Henan Province, it is found the
δ 13C value of carbonate samples collected from the base of the Drumian Stage at Lütuogou Section, northern Henan, ranges from 3.1‰ to -1.7‰, and theδ 18O value ranges from -3.9‰ to -9.4‰. No covariance exists betweenδ 13C andδ 18O, which implies that the carbon isotope composition is nearly stable. Value ofδ 13C around the base of the Drumian Stage consists of a negative excursion, the amplitude of the negative excursion is 3.0‰, and the minimum value ofδ 13C is -1.7‰, which occurs at the place 15 m below the first occurrence of trilobite protasaphiscus. The position and amplitude of the negative excursion are similar to those of the drum carbon isotope excursion (DICE) tested in the Wangcun Section, western Hunan, South China, and the Drum Mountains section in Utah, USA, which suggests that the DICE can be used as a global indicator for the correlation of the Drumian Stage. Furthermore, the cyan shale with thin limestone at the position of minimumδ 13C overlies the oolitic limestone; therefore, DICE occurs in the transgressive succession in the early Miaolingian.-
Key words:
- carbon isotope composition /
- DICE negative excursion /
- Drumian Stage /
- Cambrian
-
图 1 剖面位置及苗岭世区域古地理图[15]
Figure 1. Location of section and reginal paleogeographical map during Miaolingian
表 1 华北中寒武统与国际寒武系苗岭统地层对比[19-20]
Table 1. Stratigraphic correlation between the Middle Cambrian in North China and the international Cambrian Miaolingian
国际寒武系 华北寒武系 统 阶 三叶虫带 三叶虫带 阶 统 苗岭统 Damesellaparonai 张夏阶 中寒武统 鼓山阶 Lejopyge armata Liaopeishania Taitzuia-Poshania Goniagnostus nathorsti Amphoton Ptychagnostus punctuosus Crepicephalina Megagraulos Ptychagnostus atavus Inouyella-Peishania 乌溜阶 Ptychagnostus gibbus Bailiella-Lioparia
Poriagroulos
Inouyops
Metagraulos
Sunaspis-Sunaspidella
Sinopagetia jinnanensis
Ruichengaspis
Asteromajia hsuchuangensis徐庄阶 Peronopsis taijiangensis Oryctocephalus indicus 表 2 驴驮沟剖面碳酸盐岩碳氧同位素分析结果
Table 2. Carbon and oxygen isotope analysis results of carbonate rock in Lütuogou section
样品编号 δ13CVPBD/‰ δ18OVPBD/‰ 距底位置/m 岩性 LZ043 0.7 -4.4 400.6 砂屑砾屑灰岩 LZ042 0.5 -5.9 392.1 叠层石灰岩 LZ041 0.4 -5.7 388.8 鲕粒灰岩 LZ040 1.3 -3.3 383.3 白云质灰岩 LZ039 1.3 -2.6 367.3 灰质白云岩 LZ038 0.2 -8.8 366.3 叠层石白云岩 LZ037 0.5 -7.0 363.7 鲕粒砂屑灰岩 LZ036 0.7 -7.6 361.6 鲕粒灰岩 LZ035 0.5 -7.9 358.4 白云质灰岩 LZ034 1.9 -3.3 352.1 白云质灰岩 LZ033 1.3 -3.9 340.8 砂屑灰岩 LZ032 0.3 -4.8 333.7 灰质白云岩 LZ031 0.2 -5.5 330.9 含鲕粒灰岩 LZ030 1.3 -8.1 329.0 鲕粒灰岩 LZ029 1.1 -8.0 319.5 鲕粒砂屑灰岩 LZ028 -0.5 -5.9 313.7 豆粒灰岩 LZ027 0.6 -8.0 313.0 砂屑灰岩 LZ026 0.3 -7.4 293.6 鲕粒灰岩 LZ025 0.1 -5.2 273.1 鲕粒灰岩 LZ024 0.3 -5.4 268.0 豆粒灰岩 LZ023 0.3 -5.1 249.3 藻灰岩 LZ022 -0.1 -8.1 246.8 鲕粒灰岩 LZ021 0.6 -4.9 241.8 竹叶状灰岩 LZ020 0.6 -5.4 230.4 砂屑颗粒灰岩 LZ019 0.9 -5.4 226.6 云斑状灰岩 LZ018 1.5 -6.7 221.8 砂屑颗粒灰岩 LZ017 1.6 -3.9 220.2 灰质白云岩 LZ016 2.7 -5.0 218.1 白云质灰岩 LZ015 2.8 -4.6 216.7 砂屑灰岩 LZ014 2.8 -5.8 215.7 豹皮灰岩 LZ013 2.2 -6.5 214.7 白云质灰岩 LZ012 3.1 -9.1 199.3 砂屑灰岩 LZ011 1.9 -9.1 189.8 细晶灰岩 LZ010 1.7 -5.4 183.1 薄板灰岩 LZ009 1.6 -5.3 181.6 薄板灰岩 LZ008 0.5 -4.6 171.7 薄层灰岩 LZ007 -0.9 -4.9 170.7 生物碎屑灰岩 LZ006 -1.7 -6.6 163.8 砂屑灰岩 LZ005 -0.1 -9.4 156.4 鲕粒灰岩 LZ004 0.3 -6.3 149.5 鲕粒灰岩 LZ003 -0.7 -7.0 125.0 鲕粒灰岩 LZ002 -0.2 -11.8 109.8 泥晶白云岩 LZ001 1.3 -6.5 97.8 鲕粒灰岩 -
[1] Sharp Z. Principles of stable isotope geochemistry: Principles of stable isotope geochemistry[M]. [S. l.]. [s. n.], 2007. [2] Glumac B, Spivak-Birndorf M L. Stable isotopes of carbon as an invaluable stratigraphic tool: An example from the Cambrian of the northern Appalachians, USA[J]. Geology, 2002, 30(6): 563-566. doi: 10.1130/0091-7613(2002)030<0563:SIOCAA>2.0.CO;2 [3] Brasier M D, Anderson M M, Corfield R M. Oxygen and carbon isotope stratigraphy of Early Cambrian carbonates in southeastern Newfoundland and England[J]. Geological Magazine, 1992, 129(3): 265-279. doi: 10.1017/S001675680001921X [4] 周鹏, 陈孝红, 危凯. 黄陵背斜东南缘埃迪卡拉系碳稳定同位素组成特征及有机质发育关系讨论[J]. 地质科技通报, 2020, 39(2): 62-73. doi: 10.19509/j.cnki.dzkq.2020.0207Zhou P, Chen X H, Wei K. Carbon isotope characteristics and organic matter development of the Ediacaran in the southeastern margin of the Huangling anticline, western Hubei[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 62-73(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0207 [5] Zhu M, Loren B, Peng S. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld, 2006, 15: 217-222. doi: 10.1016/j.palwor.2006.10.016 [6] Saltzman M R, Thomas E. Chapter 11-carbon isotope stratigraphy[C]//Gradstein F M, Ogg J G, Schmitz M D, et al. The geologic time scale. Boston: Elsevier, 2012. [7] 左景勋, 彭善池, 朱学剑, 等. 湘西寒武系鼓山阶底界附近碳同位素组成演化趋势[J]. 地球化学, 2018, 47(5): 453-462. doi: 10.19700/j.0379-1726.2018.05.001Zuo J X, Peng S C, Zhu X J, et al. Carbon isotope trend around the base of the Drumian Stage in western Hunan, South China[J]. Geochimica, 2018, 47(5): 453-462(in Chinese with English abstract). doi: 10.19700/j.0379-1726.2018.05.001 [8] 朱茂炎, 杨爱华, 袁金良, 等. 中国寒武纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 26-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htmZhu M Y, Yang A H, Yuan J L, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 49(1): 26-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901004.htm [9] Wang Z, Chen J, Liang T, et al. Spatial variation in carbonate carbon isotopes during the Cambrian SPICE event across the eastern North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109669. doi: 10.1016/j.palaeo.2020.109669 [10] 仲聪聪, 王敏, 李凯楠, 等. 豫西登封地区寒武系苗岭统张夏组碳同位素组成特征及其地层学意义[J]. 河南理工大学学报: 自然科学版, 2020, 39(1): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202001005.htmZhong C C, Wang M, Li K N, et al. Carbon isotope composition characteristics and its stratigraphic significance in Zhangxia Formation, Miaolingian series of Cambrian in Dengfeng, western Henan[J]. Journal of Henan Polytechnic University: National Science Edition, 2020, 39(1): 37-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202001005.htm [11] He T, Zhu M, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals[J]. Nature Geoscience, 2019, 12(6): 468-474. doi: 10.1038/s41561-019-0357-z [12] Huang J, Chen Y, Chu X, et al. The geochemistry of the late Cambrian carbonate in North China: The steptoean positive carbon isotope excursion (SPICE) record suppressed in a coastal condition?[J]. Geological Magazine, 2019, 156(10): 1805-1819. doi: 10.1017/S0016756819000025 [13] Mackey J E, Stewart B W. Evidence of SPICE-related anoxia on the Laurentian passive margin: Paired δ13C and trace element chemostratigraphy of the Upper Conasauga Group, Central Appalachian Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 160-174. doi: 10.1016/j.palaeo.2019.04.018 [14] Li D, Zhang X, Hu D, et al. Evidence of a large δ13Ccarb and δ13Corg depth gradient for deep-water anoxia during the Late Cambrian SPICE event[J]. Geology, 2018, 46(7): 631-634. doi: 10.1130/G40231.1 [15] 冯增昭, 彭勇民, 金振奎, 等. 中国晚寒武世岩相古地理[J]. 古地理学报, 2002, 4(3): 1-10. doi: 10.3969/j.issn.1671-1505.2002.03.001Feng Z Z, Peng Y M, Jin Z K, et al. Lithofacies palaeogeography of the Late Cambrian in China[J]. Journal of Palaeogeography, 2002, 4(3): 1-10(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2002.03.001 [16] 史晓颖, 陈建强, 梅仕龙. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘, 1997, 4(增刊2): 165-177.Shi X Y, Chen J Q, Mei S L. Cambrian sequence chronostratigraphic framework of the North China Platform[J]. Earth Science Frontiers, 1997(S2): 165-177(in Chinese with English abstract). [17] 梅冥相, 郭荣涛, 胡媛. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报, 2011, 27(8): 2473-2486. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108023.htmMei M X, Guo R T, Hu Y. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8): 2473 -2486(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108023.htm [18] Zhang W T, Xiang L W, Liu Y H, et al. Cambrian stratigraphy and trilobites from Henan[J]. Palaeontologia Cathayana, 1995, 6: 1-166. [19] 彭善池. 华南斜坡相寒武纪三叶虫动物群研究回顾并论我国南、北方寒武系的对比[J]. 古生物学报, 2009, 48(3): 437-452. doi: 10.3969/j.issn.0001-6616.2009.03.015Peng S C. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt, South China, with notes on Cambrian correlation between South and North China[J]. Acta Palaeontologica Sinica, 2009, 48(3): 437-452(in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2009.03.015 [20] 袁金良. 山东及邻区张夏组(寒武系第三统)三叶虫动物群[M]. 北京: 科学出版社, 2012.Yuan J L. The trilobite fauna of the Zhangxia Formation (Third Cambrian) in Shandong and neighboring areas[M]. Beijing: Science Press, 2012(in Chinese). [21] Shen Y, Schidlowski M. New C isotope stratigraphy from Southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations: Reply[J]. Geology, 2001, 28: 623-626. [22] 张钰莹, 江大勇, 何治亮, 等. 安徽巢湖下三叠统含巢湖龙动物群地层碳氧同位素特征及意义[J]. 地质科技情报, 2017, 36(1): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701010.htmZhang Y Y, Jiang D Y, He Z L, et al. Carbon and oxygen isotopes characteristics of the strata containing Chaohusaurus Fauna in Lower Triassic in Chaohu area, Anhui Province and its palaeoenvirenmental significance[J]. Geological Science and Technology Information, 2017, 36(1): 72-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201701010.htm [23] 贾鹏, 李明, 卢远征, 等. 四川盆地寒武系洗象池群层序地层划分及层序地层格架的建立[J]. 地质科技情报, 2017, 36(2): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702015.htmJia P, Li M, Lu Y Z, et al. Sequence sratigraphic subdivision and establishment of sequence stratigraphic framework in the Cambrian Xixiangchi Group of Sichuan Basin[J]. Geological Science and Technology Information, 2017, 36(2): 119-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702015.htm [24] Li D, Ling H F, Jiang S Y, et al. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: Implications for global correlation[J]. Geological Magazine, 2009, 146(4): 465-484. doi: 10.1017/S0016756809006268 [25] Wotte T, Alvaro J, Shields G, et al. High resolution C-, O- and Sr-isotope stratigraphy across the Lower-Middle Cambrian transition of the Cantabrian Mountains (Spain) and the Montagne Noire (France), western Gondwana[C]//Anon. Information resources management association international conference on challenges of information technology management in Century. [S. l.]. [s. n.], 2007. [26] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/4): 27-49. [27] 樊茹, 邓胜徽, 张学磊. 碳酸盐岩碳同位素地层学研究中数据的有效性[J]. 地层学杂志, 2010, 34(4): 445-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201004018.htmFan R, Deng S H, Zhang X L. The data validity evluation of carbonate δ13C in C isotope stratigraphy[J]. Journal of Stratigraphy, 2010, 34(4): 445-451(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201004018.htm [28] 左景勋, 彭善池, 朱学剑. 扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义[J]. 地球化学, 2008, 37(2): 118-128. doi: 10.3321/j.issn:0379-1726.2008.02.003Zuo J X, Peng S C, Zhu X J. Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, South China and its geological implications[J]. Geochimica, 2008, 37(2): 118-128(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2008.02.003 [29] Kouchinsky A, Bengtson S, Gallet Y, et al. The SPICE carbon isotope excursion in Siberia: A combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform[J]. Geol. Mag., 2008, 145: 609-622. doi: 10.1017/S0016756808004913 [30] Brasier M D. Towards a carbon isotope stratigraphy of the Cambrian System: Potential of the Great Basin succession[J]. Geological Society London Special Publications, 1993, 70(1): 341-350. doi: 10.1144/GSL.SP.1993.070.01.22 [31] Zuo J X, Peng S C, Qi Y P, et al. Carbon-isotope excursions recorded in the Cambrian System, South China: Implications for mass extinctions and sea-level fluctuations[J]. Journal of Earth Science, 2018, 29(3): 479-491. doi: 10.1007/s12583-017-0963-x [32] Babcock L E, Rees M N, Robison R A, et al. Potential global standard stratotype-section and point (GSSP) for a Cambrian stage boundary defined by the first appearance of the trilobite Ptychagnostus atavus, Drum Mountains, Utah, USA[J]. Geobios, 2004, 37(2): 149-158. doi: 10.1016/j.geobios.2003.03.007 [33] Loren B, Robison R, Rees M, et al. The global boundary stratotype section and point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA[J]. Episodes, 2007, 30: 85-95. doi: 10.18814/epiiugs/2007/v30i2/003 [34] 彭善池. 华南新的寒武纪生物地层序列和年代地层系统[J]. 科学通报, 2009, 54(18): 2691-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200918010.htmPeng S C. The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for South China[J]. Chinese Sci. Bull., 2009, 54(18): 2691-2698(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200918010.htm [35] 易雨昊, 李先昀, 冯庆来. 滇东北会泽蜂子箐剖面寒武系纽芬兰统生物地层学和年代地层学[J]. 地质科技情报, 2019, 38(5): 121-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905012.htmYi Y H, Li X Y, Feng Q L. Biostratigraphy and chronostratigraphy of the Cambrian Terreneuvian from the Fengziqing Section in Huize area, Northeast Yunnan[J]. Geological Science and Technology Information, 2019, 38(5): 121-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905012.htm [36] 危凯, 陈孝红, 王传尚, 等. 湘鄂西地区晚埃迪卡拉世-早寒武世硅质岩成因及其页岩气地质意义[J]. 地质科技通报, 2020, 39(2): 20-30. doi: 10.19509/j.cnki.dzkq.2020.0203Wei K, Chen X H, Wang C S, et al. Origin of siliceous rocks in west Hunan and Hubei provinces during Late Ediacaran-Early Cambrian, and its geological significance of shale gas[J]. Bullietin of Geological Science and Technology, 2020, 39(2): 20-30(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0203 [37] Sun X. Cambrian agnostids from the North China Platform[J]. Palaeontologia Cathayana, 1989(4): 53-130. [38] 裴放. 河南省华北型寒武纪生物地层单位划分与对比[J]. 河南地质, 2000, 18(2): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD200002004.htmPei F. Division and correlation of the North China type Cambrian biostratigraphic units of Henan Province[J]. Henan Geology, 2000, 18(2): 97-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD200002004.htm [39] Howley R A, Jiang G. The Cambrian Drumian carbon isotope excursion (DICE) in the Great Basin, western United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(1/2): 138-150. [40] Montaez T P, Osleger D A, Banner J L, et al. Evolution of the Sr and C isotope composition of Cambrian Oceans[J]. Gsa Today, 2000, 10(5): 1-5. [41] Zhu Y M, Zhang J M, Li G X, et al. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions[J]. Geobios., 2004, 37(2): 287-310. [42] 左景勋, 彭善池, 周传明, 等. 湘西王村剖面寒武系花桥组浊积岩特征及其大地构造意义[J]. 沉积学报, 2006, 24(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200602002.htmZuo J X, Peng S C, Zhou C M, et al. Tectonic significance and sedimentary characteristics of turbidity successions within the Cambrian Huaqiao Formation at Wangcun section in the West Hunan, South China[J]. Acta Sedimentologica Sinica, 2006, 24(2): 175-184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200602002.htm [43] Pagès A, Schmid S. Euxinia linked to the Cambrian Drumian carbon isotope excursion (DICE) in Australia: Geochemical and chemostratigraphic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 65-76. [44] Sukhov M D B S. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data[J]. Canadian Journal of Earth Sciences, 1998, 35(35): 353-373. [45] 左景勋, 朱学剑, 方怀宾, 等. 华北寒武系芙蓉统底界附近的碳同位素组成演化特征[J]. 地球科学, 2020, 45(3): 728-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003002.htmZuo J X, Zhu X J, Fang H B, et al. Carbon isotope trend across the base of the Furongian Series of the Cambrian System, northern Henan, southern North China[J]. Earth Science, 2020, 45(3): 728-738(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003002.htm [46] 裴放, 王建平, 王世炎, 等. 河南省中寒武世岩相古地理[J]. 古地理学报, 2012, 14: 423-436. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201204006.htmPei F, Wang J P, Wang S Y, et al. The Middle Cambrian lithofacies palaogeography in Henan Province[J]. Journal of Palaeogeography, 2012, 14: 423-436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201204006.htm [47] Wilson J L. Carbonate facies in geologic history: Sedimentary geology[M]. New York: Springer Verlag, 1975. [48] Schlager W. Carbonate sedimentology and sequence stratigraphy: SEPM concepts in sedimentology and paleontology Series no. 8. [M]. Tulsa: Society for Sedimentary Geology, 2005. [49] Torsvik T H, Cocks L. Earth history and palaeogeography[M]. Cambridge: Cambridge University Press, 2016. [50] 王玉洁, 王敏. 豫西登封地区寒武系苗岭统张夏组中部生物扰动构造及地质意义[J]. 吉林大学学报: 地球科学版, 2021, 51(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202104005.htmWang Y J, Wang M. The bioturbation structure and their geological implications from Zhangxia Formation (Cambrian Miaolingian) in Dengfeng area, western Henan[J]. Journal of Jilin University: Earth Science Edition, 2021, 51(3): 1-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202104005.htm [51] 肖飞, 汪建国, 吴和源, 等. 华北地区中北部寒武系层序地层格架[J]. 石油学报, 2017, 38(10): 1144-1157, 1167. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201710005.htmXiao F, Wang J G, Wu H Y, et al. Cambrian sequence stratigraphic framework in the middlee-northern North China[J]. Acta Petrolei Sinica, 2017, 38(10): 1144-1157, 1167(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201710005.htm [52] 梅幂相, 马永生. 华北寒武系层序地层格架及碳酸盐台地演化[J]. 现代地质, 1997, 11(3): 275-282. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ703.003.htmMei M X, Ma Y S. Framwork of Cambrian sedimentary sequence and evolution of carbonate platform in North China[J]. Geoscience, 1997, 11(3): 275-282(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ703.003.htm [53] 郭芪恒, 金振奎, 史书婷, 等. 鲕粒粒度特征及其指示意义: 以北京西山下苇甸寒武系张夏组剖面为例[J]. 沉积学报, 2020, 38(4): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202004004.htmGuo Q H, Jin Z K, Shi S T, et al. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop, Beijing[J]. Acta Sedimentologica Sinica, 2020, 38(4): 737-746(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202004004.htm -