Stress amplification of the landslide slip zone during vertical P-wave incidence based on ray theory
-
摘要:
汶川地震触发的最大滑坡——大光包滑坡是受控于斜坡先期层间构造错动带(软弱层)的大型地震滑坡, 该软弱层不但遭受了强烈的历史构造碎裂, 还在地震中产生了大面积新生震裂, 其成因及对大光包滑坡启动的贡献一直是国内外研究焦点。以大光包滑坡为地质原型, 将层间构造错动带概化为含软弱层单元地质体模型, 基于地震波射线理论, 建立了垂直P波入射过程考虑软弱层顶底界面波场转换和时间延迟的动力响应理论模型, 开展了垂直振动作用下含软弱层单元地质体振动台模型试验, 获得了软弱层应力放大特征及受地震强度和频率的影响规律, 揭示振动波在软弱层顶底界面的波场转换和能量分配产生了振幅衰减, 以及因软弱层与上下硬层介质属性差异造成的时间延迟, 共同导致应力分异和叠加, 促使软弱层应力放大; 从而认为, 强震过程中大光包滑坡先期层间构造错动带应力放大导致了带内岩体碎裂, 降低了滑带岩体抗剪强度, 从而促使强震过程中滑坡快速启动。
Abstract:The largest landslide triggered by the Wenchuan earthquake was the Daguangbao landslide, which formed in the preinterlayer structural dislocation zone (weak layer) in the slope. The weak layer suffered strong historical structural fragmentation and produced a large area of new fractures during the earthquake. The causes of weak layer fragmentation and its control effect on the initiation of the Daguangbao landslide have always been the research focus. In this paper, by taking the Daguangbao landslide as the geological prototype, the interlayer dislocation zone was generalized into a geological body model with a weak layer unit. Based on seismic wave ray theory, a dynamic response theoretical model of the vertical P-wave incidence process considering the wave field conversion and time delay at the top and bottom interface of the weak layer was established, and the dynamic stress amplification characteristics of the weak layer are found theoretically. Furthermore, through a shaking table physical model test, the influence law of seismic intensity and frequency on the stress amplification of the weak layer were revealed. Based on the theory and experimental structure, it was proposed that the amplitude attenuation was caused by the wave field conversion and energy distribution of the vibration wave at the top and bottom interface of the weak layer, and the time delay was caused by the difference in the medium properties between the weak layer and the upper and lower hard layers. Both of them lead to stress differentiation and superposition, which was the internal mechanism of stress amplification in the weak layer. Therefore, it was considered that the stress amplification of the preinterlayer structural dislocation zone of the Daguangbao landslide in the process of a strong earthquake led to the fragmentation of the rock mass in the zone, reduced the shear strength of the rock mass in the slip zone, and promoted the rapid start-up of the landslide in the process of a strong earthquake.
-
Key words:
- weak interlayer /
- ray theory /
- P-wave /
- delay time /
- stress concentration /
- shaking table test
-
图 5 含软弱层地质体单元模型[27]
Figure 5. Simplified geological model with a weak layer
图 18 由软弱层应力放大导致的损伤破碎[27]
Figure 18. Stress amplification of the weak layer caused breakage
图 19 大光包滑坡启动过程模型[33]
a.强震过程层间软弱夹层效应致使上覆岩体对其产生振动冲击,从而导致滑带岩体碎裂与扩容;b.滑坡越过狭窄黄洞子沟后与对岸山梁相撞,滑体逆冲超覆
Figure 19. Initiation model of the Daguangbao landslide
表 1 下硬层射线路径、传播时间及振幅系数
Table 1. Ray path, propagation time and amplitude coefficient of lower hard layer
序号 入射波 射线路径 延迟时间 振幅衰减系数 1 P1 P t1 TP1或TS1=Tp1 2 P2 PS t2 TP2或TS2=RPS 3 P3 PP t3 TP3或TS3=RPP 表 2 软弱层射线路径、传播时间及振幅系数
Table 2. Ray path, propagation time and amplitude coefficient of the weak interlayer
序号 入射波 射线路径 延迟时间 振幅衰减系数 1 P1 PS t1 TP1或TS1=TPS 2 P2 PP t2 TP2或TS2=TPP 3 P3 PSS t3 TP3或TS3=TPS·RPS 4 P4 PPS t4 TP4或TS4=TPP·RPS 5 P5 PSP t5 TP5或TS5=TPS·RPP 6 P6 PPP t6 TP6或TS6=TPP·RPP 表 3 上硬层射线路径、传播时间及振幅系数
Table 3. Ray path, propagation time and amplitude coefficient of the upper hard layer
序号 入射波 射线路径 延迟时间 振幅衰减系数 1 P1 PSS t1 TP1/TS1=TPS·TPS 2 P2 PSP t2 TP2/TS2=TPP·TPP 3 P3 PPS t3 TP3/TS3=TPP·TPS 4 P4 PPP t4 TP4/TS4=TPP·TPP 5 P5 PSSS t5 TP5/TS5=TPS·TPS·RPS 6 P6 PSPS t6 TP6/TS6=TPS·TPP·RPP 7 P7 PPSS t7 TP7/TS7=TPP·TPS·RPS 8 P8 PSSP t8 TP8/TS8=TPS·TPS·RPP 9 P9 PPPS t9 TP9/TS9=TPP·TPP·RPS 10 P10 PSPP t10 TP10/TS10=TPS·TPP·RPP 11 P11 PPSP t11 TP11/TS11=TPP·TPS·RPP 12 P12 PPPP t12 TP12/TS12=TPP·TPP·RPP 表 4 输入参数
Table 4. Input parameter
密度/(kg·m-3) 纵波速度/(m·s-1) 入射角/(°) 频率/Hz 振幅/(m·s-2) 上硬层 2 600 1 000 - - - 软弱层 1 700 600 - - - 下硬层 2 600 1 000 0 15 0.8 表 6 振动台模型试验相似系数
Table 6. Similarity factor for the shaking table test
物理量 相似关系 相似系数C 硬层 软弱夹层 密度ρ Cρ 1* 1* 弹性模量E CE 400* 100* 时间t Ct 10* 10* 长度l Cl=Cρ-0.5 CE0.5Ct 200 100 泊松比μ Cμ 1 1 内聚力c Cc=CE 400 100 内摩擦角φ Cφ 1 1 应力σ Cσ=CECε 200 100 应变ε Cε=CρCgClCE-1 0.5 1.0 频率f Cf=Ct-1 0.1 0.1 位移u Cu=ClCε 100 100 速度v Cv=CuCt-1 0.5 1.0 加速度a Ca=CuCt-2 1.0 1.0 重力加速度g Cg 1 1 注:带“*”的值为控制量 表 7 模型参数
Table 7. Calculation parameters
密度/(kg·m-3) 纵波速度/(m·s-1) 弹性模量/MPa 抗压强度/MPa 内聚力/MPa 内摩擦角/(°) 上/下硬层 2 600 1 100 278.5 2.10 - - 软弱层 1 700 650 9.4 0.33 10 25 -
[1] 闫彦, 刘志辉, 叶朝霞. 新疆北疆地区融雪洪水灾害预警模型的建立与验证[J]. 干旱区地理, 2009, 32(4): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200904011.htmYan Y, Liu Z H, Ye Z X. Establishment and validation of early warning model of snowmelt flood disaster in northern Xinjiang[J]. Arid Land Geography, 2009, 32(4): 552-557(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200904011.htm [2] 黄河清, 赵其华. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报, 2010, 18(2): 168-177. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002003.htmHuang H Q, Zhao Q H. Basic characteristics and genetic mechanism analysis of Wenjiagou giant landslide induced by Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(2): 168-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201002003.htm [3] Chigira M. Long-term gravitational deformation of rocks by mass rock creep[J]. Engineering Geology, 1992, 32(3): 157-184. doi: 10.1016/0013-7952(92)90043-X [4] 谢卓娟, 李山有, 吕悦军. 滇西南地区主要活动断裂的b值空间分布特征[J]. 地球科学: 中国地质大学学报, 2015, 40(10): 1755-1766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201510016.htmXie Z J, Li S Y, Lü Y J. Spatial distribution characteristics of b-value of main active faults in Southwest Yunnan[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(10): 1755-1766(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201510016.htm [5] 黄润秋, 唐川, 李勇, 等. 汶川地震地质灾害研究[M]. 北京: 科学出版社, 2009.Huang R Q, Tang C, Li Y, et al. Study on geological hazards of Wenchuan earthquake[M]. Beijing: Science Press, 2009(in Chinese). [6] 李远征, 陈强, 潘远阳, 等. 西南某电站坝址右岸含软弱层带岩质斜坡变形破坏机制[J]. 中国地质灾害与防治学报, 2020, 31(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004001.htmLi Y Z, Chen Q, Pan Y Y, et al. Deformation and failure mechanism of rock slope with weak layer zone on the right bank of a hydropower station dam site in Southwest China[J]. Chinese Journal of Geological Hazards and Control, 2020, 31(4): 1-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004001.htm [7] 杨龙, 史小勇, 陈钱, 等. 循环荷载作用下片麻岩劣化损伤机理与规律试验[J]. 地质科技通报, 2020, 39(5): 55-60. doi: 10.19509/j.cnki.dzkq.2020.0517Yang L, Shi X Y, Chen Q, et al. Test on deterioration damage mechanism and law of gneiss under cyclic load[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 55-60(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0517 [8] Qi S W, Xu Q A, Lan H X, et al. Resonance effect existence or not for landslides triggered by 2008 Wenchuan earthquake: A reply to the comment by Drs. Xu Chong and Xu Xiwei[J]. Engineering Geology, 2012, 151: 128-130. doi: 10.1016/j.enggeo.2012.08.003 [9] 范留明, 李宁. 软弱夹层的透射模型及其隔震特性研究[J]. 岩石力学与工程学报, 2005, 24(14): 2456-2462. doi: 10.3321/j.issn:1000-6915.2005.14.009Fan L M, Li N. Transmission model and seismic isolation of weak interlayers[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2456-2462(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.14.009 [10] 徐红玉, 陈殿云, 杨先健, 等. 弹性介质中平面SH波通过弹性夹层时的传播特性[J]. 岩石力学与工程学报, 2003, 22(2): 304-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302030.htmXu H Y, Chen D Y, Yang X J, et al. Propagation of planar SH waves passing through elastic interlining in elastic medium[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 304-308(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302030.htm [11] 陈镕, 陈竹昌, 薛松涛, 等. 夹有软弱土层的层状场地对入射SH波的响应分析[J]. 岩石力学与工程学报, 1999, 18(2): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.009.htmChen R, Chen Z C, Xue S T, et al. The response analysis of strata with extremely soft soil layer to incident SH waves[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 43-47(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.009.htm [12] Groby J P, Wirgin A. Two dimensional ground motion at a soft viscoelastic layer/hard substratum site in response to SH cylindrical seismic waves radiated by deep and shallow line source: Ⅰ. Theory[J]. Geophysical Journal International, 2005, 163: 165-191. [13] Groby J P, Wirgin A. Two dimensional ground motion at a soft viscoelastic layer/hard substratum site in response to SH cylindrical seismic waves radiated by deep and shallow line source: Ⅱ. Numerical results[J]. Geophysical Journal International, 2005, 163: 192-224. [14] 文广超, 苏林雪, 谢洪波, 等. "5·12"汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报, 2021, 40(4): 143-152. doi: 10.19509/j.cnki.dzkq.2021.0430Wen G C, Su L X, Xie H B, et al. Temporal and spatial development law of major geological disasters in Sichuan Province before and after the "May 12" Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 143-152(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0430 [15] 言志信, 张刘平, 曹小红, 等. 地震作用下顺层岩质边坡动力响应规律及变形机制研究[J]. 岩土工程学报, 2011, 33(增刊1): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1011.htmYan Z X, Zhang L P, Cao X H, et al. Dynamic response law and deformation mechanism of bedding rock slope under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 61-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1011.htm [16] 刘汉香. 基于振动台试验的岩质斜坡地震动力响应规律研究[D]. 成都: 成都理工大学, 2014.Liu H X, Study on seismic dynamic response law of rocky slopes based on shaking table test[D]. Chengdu: Chengdu University of Technology, 2014(in Chinese with English abstract). [17] 刘汉香, 许强, 周飞, 等. 含软弱夹层斜坡地震动力响应特性的振动台试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 994-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505015.htmLiu H X, Xu Q, Zhou F, et al. Seismic dynamic response characteristics of slopes with soft interlayer[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 994-1005(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505015.htm [18] 许强, 刘汉香, 邹威, 等. 斜坡加速度动力响应特性的大型振动台试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2420-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012009.htmXu Q, Liu H X, Zou W, et al. Large shaking table test on dynamic response characteristics of slope acceleration[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2420-2424(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012009.htm [19] 周飞, 许强, 刘汉香, 等. 地震作用下含水平软弱夹层斜坡动力响应特性研究[J]. 岩土力学, 2016, 37(1): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601017.htmZhou F, Xu Q, Liu H X, et al. Dynamic response characteristics of slopes with horizontal soft interlayer under earthquake action[J]. Rock and Soil Mechanics, 2016, 37(1): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601017.htm [20] 陈臻林, 胡潇. 基于动力反透射模型的成层边坡稳定性分析[J]. 地质灾害与环境保护, 2013, 24(3): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201303018.htmChen Z L, Hu X. Stability analysis of stratified slope based on dynamic inverse transmission model[J]. Geological Hazards and Environmental Protection, 2013, 24(3): 76-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201303018.htm [21] 范留明, 黄润秋, 林峰. 基于射线理论的边坡地震反应分析[J]. 成都理工大学学报, 2000, 27(1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200001012.htmFan L M, Huang R Q, Lin F. Seismic response analysis of slope based on ray theory[J]. Journal of Chengdu University of Technology, 2000, 27(1): 69-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200001012.htm [22] 范留明, 闫娜, 李宁. 薄弹性软弱夹层的动力响应模型[J]. 岩石力学与工程学报, 2006, 25(1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200601017.htmFan L M, Yan N, Li N. Dynamic response model of thin soft interlayer considering interbedded reflecting waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 88-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200601017.htm [23] 王芳其, 李亚勇, 吕志涛, 等. SH波入射时软弱夹层的减震特性及影响因素分析[J]. 防灾减灾工程学报, 2016, 36(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201601004.htmWang F Q, Li Y Y, Lu Z T, et al. Analysis of shock absorption characteristics and influencing factors of soft interlayer with SH wave incident[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1): 31-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201601004.htm [24] 申荣. 小区域的电磁环境评价研究[D]. 西安: 西安电子科技大学, 2006.Shen R. Research on electromagnetic environmental assessment in small area[D]. Xi'an: Xidian University, 2006(in Chinese with English abstract). [25] 黎在良, 刘殿魁. 固体中的波[M]. 北京: 科学出版社, 1995.Li Z L, Liu D K. Waves in solids[M]. Beijing: Science Press, 1995(in Chinese). [26] 杜世通. 地震波动力学[M]. 北京: 石油大学出版社, 1996.Du S T. Seismic wave dynamics[M]. Beijing: Petroleum University Press, 1996(in Chinese). [27] 崔圣华, 裴向军, 黄润秋. 大光包滑坡启动机制: 强震过程滑带非协调变形与岩体动力致损[J]. 岩石力学与工程学报, 2019, 38(2): 237-253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902003.htmCui S H, Pei X J, Huang R Q. An initiation model of DGB landslide: Non-coordinated deformation inducing rock damage in sliding zone during strong seismic shaking[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 237-253(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902003.htm [28] 魏荣帅, 邓显全. 超声纵波垂直入射波型转换的讨论[J]. 无损检测, 2018, 40(2): 46-47, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201802014.htmWei R S, Deng X Q. Discussion on mode conversion of ultrasonic longitudinal wave in vertical incidence[J]. Nondestructive Testing, 2018, 40(2): 46-47, 54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201802014.htm [29] 胡德绥. 弹性波动力学[M]. 北京: 地质出版社, 1989.Hu D S. Elastic wave dynamics[M]. Beijing: Geological Publishing House, 1989(in Chinese). [30] 朱凌, 裴向军, 崔圣华, 等. 基于动三轴试验的大光包滑坡层间错动带动力特性研究[J]. 工程地质学报, 2018, 26(3): 647-654. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803011.htmZhu L, Pei X J, Cui S H, et al. Study on dynamic characteristics of interlayer staggered zone of Daguangbao landslide based on dynamic triaxial test[J]. Journal of Engineering Geology, 2018, 26(3): 647-654(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803011.htm [31] 黄润秋, 裴向军, 崔圣华. 大光包滑坡滑带岩体碎裂特征及其形成机制研究[J]. 岩石力学与工程学, 2016, 35(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601001.htmHuang R Q, Pei X J, Cui S H. Study on rock mass fragmentation characteristics and formation mechanism of Daguangbao landslide slip zone[J]. Journal of Rock Mechanics and Engineering, 2016, 35(1): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601001.htm [32] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806002.htmHuang R Q, Pei X J, Li T B. Analysis on basic characteristics and formation mechanism of Daguangbao giant landslide triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806002.htm [33] 裴向军, 崔圣华, 黄润秋. 大光包滑坡启动机制: 强震过程滑带动力扩容与水击效应[J]. 岩石力学与工程学报, 2018, 37(2): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802016.htmPei X J, Cui S H, Huang R Q. Initiation mechanism of Daguangbao landslide: Dynamic expansion of sliding zone and water hammer effect during strong earthquake[J]. Journal of Rock Mechanics and Engineering, 2018, 37(2): 430-448(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802016.htm [34] 崔圣华, 裴向军, 黄润秋, 等. 大光包滑坡不连续地质特征及其工程地质意义[J]. 西南交通大学学报, 2019, 54(1): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901009.htmCui S H, Pei X J, Huang R Q, et al. Discontinuous geological characteristics of daguangbao landslide and its engineering geological significance[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 61-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901009.htm [35] 刘伟庆, 李昌平, 王曙光, 等. 不同土性地基上高层隔震结构振动台试验对比研究[J]. 振动与冲击, 2013, 32(16): 128-133, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201316022.htmLiu W Q, Li C P, Wang S G, et al. Shaking table test of high-rise isolated structures on different soil foundations[J]. Vibration and Shock, 2013, 32(16): 128-133, 151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201316022.htm -