Characteristics of the karst water system on the northeast wing of the Huangling anticline and its impact on water diversion tunnel engineering
-
摘要:
陵背斜东北翼地层以碳酸盐岩和碎屑岩相间的组合形式出现,碳酸盐岩分布区岩溶发育强烈,岩溶突涌水是该区地下工程建设的重要影响因素。以某重大引调水工程黄陵背斜段为研究对象,综合采用岩溶水文地质调查、示踪试验、水文地球化学等多种方法对研究区岩溶水系统特征及隧洞突涌水条件进行了识别和分析。结果表明:区内存在4个子含水系统,垂向上构成了透水性强-弱相间的结构,发育了浅部快速循环、中间快速循环和深部慢速循环的多级水流系统,断裂构成各子含水系统间发生水力交换的垂向通道。工程输水隧洞主体在深部灯影组(Z2
dn )和天河板组-石龙洞组(∈1t +sl )子含水系统中穿越,岩溶发育总体较弱,但在穿越店垭断裂时存在导通上部娄山关组-南津关组(∈3l -O1n )强岩溶子含水系统而发生较大规模高压突涌水的可能。施工支洞穿越∈3l -O1n 子含水系统中白龙洞水流系统的排泄区,遭遇管道式突涌水事故的风险高。多种水文地质方法的联合解译可提高识别岩溶水系统特征和突涌水条件的精度。Abstract:The strata in the northeast wing of the Huangling anticline consist of interbedded carbonate rocks and clastic rocks. As the carbonate rocks underwent strong karstification, karst water inrush would be a significant factor impacting the construction of underground engineering in this area. Taking the Huangling anticline section of a critical national water diversion project as the research object, the characteristics of the karst groundwater system and the water inrush conditions in tunnels were identified by various methods, such as karst hydrogeological surveys, tracer tests and hydrogeochemistry analysis. These results show that the aquifer system contains four sub-aqueous systems with a structure of strong and weak permeable interlayers in the vertical direction, in which a multi-stage karst groundwater system has developed with shallow rapid circulation, intermediate rapid circulation and a deep slow circulation subflow systems. The faults constitute the vertical channels for hydraulic exchange between sub-aquifer systems. The water diversion tunnel primarily crosses the deep Dengying Formation (Z2
dn ) and Tianheban-Shilongdong Formation(∈1t +sl ) aquifer systems with weak karst development. However, a large-scale high-pressure water inrush accident may occur when passing through the Dianya fault, which may transfer groundwater from the upper karst sub-aquifer system of the Loushanguan Formation-Nanjinguan Formation (∈3l -O1n ) into the tunnel. The risk of encountering conduit water inrush accidents is high during construction when the construction branch tunnel passes through the discharge area of the Bailongdong groundwater flow system in the ∈3l -O1n sub-aquifer systems. The accuracy of identifying of karst groundwater flow system features and inrush conditions can be improved by joint interpretation of multiple hydrogeological methods.-
Key words:
- Huangling anticline /
- karst groundwater system /
- tracer test /
- hydrochemistry /
- water diversion tunnel
-
表 1 水文地质钻孔基本信息
Table 1. Basic information on hydrogeological boreholes
钻井号 孔口高程/m 承压高度/m 取样深度/m 取样高程/m 地下水取样层位 ZK01 902 — 326 576 ∈3l ZK02 652 — 69 583 ∈1t+sl ZK03 593 700 0 593 ∈1t+sl 注:取样深度为孔口到孔内取水点的距离;∈3l.娄山关组;∈1t+sl.天河板组;∈1t+sl.石龙洞组 表 2 示踪试验结果及计算参数
Table 2. Tracer test results and calculated parameters
基本参数 天星村→白龙洞 云起山→白龙洞 神农村→老龙洞 郑家坡→老龙洞 投放时间 2020/6/20 2020/6/20 2021/7/24 2021/8/9 示踪剂 荧光素钠 罗丹明 荧光素钠 罗丹明 投放量/kg 4.00 3.50 3.00 6.00 平面距离/m 5 700 5 300 2 700 4 300 初次检测时间/h 23.16 131.25 197.75 83.75 最大流速/(m·h-1) 246.11 40.38 13.65 51.34 峰值运移时间/h 35.66 183.46 375.00 100.25 平均流速/(m·h-1) 159.84 28.89 7.20 42.89 注:最大流速=平面距离/初次检测时间;平均流速=平面距离/峰值运移时间 表 3 典型地下水点的化学组分及补给高程估算
Table 3. Hydrochemistry components and estimated recharge elevations of typical groundwater points
采样点 K+ Na+ Ca2+ Mg2+ Sr2+ Cl- SO42- HCO3- TDS 取样高程/m δ18O/‰ δD/‰ 补给高程/m ρB/(mg·L-1) SP1 0.56 2.69 142.22 4.64 0.22 5.88 20.85 347.80 350.75 807 -7.60 -49.87 — SP2 2.42 5.08 128.54 6.44 0.29 6.54 43.56 280.68 332.93 577 -7.11 -48.02 — SP3 2.99 5.05 141.04 6.32 0.17 7.09 43.59 274.58 343.38 637 -7.56 -49.51 — SP4 0.80 3.16 127.18 0.80 0.16 3.79 0.00 298.98 287.67 848 -7.77 -51.30 — SP5 1.39 1.78 94.15 3.84 0.19 3.41 15.70 237.97 239.25 542 -8.03 -51.85 — 余家岭 0.00 3.22 78.41 4.07 0.13 9.75 19.27 227.15 228.29 736 -7.58 -49.05 — 郑家坡 4.40 2.22 86.62 5.43 0.12 2.94 15.29 323.39 278.59 908 -8.06 -52.92 — 青龙洞 4.22 6.38 103.28 5.96 0.18 20.41 28.08 298.09 317.38 450 -7.34 -48.77 543 百家洞 2.29 4.94 57.92 4.55 0.11 6.34 17.40 183.05 184.97 507 -7.78 -50.37 723 白龙洞 2.44 2.66 60.14 16.80 0.12 4.93 19.11 271.53 241.84 400 -8.21 -52.95 902 老龙洞 2.81 3.19 58.67 14.64 0.29 5.61 29.80 280.68 255.05 466 -8.48 -54.95 1 015 ZK01 4.35 13.33 58.19 12.37 0.29 10.32 34.95 231.86 249.43 576* -8.15 -54.04 877 ZK02 2.04 3.09 59.33 25.62 0.45 1.24 81.98 256.27 301.44 583* -9.73 -66.57 1 536 ZK03 1.87 2.94 56.86 26.46 0.47 1.04 89.19 247.12 301.93 593 -9.76 -67.18 1 552 注:*为孔内地下水取样点高程;TDS.总溶解性固体物质 -
[1] Fan H B, Zhang Y H, He S Y, et al. Hazards and treatment of karst tunneling in Qinling-Daba Mountainous area: Overview and lessons learnt from Yichang-Wanzhou Railway System[J]. Environmental Earth Sciences, 2018, 77(19): 679. doi: 10.1007/s12665-018-7860-1 [2] Lai Y B, Li S, Guo J Q, et al. Analysis of seepage and displacement field evolutionary characteristics in water inrush disaster process of karst tunnel[J]. Geofluids, 2021, 2021: 5560762. [3] Zheng X K, Zhou B Q, Yang Z B, et al. Comprehensive evaluation of hydrogeological impact of tunnel construction in karst aquifers by 3D numerical simulations and water balance models[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(3): 32011. doi: 10.1088/1755-1315/861/3/032011 [4] 钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设: 中英文, 2019, 39(4): 523-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htmNiu X Q, Zhang C J. Some key technical issues on construction of ultra-long deep- buried water conveyance tunnel under complex geological conditions[J]. Tunnel Construction, 2019, 39(4): 523-536(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201904001.htm [5] 张婉婷. 鄂西黄陵断穹北部区域岩溶水系统特征及隧道工程适宜性探析[D]. 成都: 成都理工大学, 2016.Zhang W T. Karst water system analysis and its suitability with the tunnel engineering in the north of Huangling faulted dome[D]. Chengdu: Chengdu University of Technology, 2016(in Chinese with English abstract). [6] 郭绪磊, 周宏, 罗明明, 等. 黄陵穹隆周缘岩溶水流系统特征及成因[J]. 地质科技通报, 2022, 41(1): 328-340. doi: 10.19509/j.cnki.dzkq.2022.0033Guo X L, Zhou H, Luo M M, et al. Characteristics and genesis of karst water flow system around Huangling anticline[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 328-340 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0033 [7] Zheng Y C, He S Y, Yu Y, et al. Characteristics, challenges and countermeasures of giant karst cave: A case study of Yujingshan Tunnel in high-speed railway[J]. Tunnelling and Underground Space Technology, 2021, 114: 103988. doi: 10.1016/j.tust.2021.103988 [8] Behrouj Peely A, Mohammadi Z, Raeisi E. Breakthrough curves of dye tracing tests in karst aquifers: Review of effective parameters based on synthetic modeling and field data[J]. Journal of Hydrology, 2021, 602: 126604. doi: 10.1016/j.jhydrol.2021.126604 [9] Borghi A, Renard P, Cornaton F. Can one identify karst conduit networks geometry and properties from hydraulic and tracer test data?[J]. Advances in Water Resources, 2016, 90: 99-115. doi: 10.1016/j.advwatres.2016.02.009 [10] Wu J, Jia C, Li J, et al. Solute transport characteristics of karst water tracing and its engineering application[J]. Arabian Journal of Geosciences, 2021, 14(9): 1-14. [11] Goldscheider N, Meiman J, Pronk M, et al. Tracer tests in karst hydrogeology and speleology[J]. International Journal of Speleology, 2008, 37(1): 27-40. doi: 10.5038/1827-806X.37.1.3 [12] 常威, 谭家华, 黄琨, 等. 地下水多元示踪试验在岩溶隧道水害预测中的应用: 以张吉怀高铁兰花隧道为例[J]. 中国岩溶, 2020, 39(3): 400-408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htmChang W, Tan J H, Huang K, et al. Application of groundwater multi-element tracing tests to water hazard prediction of karst tunnels: An example of the Lanhua Tunnel on the Zhangjiajie-Jishou-Huaihua high-speed railway[J]. Carsologica Sinica, 2020, 39(3): 400-408(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202003014.htm [13] Frank S, Goeppert N, Goldscheider N. Field tracer tests to evaluate transport properties of tryptophan and humic acid in karst[J]. Groundwater, 2021, 59(1): 59-70. doi: 10.1111/gwat.13015 [14] Li G. Calculation of karst conduit flow using dye tracing experiments[J]. Transport in Porous Media, 2012, 95(3): 551-562. doi: 10.1007/s11242-012-0061-6 [15] Gil-Márquez J M, Andreo B, Mudarra M. Combining hydrodynamics, hydrochemistry, and environmental isotopes to understand the hydrogeological functioning of evaporite-karst springs: An example from southern Spain[J]. Journal of Hydrology, 2019, 576: 299-314. doi: 10.1016/j.jhydrol.2019.06.055 [16] 罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054 [17] 颜慧明, 常威, 郭绪磊, 等. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报, 2022, 41(1): 127-136. doi: 10.19509/j.cnki.dzkq.2022.0008Yan H M, Chang W, Guo X L, et al. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 127-136 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0008 [18] Jeelani G, Shah R A, Deshpande R D. Assessment of groundwater in karst system of Kashmir Himalayas, India: Groundwater of South Asia[M]. Singapore: Springer, 2018. [19] 刘伟江, 袁祥美, 张雅, 等. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报, 2018, 37(6): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htmLiu W J, Yuan X M, Zhang Y, et al. Hydrochemical characteristics and evolution of karst groundwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6): 245-251 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm [20] 毛龙富, 付舒, 刘宏, 等. 基于氢氧稳定同位素的喀斯特泉水补给来源分析[J/OL]. 地球科学, 1-13[2022-01-06]. doi: 10.3799/dqkx.2021.149.Mao L F, Fu S, Liu H, et al. Analysis of recharge source of karst spring water based on stable hydrogen and oxygen isotopes[J/OL]. Earth Science, 1-13[2022-01-06]. doi: 10.3799/dqkx.2021.149.(in Chinese with English abstract). [21] 罗明明, 黄荷, 尹德超, 等. 基于水化学和氢氧同位素的峡口隧道涌水来源识别[J]. 水文地质工程地质, 2015, 42(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htmLuo M M, Huang H, Yin D C, et al. Source identification of water inrush in the Xiakou Tunnel based on hydrochemistry and hydrogen-oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 7-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201501003.htm [22] 王收. 黑龙洞泉域地下水循环和水化学形成机理研究[D]. 石家庄: 河北工程大学, 2020.Wang S. Research ongroundwater circulation and hydrochemical formation mechanism in the Heilongdong spring basin[D]. Shijiazhuang: Hebei University of Engineering, 2020(in Chinese with English abstract). [23] 黄荷, 罗明明, 陈植华, 等. 香溪河流域大气降水稳定氢氧同位素时空分布特征[J]. 水文地质工程地质, 2016, 43(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htmHuang H, Luo M M, Chen Z H, et al. The spatial and temporal distribution of stable hydrogen and oxygen isotope of meteoric water in Xiangxi River basin[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 36-42 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604008.htm -