Spatial variations and influencing factors analysis of heavy metals in the soil of typical rocky desertification peak cluster depression
-
摘要:
研究石漠化峰丛洼地土壤重金属空间分异特征及其影响因素, 对推动区域土壤重金属污染防治、石漠化综合治理具有重要的指导意义和实践价值。以广西平果市典型石漠化峰丛洼地土壤为研究对象, 通过调查采样分析以及综合运用地统计学、地质累积指数、潜在生态危害指数和地理探测器等方法, 分析探讨土壤重金属的空间分异特征及其影响因素。结果表明, 研究区8种重金属元素的空间分布总体呈东北向西南降低的变化格局, 研究区东北部和东南部为重金属高值叠加区的集中分布区, Cr,Cd元素呈现中等的空间相关性, 其他6个重金属元素表现为强空间相关性;研究区受Cd,As,Cr,Cu,Zn等元素不同污染程度的影响, 且以Cd的影响尤为突出, 其地质累积指数和潜在生态危害指数分别高达1.34和107.73;pH、地层、Fe2O3、土地利用、P、CaO、Mn、到断层距离、石漠化程度是影响研究区土壤重金属空间分异的主要因子, 而且不同因子组对土壤重金属空间分异的交互作用以双因子增强型和非线性增强为主。因此认为不同因子对石漠化峰丛洼地土壤不同重金属元素空间分异特征的影响程度存在差异, Cd是石漠化峰丛洼地土壤污染程度和潜在生态危害程度最严重的重金属元素, 地层、Mn、CaO、岩性、到断层距离、P是影响Cd空间分异的关键因子。
Abstract:Karst peak cluster depression areas are characterized by a special double-layer hydrogeological structure, and under the influence of human activities, there are many environmental problems, such as soil erosion, rocky desertification, dryness and wetness, and heavy metal pollution. How to clarify the spatial variations and influencing factor analysis of heavy metals in the soil of typical rocky desertification peak cluster depressions has become an important content to promote the prevention and control of heavy metal pollution in soil and the comprehensive management of rocky desertification. The typical rocky desertification peak cluster depression soil in Pingguo City, Guangxi, was selected as the research object in this study.Spatial variations, associated mechanisms and pollution risk assessments of eight heavy metals (e.g., As, Hg, Cr, Ni, Cu, Zn, Cd, and Pb) in soil were carried out by using the geo-statistical, geological accumulation index, potential ecological danger index and geographical detector methods. These results show that the spatial distribution of heavy metals in the study area generally shows a downward trend from northeast to southwest. Cr and Cd show medium spatial correlation, and the other six heavy metals show strong spatial correlation, which was analyzed by semivariogram. The study area is affected by different pollution levels of Cd, As, Cr, Cu and Zn, and the impact of Cd is the most important. The geological accumulation index and potential ecological hazard index of Cd are 1.34 and 107.73, respectively, but the average geological accumulation index of other heavy metals is less than 0, and the potential ecological hazard index is less than 16.The main factors affecting the spatial differentiation of eight heavy metals in the soil of the study area are pH, stratum, Fe2O3, land use, phosphorus, CaO, Mn, distance to fault and rocky desertification degree. Moreover, the interaction types of different factor groups on the spatial differentiation of heavy metals in soil were mainly two factors enhanced and nonlinear enhanced. Therefore, it is considered that different factors have different effects on the spatial differentiation characteristics of various heavy metals in the soil of rocky desertification peak cluster depression. Cd is the most serious heavy metal element in the soil pollution degree and potential ecological harm degree of rocky desertification peak cluster depression. Strata, Mn, CaO, lithology, distance to fault and phosphorus are the key factors affecting the spatial differentiation of Cd.
-
表 1 影响因子离散化分类
Table 1. Impact factor discretization
因子 分类情况 w(N)/(mg·kg-1) [1 001, 1 250), [1 250, 1 500), [1 500, 1 750), [1 750, 2 000), [2 000, 2 250], [2 250, 2 500_, [2 500, 2 750), [2 750, 3 000] w(P)/(mg·kg-1) [301, 600), [600, 900), [900, 1 200), [1 200, 1 500), [1 500, 1 800), [1 800, 2 100), [2 100, 2 400), [2 400, 2 700] w(K2O)/% [0.01, 0.50), [0.50, 1.00), [1.00, 1.50), [1.50, 2.00), [2.00, 2.50), [2.50, 3.00), [3.00, 3.50), [3.50, 4.00] w(有机碳)/% [1.01, 1.50), [1.50, 2.00), [2.00, 2.50), [2.50, 3.00), [3.00, 3.50), [3.50, 4.00), [4.00, 4.50), [4.50, 5.00] w(Mn)/(mg·kg-1) [1, 400), [400, 800), [800, 1 200), [1 200, 1 600), [1 600, 2 000), [2 000, 2 400), [2 400, 2 800), [2 800, 3 200] w(Fe2O3)/% [2.1, 4.0), [4.0, 6.0), [6.0, 8.0), [8.0, 10.0), [10.0, 12.0), [12.0, 14.0), [14.0, 16.0), [16.0, 18.0] w(CaO)/% [0.01, 0.50), [0.50, 1.00), [1.00, 2.00), [2.00, 3.00), [3.00, 5.00), [5.00, 10.00), [10.00, 25.00), [25.00, 56.00] w(MgO)/% [0.01, 0.20), [0.20, 0.40), [0.40, 0.60), [0.60, 0.80), [0.80, 1.00), [1.00, 1.20), [1.20, 1.40), [1.40, 1.60] pH <4.5, [4.5, 5.5), [5.5, 6.5), [6.5, 7.5), [7.5, 8.5] 海拔/m [291, 310), [310, 330), [330, 350), [350, 370), [370, 390), [390, 410), [410, 430), [430, 450] 坡度/° [0, 0.5), [0.5, 2), [2, 5), [5, 15), [15, 25), [25, 35] 土地利用 耕地、园地、林地、草地、其他土地 地层 泥盆系、石炭系、二叠系、三叠系 岩性 灰岩、白云岩、碳酸盐岩夹碎屑岩、碎屑岩夹碳酸盐岩 Frd/m [0, 1 000), [1 000, 2 000), [2 000, 3 000), [3 000, 4 000), [4 000, 5 000), [5 000, 6 000), [6 000, 7 000], >7 000 Srd/m [0, 100), [100, 300), [300, 500), [500, 700), [700, 900), [900, 1 100), [1 100, 1 300], >1 300 Rard/m [1, 100), [100, 200), [200, 300), [300, 400), [400, 500), [500, 600), [600, 700], >700 Rd 无石漠化、潜在石漠化、轻度石漠化、中度石漠化、重度石漠化 注:Frd.到断层距离;Srd.到水源距离;Rard.到居民点距离;Rd.石漠化程度 表 2 土壤重金属质量分数统计特征
Table 2. Statistical characteristics of heavy metals in soil
元素 最小值 最大值 平均值 中值 标准差 偏度 峰度 变异系数/% wB/(mg·kg-1) As 10.80 177.00 45.66 38.00 29.90 2.32 8.22 65.48 Hg 0.08 1.09 0.33 0.30 0.18 1.85 6.13 54.55 Cr 91.60 628.00 234.85 183.0 139.42 1.09 0.18 59.37 Cd 0.04 10.01 1.80 0.80 2.11 1.88 4.35 117.22 Pb 20.00 84.70 46.79 46.80 16.30 0.33 -0.47 34.84 Ni 15.00 85.63 38.38 33.27 18.37 0.95 0.17 48.86 Cu 14.80 59.70 32.28 31.10 13.10 0.60 -0.61 40.58 Zn 64.30 407.10 166.68 121.20 99.89 1.11 0.15 59.93 表 3 土壤重金属空间分异的理论模型和参数
Table 3. Theoretical models and parameter values for the spatial differentiation of soil heavy metals
元素 模型 块金值 基台值 块金值/基台值 残差平方 决定系数 As Gaussian 0.00 2.51 0.00 0.23 0.80 Hg Gaussian 0.00 0.00 0.00 0.00 0.96 Cr Linear 0.05 0.18 0.29 0.00 0.95 Cd Gaussian 0.08 0.20 0.42 0.00 0.98 Pb Gaussian 0.03 0.16 0.18 0.00 0.82 Ni Gaussian 0.04 0.17 0.24 0.00 0.92 Cu Gaussian 0.04 0.27 0.15 0.00 0.97 Zn Gaussian 0.10 0.80 0.13 0.00 0.74 表 4 土壤重金属高值区统计
Table 4. Statistics of high value areas of soil heavy metals
元素 高值区面积/km2 高值区面积占比/% 超高值区面积/km2 超高值区面积占比/% As 18.12 64.71 0 0 Hg 0.06 0.21 0 0 Cr 21.89 78.18 0 0 Cd 14.11 50.39 10.42 37.21 Pb 4.74 16.93 0 0 Zn 10.47 37.39 — — Ni 0 0 — — Cu 0 0 — — 表 5 土壤重金属地质累积指数及影响等级统计特征
Table 5. Statistical characteristics of the geological accumulation index and grade of soil heavy metals
元素 地质累积指数Igeo 各等级所占比例/% 范围 平均值 ≥3级 2级 1级 ≤0级 As -2.53~8.42 -0.57 2.33 2.33 0 95.34 Hg -92.92~39.85 -0.40 0 0 0 100 Cr -40.78~4.27 -1.97 2.33 0 0 97.67 Cd -15.96~11.41 1.34 6.98 13.95 9.30 69.77 Pb -2.50~-0.40 -0.89 0 0 0 100 Ni -5.86~-0.37 -1.00 0 0 0 100 Cu -25.11~60.96 -1.10 2.33 0 0 97.67 Zn -7.00~11.14 -0.14 11.63 0 0 88.37 表 6 研究区土壤重金属的潜在生态危害指数
Table 6. Potential ecological risk index of soil heavy metals in the study area
指标 As Hg Cr Cd Pb Ni Cu Zn RI 潜在生态危害指数 15.22 8.32 4.27 107.73 3.90 6.40 4.03 1.11 151.50 潜在危害程度 轻微 轻微 轻微 强 轻微 轻微 轻微 轻微 中等 表 7 影响因子对土壤重金属交互探测结果
Table 7. Interaction detection results of soil heavy metals by different influencing factors
元素 q(Xi∩Xj)=M A[q(Xi)]+B[q(Xj)]=N 比较结果 交互作用类型 As pH∩MgO =0.54 pH(0.21)+MgO(0.16)=0.37 M>N 非线性增强 As pH∩Corg=0.51 pH(0.21)+Corg(0.11)=0.32 M>N 非线性增强 Hg CaO∩pH=0.55 CaO(0.36)+pH(0.32)=0.68 M>A, M>B 双因子增强 Hg CaO∩Slope=0.49 CaO(0.36)+Slope(0.14)=0.50 M>A, M>B 双因子增强 Cr Fe2O3∩SC=0.89 Fe2O3(0.66)+SC(0.42)=1.08 M>A, M>B 双因子增强 Cr Fe2O3∩K2O=0.91 Fe2O3(0.66)+K2O(0.34)=1 M>A, M>B 双因子增强 Ni Fe2O3∩SC=0.81 Fe2O3(0.70)+ SC(0.43)=1.13 M>A, M>B 双因子增强 Ni Fe2O3∩LUT=0.79 Fe2O3(0.70)+LUT(0.26)=0.96 M>A, M>B 双因子增强 Cu Fe2O3∩SC=0.88 Fe2O3(0.81)+SC(0.44)=1.25 M>A, M>B 双因子增强 Cu Fe2O3∩H=0.94 Fe2O3(0.81)+H(0.34)=1.15 M>A, M>B 双因子增强 Zn Fe2O3∩P=0.97 Fe2O3(0.69)+P(0.61)=1.3 M>A, M>B 双因子增强 Zn Fe2O3∩Frd=0.95 Fe2O3(0.69)+Frd(0.54)=1.23 M>A, M>B 双因子增强 Cd Frd∩P=0.91 Frd(0.75)+P(0.48)=1.23 M>A, M>B 双因子增强 Cd Frd∩SC=0.84 Frd(0.75)+SC(0.47)=1.22 M>A, M>B 双因子增强 Pb Mn∩pH=0.80 Mn(0.67)+pH(0.29)=0.96 M>A, M>B 双因子增强 Pb Mn∩N=0.85 Mn(0.67)+N(0.23)=90 M>A, M>B 双因子增强 注:SC.地层;Frd.到断层距离;LUT.土地利用;Corg.有机碳;Slop.坡度;H.海拔 -
[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201709001.htmChen N C, Zheng Y J, He X F, et al. Analysis of the report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201709001.htm [2] 刘文辉, 马腾, 李俊琦, 等. 资江河口区农田土壤重金属污染评价及来源分析[J]. 地质科技通报, 2021, 40(2): 138-146. doi: 10.19509/j.cnki.dzkq.2021.0212Liu W H, Ma T, Li J Q, et al. Pollution assessment and source analysis of heavy metals in agricultural soil around Zijiang River estuary[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 138-146(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0212 [3] Shi X M, Liu S, Song L, et al. Contamination and source-specific risk analysis of soil heavy metals in a typical coal industrial city, central China[J]. Science of the Total Environment, 2022, 836: 1-9. [4] 龚杰, 孙紫童, 冯璐, 等. 武汉市东西湖区主要湖泊表层沉积物重金属污染特征与生态风险评价[J]. 地质科技通报, 2021, 40(3): 204-210. doi: 10.19509/j.cnki.dzkq.2021.0313Gong J, Sun Z T, Feng L, et al. Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of main lakes in Dongxihu district, Wuhan[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 204-210(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0313 [5] 张雪梅, 祁向坤, 岳跃民, 等. 喀斯特峰丛洼地石漠化治理自然地域分区[J]. 生态学报, 2020, 40(16): 5490-5501. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202016004.htmZhang X M, Qi X K, Yue Y M, et al. Natural regionalization for rocky desertification treatment in karst peak-cluster depression regions[J]. Acta Ecologica Sinica, 2020, 40(16): 5490-5501(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202016004.htm [6] Jiang Z C, Lian Y Q, Qin X Q. Rocky desertification in Southwest China: Impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12. doi: 10.1016/j.earscirev.2014.01.005 [7] 蒋忠诚, 罗为群, 童立强, 等. 21世纪西南岩溶石漠化演变特点及影响因素[J]. 中国岩溶, 2016, 35(5): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201605001.htmJiang Z C, Luo W Q, Tong L Q, et al. Evolution features of rocky desertification and influence factors in karst areas of Southwest China in the 21St century[J]. Carsologica Sinica, 2016, 35(5): 461-468(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201605001.htm [8] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htmMa H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm [9] Liu P F, Wu Z Q, Luo X R, et al. Pollution assessment and source analysis of heavy metals in acidic farmland of the karst region in southern China: A case study of Quanzhou County[J]. Applied Geochemistry, 2020, 123: 104764. doi: 10.1016/j.apgeochem.2020.104764 [10] 李雨静, 李社宏, 廖红为, 等. 云南省蒙自东山岩溶区土壤重金属污染评价[J]. 桂林理工大学学报, 2019, 39(3): 700-705. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201903023.htmLi Y J, Li S H, Liao H W, et al. Heavy metal pollution evaluation of soil in Dongshan karst area of Mengzi, Yunnan[J]Journal of Guilin University of Technology, 2019, 39(3): 700-705(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201903023.htm [11] 王秋艳, 文雪峰, 魏晓, 等. 碳酸盐岩风化和成土过程的重金属迁移富集机理初探及环境风险评价[J]. 地球与环境, 2022, 50(1): 119-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202201013.htmWang Q Y, Wen X F, Wei X, et al. Heavy metal migration and enrichment mechanism and the environmental risks during the weathering and soil formation of carbonate rocks[J]. Earth and Environment, 2022, 50(1): 119-130(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202201013.htm [12] 刘炫志. 碳酸盐岩风化成土过程中重金属元素的富集行为及其环境风险评价: 以贵州岩溶区为例[D]. 湖南衡阳: 南华大学, 2019.Liu X Z. Enrichment behavior of heavy metal elements and environmental risk assessment during weathering and soil formation of carbonate rocks: A case study of karst region in Guizhou Province[D]. Hengyang Hunan: University of South China, 2019(in Chinese with English abstract). [13] 文宇博. 广西岩溶地质高背景地区土壤重金属的富集机制和生物有效性研究[D]. 南京: 南京大学, 2020.Yu W B. Enrichment mechanism and bioavailability of heavy metals in soils with high geochemical background in the karst region of Guangxi Province, China[D]. Nanjing: Nanjing University, 2020(in Chinese with English abstract). [14] Yang Q, Yang Z F, Filippelli G M, et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China[J]. Chemical Geology, 2021, 7/11: 120081. [15] Gao Q J, Wei F, Mohammad S F, et al. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109495. [16] 陈彪, 卢炳科, 邱炜. 广西喀斯特地貌区土壤重金属来源与生态风险评价[J]. 环境污染与防治, 2022, 44(5): 639-644. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202205015.htmChen B, Lu B K, Qiu W. Source and ecological risk assessment of heavy metals in soil in karst landforms of Guangxi[J]. Environmental Pollution & Control, 2022, 44(5): 639-644(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202205015.htm [17] 洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019, 40(10): 4620-4627. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htmHong T, Kong X S, Yue X F. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, Southeast of Yunnan Province[J]. Environmental Science, 2019, 40(10): 4620-4627(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201910036.htm [18] Li M, Xi X H, Xiao G Y, et al. National multi-purpose regional geochemical survey in China[J]. Journal of Geochemical Exploration, 2014, 139: 21-30. https://www.sciencedirect.com/science/article/pii/S0375674213001179 [19] Zhang L L, LV J G. Ecological risk assessment of the metallic pollution in the soil and sediment in Tingjiang Basin[J]. Environmental Earth Sciences, 2015, 73(4): 1799-1803. doi: 10.1007/s12665-014-3530-0 [20] Xia P H, Ma L, Sun R G, et al. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China[J]. Science of the Total Environment, 2020, 740: 140231. [21] 李航, 谭科艳, 张隆隆, 等. 土壤重金属地球化学特征及环境评价: 以张北县二台镇为例[J]. 地球学报, 2022, 43(5): 665-675. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202205003.htmLI H, Tan K Y, Zhang L L, et al. Geochemical characteristics and environmental assessment of soil heavy metals: A case study of Ertai Town, Zhangbei County[J]. Acta Geoscientica Sinica, 2022, 43(5): 665-675(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202205003.htm [22] 陈航, 王颖, 王澍. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 2022, 43(5): 2719-2731. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202205047.htmChen H, Wang Y, Wang S. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area[J]. Environmental Science, 2022, 43(5): 2719-2731(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202205047.htm [23] Peng W Q, Su C Y, Mei L, et al. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector[J]. Science of the Total Environment, 2019, 664: 392-413. [24] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htmWang J F, Xu C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm [25] 王勤, 彭渤, 方小红, 等. 湘江长沙段沉积物重金属污染特征及其评价[J]. 环境化学, 2020, 39(4): 999-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004016.htmWang Q, Peng B, Fang X H, et al. Characteristics and assessment of heavy metal contamination in sediments from Changsha section of the Xiangjiang River, Hunan Province of China[J]. Environmental Chemistry, 2020, 39(4): 999-1011(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004016.htm [26] Li C, Zhang C S, Yu T, et al. Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values[J]. Environmental Pollution, 2022, 304: 119234. [27] Wu W H, Qu S Y, Werner N, et al. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China[J]. Science of the Total Environment, 2020, 734: 139480. [28] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802005.htmLuo Y M, Teng Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 145-152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201802005.htm [29] Tang S Q, Liu X J, Peng M, et al. Influencing factors on transfer and bioaccumulation of soil cadmium and assessment of its environmental risk in a typical karst area, China[J]. Chemistry and Ecology, 2021, 37(4): 369-383. [30] 覃星铭. 滇东南典型高原区土壤元素地球化学的空间分异特征及其成因分析[D]. 重庆: 西南大学, 2019.Qin X M. Spatial variations of soil element geochemistry and the associated mechanisms in typical plateau area of Southeast Yunnan[D]. Chongqing: Southwest University, 2019(in Chinese with English abstract). [31] 陈延良. 基于GIS的松嫩平原南部土地质量地球化学评价及分析[D]. 哈尔滨: 东北林业大学, 2010.Chen Y L. Geochemical land quality evaluation and analyze based on gis in the south of Songnen Plain[D]. Haerbin: Northeast Forestry University, 2010(in Chinese with English abstract). [32] 严明书, 黄剑, 何忠庠, 等. 地质背景对土壤微量元素的影响: 以渝北地区为例[J]. 物探与化探, 2018, 42(1): 199-205, 219. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201801026.htmYan M S, Huang J, He Z Y, et al. The influence of geological background on trace elements of soil: A case study of Yubei area[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 199-205, 219(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201801026.htm [33] 于旦洋, 王颜红, 丁茯, 等. 近十年来我国土壤重金属污染源解析方法比较[J]. 土壤通报, 2021, 52(4): 1000 -1008. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202104029.htmYu D Y, Wang Y H, Ding F, et al. Comparison of analysis methods of soil heavy metal pollution sources in China in last ten years[J]. Chinese Journal of Soil Science, 2021, 52(4): 1000 - 1008(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202104029.htm [34] 苏春田, 黄晨晖, 邹胜章, 等. 广西黎塘岩溶区富含铁锰结核土元素迁移特征[J]. 南方农业学报, 2017, 48(9): 1594-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201709010.htmSu C T, Huang C H, Zou S Z. Transferring features of elements in soil rich in iron-manganese nodules karst area of Litang, Guangxi[J]. Journal of Southern Agriculture, 2017, 48(9): 1594-1599(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201709010.htm [35] 杨希, 岳晓岚, 李靖, 等. pH值对土壤重金属污染的影响及其准确测定[J]. 贵州地质, 2021, 38(4): 466-471. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ202104016.htmYang X, Yue X L, Li J, et al. The influence of pH on soil heavy-metal contamination and its accurate determination[J]. Guizhou Geology, 2021, 38(4): 466-471(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ202104016.htm [36] Zhong X, Chen Z W, Li Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in eastern China[J]. Journal of Hazardous Materials, 2020, 400: 123289. [37] 王维薇. 广西岩溶地区碳酸盐岩Cd元素分布特征研究[D]. 南宁: 广西师范学院, 2018.Wang W W. Distribution characteristics of cadmium in carbonate rocks in karst area of Guangxi[D]. Nanning: Nanning Normal University, 2018(in Chinese with English abstract). -