3D imaging characteristics of pore and fracture of tight sandstone in Baihetan reservoir area based on μCT technology
-
摘要:
微焦点X射线CT扫描(μCT)技术作为实现岩石内部孔-裂隙结构可视化最有效的方法之一, 仍需进一步探究其在致密砂岩孔-裂隙三维成像应用中的有效性。以白鹤滩水电站坝址区致密砂岩为例, 通过超高精度μCT技术与分割算法, 探究了不同扫描精度下试样的孔-裂隙三维成像特征, 并进一步结合扫描电子显微镜(SEM)测试分析了其对获取关键结构信息的影响。结果表明: 交互式阈值法和Top-hat组合的分割法可更精细化的提取致密砂岩孔-裂隙信息, 其中交互式阀值法适用于较大孔-裂隙提取, Top-hat法适用于微小裂隙提取; 致密砂岩结构中微小孔隙、微裂纹十分发育, 且孤立孔隙较多; 0.62μm相对于1.5μm的扫描分辨率呈现了更加清晰的孔隙网络模型, 但由于纳米级的测试范围受限, 关键结构信息特征可能被放大化; 当扫描分辨率大于2μm时, 关键微结构信息可能被忽略。因此, 在致密砂岩孔-裂隙三维特征研究中, 应采用较高的扫描精度并进行多区域信息采集, 以有效的揭示关键微结构特征, 这一基础性工作为进一步有效地揭示致密岩石结构演化信息提供了支撑。
Abstract:Microfocus X-ray CT scanning (μCT) is one of the most effective methods for visualization of pore-fracture structure in rock, and its effectiveness in 3d imaging of pore-fracture in tight sandstone should be further explored.Taking the tight sandstone at the dam site of Baihetan Hydropower Station as an example, the pore-fracture 3D imaging characteristics of samples with different scanning accuracy were explored by using ultra-high precision μCT technology and segmentation algorithm, and their influence on obtaining key structural information was analyzed by SEM test.The results show that the combined segmentation method of interactive threshold and Top-hat can extract the pore and fracture information of tight sandstone more accurately. The interactive threshold segmentation method is suitable for the extraction of large pore and fracture, and the Top-hat segmentation method is suitable for the extraction of small pore.Small pores and microcracks are very developed in tight sandstone structure, and there are many isolated pores. Compared with 1.5 μm scanning resolution, 0.62 μm scanning resolution presents a clearer pore network model, but due to the limited testing range at the nanoscale, the key structural information properties may be magnified.Critical microstructure information may be missed when the scanning resolution is greater than 2μm.Therefore, in the study of three-dimensional characteristics of pores and fractures in tight sandstone, high scanning accuracy should be selected and multi-region information acquisition should be carried out to effectively reveal the key microstructure features. This basic work provides a support for further effectively revealing the structural evolution information of tight rocks.
-
Key words:
- Baihetan hydropower station /
- pore-fracture /
- tight sandstone /
- μCT technology /
- scanning accuracy
-
-
[1] 李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108 [2] Yao W M, Li C D, Zhan H B, et al. Multiscale study of physical and mechanical properties of sandstone in three gorges reservoir region subjected to cyclic wetting-drying of Yangtze River water[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2215-2231. doi: 10.1007/s00603-019-02037-7 [3] Zhao Y, Ren S, Jiang D, et al. Influence of wetting-drying cycles on the pore structure andmechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials, 2018, 191(10): 923-931. [4] Wang C, Pei W, Zhang M, et al. Multi-scale experimental investigations on the deterioration mechanism of sandstone under wetting-drying cycles[J]. Rock Mechanics and Rock Engineering, 2020, 54: 429-441. [5] Cai X, Zhou Z, Tan L, et al. Fracture behavior and damage mechanisms of sandstone subjected to wetting-drying cycles[J]. Engineering Fracture Mechanics, 2020, 234: 107109. doi: 10.1016/j.engfracmech.2020.107109 [6] 金爱兵, 王树亮, 魏余栋, 等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531-3539, 3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011004.htmJin A B, Wang S L, Wei Y D, et al. Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone[J]. Rock and Soil Mechanics, 2020, 41(11): 3531-3539, 3603 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011004.htm [7] 缪澄宇, 杨柳, 许永震, 等. 基于核磁共振监测的砂岩强度软化实验及微观机制研究[J]. 岩石力学与工程学报, 2021, 40(11): 2189-2198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111003.htmMiao C Y, Yang L, Xu Y Z, et al. Experimental study on strength softening behaviors and micro-mechanisms of sandstone based on nuclear magnetic resonance[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2189-2198(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111003.htm [8] 朱江鸿, 韩淑娴, 童艳梅, 等. 干湿循环对不同密度砂岩强度劣化的影响[J]. 华南理工大学学报: 自然科学版, 2019, 47(3): 126-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htmZhu J H, Han S X, Tong Y M, et al. Effect of Dry-wet cycles on the deterioration of sandstone with various initial dry densities[J]. Journal of South China University of Technology: Natural Science Edition, 2019, 47(3): 126-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201903017.htm [9] 邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htmDeng H F, Zhi Y Y, Duan L L, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm [10] 王瑞飞, 张祺, 邵晓岩, 等. 多尺度CT成像技术识别超低渗透砂岩储层纳米级孔喉[J]. 地球物理学进展, 2020, 35(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htmWang R F, Zhang Q, Shao X Y, et al. Identification of ultra-low permeability sandstone reservoir nano pore-throat by multi-scale CT imaging technique[J]. Progress in Geophysics, 2020, 35(1): 188-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htm [11] 王帅, 许莹, 张艳博, 等. 基于CT扫描的砂岩主次裂纹扩展特征及影响因素研究[J]. 岩土工程学报, 2022, 44(4): 702-711. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204013.htmWang S, Xu Y, Zhang Y B, et al. Characteristics and influencing factors for propagation of primary and secondary cracks in sandstone based on CT scan[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 702-711(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204013.htm [12] 赵华伟, 宁正福, 段太忠, 等. 基于微米CT扫描成像实验及格子Boltzmann模拟方法的致密砂岩孔隙结构表征[J]. 东北石油大学学报, 2019, 43(5): 1-10, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201905002.htmZhao H W, Ning Z F, Duan T Z, et al. Pore structure characterization of tight sandstones by X-ray computed tomography experiment combined with Lattice Boltzmann Method[J]. Journal of Northeast Petroleum University, 2019, 43(5): 1-10, 119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201905002.htm [13] 王莹莹, 徐金明, 黄继忠. 基于CT影像的砂岩文物结构特征分析[J]. 中国地质灾害与防治学报, 2020, 31(1): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202001023.htmWang Y Y, Xu J M, Huang J Z. Analysis on structural features of sandstones relics using digital image technology based on CT images[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 127-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202001023.htm [14] 杨峰, 王昊, 黄波, 等. 基于CT扫描的致密砂岩渗流特征及应力敏感性研究[J]. 地质力学学报, 2019, 25(4): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904003.htmYang F, Wang H, Huang B, et al. Study on the stress sensitivity and seepage characteristics of tight sandstone based on ct scanning[J]. Journal of Geomechanics, 2019, 25(4): 475-482(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904003.htm [15] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3): 1019-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703010.htmLiu X J, Xiong J, Liang L X, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3): 1019-1028(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703010.htm [16] 王瑞飞, 张祺, 邵晓岩, 等. 多尺度CT成像技术识别超低渗透砂岩储层纳米级孔喉[J]. 地球物理学进展, 2020, 35(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htmWang R F, Zhang Q, Shao X Y, et al. Identification of ultra-low permeability sandstone reservoir nano pore-throat by multi-scale CT imaging technique[J]. Progress in Geophysics, 2020, 35(1): 188-196(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001025.htm [17] 秦洋, 姚素平, 萧汉敏. 致密砂岩储层孔-喉连通性研究: 以鄂尔多斯盆地长7储层为例[J]. 南京大学学报: 自然科学, 2020, 56(3): 338-353. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202003004.htmQin Y, Yao S P, Xiao H M. An investigation into pore-throat connectivity in tight sandstone reservoir: A case of the Chang 7 Reservoir in Ordos Basin[J]. Journal of Nanjing University: Natural Science, 2020, 56(3): 338-353(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202003004.htm [18] Hsieh J. 计算机断层成像技术[M]. 张朝宗, 译. 北京: 科学出版社, 2006.Hsieh J. Computed tomography[M]. Translated by Zhang C Z. Beijing: Science Press, 2006(in Chinese). [19] Yu B, Fan W, Fan J H, et al. X-ray micro-computed tomography(μ-CT) for 3D characterization of particle kinematics representing water-induced loess micro-fabric collapse[J]. Engineering Geology, 2020, 279: 105895. [20] 庄天戈. CT原理与算法[M]. 上海: 上海交通大学出版社, 1992.Zhuang T G. Principles and algorithms of CT[M]. Shanghai: Shanghai Jiaotong University Press, 1992(in Chinese). [21] Sonkan M, Hlavac V, Boyle R. 图像处理、分析与机器视觉[M]. 兴海军, 艾海舟, 译. 北京: 清华大学出版社出版, 2016.Sonkan M, Hlavac V, Boyle R. Image processing, analysis and machine vision[M]. Translated by Xing H J, Ai H Z. Beijing: Tsinghua University Press, 2016(in Chinese). [22] 吕帮民. 煤基多孔碳的孔隙三维表征及渗透研究[D]. 江苏徐州: 中国矿业大学, 2019.Lü B M. Research on Three-dimensional characterization and permeation of coal-based porous carbon[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2019(in Chinese with English abstract). [23] Xu Q, Zhao C, Li X. A strong background daytime star image processing method using improved morphology Top-Hat filter and pipeline filter[C]//Anon. Twelfth International Conference on Graphics and Image Processing, 2020, Xi'an, China. 2021: 117201R. [24] Kong D, Fonseca J. Quantification of the morphology of shelly carbonate sands using 3D images[J]. Geotechnique, 2018, 68(3): 249-261. [25] Otsu N. A thresholding selection method from grayscale histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [26] Wei T, Fan W, Yuan W, et al. Three-dimensional pore network characterization of loess and paleosol stratigraphy from South Jingyang Plateau, China[J]. Environmental Earth Sciences, 2019, 78(11). [27] Liu X, Jin M, Li D, et al. Strength deterioration of a Shaly sandstone under dry-wet cycles: A case study from the Three Gorges Reservoir in China[J]. Bulletin of Engineering Geology & the Environment, 2017, 77: 1607-1621. [28] 王腾飞, 李远耀, 徐勇, 等. 基于声发射试验的红层砂岩损伤演化特性分析[J]. 地质科技情报, 2019, 38(4): 247-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904026.htmWang T F, Li Y Y, Xu Y, et al. Damage evolution analysis of red sandstone based on acoustic emission test[J]. Geological Science and Technology Information, 2019, 38(4): 247-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904026.htm [29] 杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517Yang L, Shi X Y, Chen Q, et al. Mechanism and laws of deterioration and damage of gneisses under cyclic loading[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517 -